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Abstract—We present an initial test of a technique for retrain-
ing reaching skills in patients with poststroke hemiparesis, in 
which errors are temporarily magnified to encourage learning 
and compensation. Individuals with poststroke hemiparesis 
held a horizontal plane robotic manipulandum that could exert 
a variety of forces while recording patients’ movements. We 
measured how well the patients recovered movement straight-
ness in a single visit to the laboratory (~3 h). Following train-
ing, we returned forces to zero for an additional 50 movements 
to discern if aftereffects lasted. We found that all subjects 
showed immediate benefit from the training, although 3 of the 
10 subjects did not retain these benefits for the remainder of 
the experiment. We discuss how these approaches demonstrate 
great potential for rehabilitation tools that augment error to 
facilitate functional recovery.

Key words: adaptation, control, cortex, force fields, haptics, 
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INTRODUCTION

The range of robotic possibilities for teaching and 
rehabilitation has yet to be established, but the options do 
go beyond what a therapist can do—robots are precise, 
tireless devices that can measure progress with high 
accuracy. We have been focusing on robotic forces that 
may facilitate recovery from brain injuries such as stroke. 
Some conventional therapeutic interventions use guid-

ance and resistance principles to promote motor recovery 
in the hemiparetic upper limb. Some traditional rehabili-
tation sources recommend therapeutic intervention that 
eliminates unwanted muscle activity and muscle tone and 
then introduces normal movement patterns, which may 
facilitate rehabilitation [1]. Other theories suggest that 
facilitating reaching patterns promotes improvements in 
motor function. One component of this approach is the 
use of resistance in a direction opposite the movement 
[2]. However, the most effective rehabilitation algorithms 
have yet to be determined, which leaves a fertile area for 
scientific inquiry.

Interestingly, several researchers are exploring 
robotic techniques that are not necessarily designed to 
imitate the conventional therapeutic process but to 
instead uniquely probe new capabilities. For example, 
one possible technique is to have the robot guide (pull) 
the hand toward the desired trajectory and have the guid-
ance transition to resistance as recovery progresses [3–4]. 
Another technique for hemiparetic stroke patients is pro-
viding the patient with a bimanual master-slave robot 
system, which guides the paretic arm by the actions of 

Abbreviations: DOF = degrees of freedom, FM = Fugl-Meyer.
*Address all correspondence to James L. Patton, PhD; Sen-
sory Motor Performance Program, Rehabilitation Institute 
of Chicago, 345 East Superior St, Room 1406, Chicago, IL 
60611; 312-238-1232; fax: 312-238-2208. 
Email: j-patton@northwestern.edu
DOI: 10.1682/JRRD.2005.05.0088
643



644

JRRD, Volume 43, Number 5, 2006
the patient’s nonparetic limb [4]. Still another technique 
is to provide force biofeedback during movement along a 
constraining rail, which encourages the patient to push in 
the appropriate direction [4–6]. Others have also 
attempted sophisticated virtual reality techniques [7–15].

Our research and the work of others suggest that one 
promising novel approach may be adaptive training [16–
20]. In this technique, we use the natural adaptive tenden-
cies of the nervous system to facilitate motor recovery. 
Motor adaptation studies have demonstrated that when peo-
ple are repeatedly exposed to a force field that systemati-
cally disturbs arm motion, subjects learn to anticipate and 
cancel out the forces and recover their original kinematic 
patterns. After the disturbing force field is unexpectedly 
removed, the subjects make erroneous movements in direc-
tions opposite the perturbing forces (aftereffects). This 
technique has recently been shown to alter and hasten the 
learning process in nondisabled individuals [19,21].*

Motor adaptation and its related aftereffects have been 
demonstrated by many investigators under many condi-
tions, ranging from simple position-, velocity-, and accel-
eration-dependent force fields [22–26] to Coriolis forces 
caused by movement in a rotating room [27] and skew-
symmetric “curl” fields that produce forces in a direction 
perpendicular to the velocity of the hand [25]. Similar 
results have also been observed after manipulations of sub-
jects’ visual perception that altered the visual feedback of 
movement [28–31]. Recent results support the view that 
subjects adapt by learning the appropriate internal model 
of the perturbation rather than learning a temporal 
sequence of muscle activations [25–26]. The most encour-
aging result is that engineering techniques have been suc-
cessful in predicting both how the arm is disturbed by a 
force field and the aftereffects of training [24,32–33]. Con-
sequently, one possible rehabilitation method may be for 
investigators to reverse-engineer the adaptation process by 
using the models to design an appropriate force field that 
will eventually result in the desired aftereffect.

Adaptive training will only work, however, if stroke 
patients can adapt. Several studies have demonstrated 
that at least a large subpopulation of stroke patients retain 
their ability to adapt to a force field [16–20] or other dis-
turbances [34–37]. However, severely affected individu-
als used atypical correction strategies [18], and the 

amount of adaptation in individuals with more severe 
impairment is somewhat diminished compared with non-
disabled individuals [20]. Our recent work agrees with 
these findings [38]. Furthermore, our preliminary studies 
on stroke patients have revealed that aftereffects may 
persist longer when the aftereffects resemble nondisabled 
unperturbed movement [16–17,39].

We focused on adaptive training by using robot-applied 
forces to restore function to hemiparetic stroke patients. 
This investigation is a pilot study for determining the poten-
tial of this approach to rehabilitation. We simply applied a 
technique to stroke patients that has already proven effec-
tive at causing desired results in nondisabled individuals 
[19]. While straightening slightly curved movements is 
generally not perceived as the most important clinical goal, 
it represents our initial effort at testing the promise of this 
approach in a well-known scientific framework. We 
addressed two questions. First, we sought to determine 
whether adaptation can be exploited for restoring move-
ment ability. Second, we sought to determine whether the 
benefit persists for the duration of the experiment [17].

METHODS

Subjects
Fifteen stroke patients without any other musculoskele-

tal injury volunteered to participate. Their demographic 
details are listed in Table 1. The Northwestern University 
Internal Review Board approved the research to conform to 
ethical standards from the 1964 Declaration of Helsinki and 
Federal mandates that protect research subjects. Before 
beginning, each subject signed a consent form that con-
formed to these Northwestern University guidelines. All 
stroke participants were in the chronic stage, having suffered 
a stroke 19 to 132 months prior to the experiment. Our 
exclusion criteria were (1) bilateral impairment; (2) severe 
sensory deficits in the limb; (3) aphasia, cognitive impair-
ment, or affective dysfunction that would influence the abil-
ity to comprehend or to perform the experiment; (4) inability 
to provide an informed consent; and (5) other current severe 
medical problems. Subjects were randomly assigned to one 
of two groups: a treatment group (n = 12) that received cus-
tom-designed forces for part of the experiment or a control 
group (n = 9) that received no forces but otherwise per-
formed the same experimental protocol. We were able to 
have six subjects return on a separate day for a second visit, 
so some subjects served as their own controls. The order of

*Wei Y, Patton JL. Forces that supplement visuomotor learning: A ‘sensory 
crossover’ experiment. Exp Brain Res. Unpublished observations, 2006.
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presentation was randomized. The research therapy staff 
was blinded to the type of forces the subjects received and 
performed the modified Ashworth scale to assess spasticity 
before beginning the experiment. We performed the upper-
limb portion of the Fugl-Meyer (FM) examination before 
and after the robotic experiment to assess general changes in 
motor capability.

Apparatus
Subjects held the free limb (here referred to as the “end-

point”) of a 2 degree-of-freedom DOF robot (Figure 1) 
described elsewhere [26,40]. Endpoint forces and torques 
were monitored with a 6 DOF load cell that was fixed to the 
handle of the robot (ATI Industrial Automation, Inc, Apex, 
North Carolina, model F/T Gamma 30/100). The robot was 
equipped with position encoders that record the angular 
position of the two robotic joints with a resolution exceeding 
20'' of rotation (Gurley Precision Instruments, Inc, Troy, 
New York, model 25/045-NB17-TA-PPA-QAR1S). The 
position, velocity, and acceleration of the handle were 
derived from these two position encoders. We used two 
torque motors to apply programmed forces to the subjects’ 
hands (PMI Motor Technologies, Wood Dale, Illinois, 

model JR24M4CH). Motion and force data were collected 
at 100 Hz. At all times during the experiment, the software 
generated an additional set of compensatory torques that 
canceled the inertial effects of the robot-arm linkage and 
resulted in the feeling of free movement on a slippery sur-
face when the force field was not present.

Protocol
Subjects were seated so that the starting point of 

the targets was approximately at the center of their theo-
retical workspace, directly anterior from the shoulder 
(Figure 1(b)). The experiment involved only the hemip-
aretic limbs of the stroke subjects, which corresponded to 
the dominant limb in 9 of the 11 subjects (Table 1). If 
subjects had difficulty reaching the center point, we 
adjusted their chair position slightly. To avoid fatigue, 
subjects rested their elbow and forearm on a lightweight 
frictionless linkage (Figure 1(a)), and they could choose 
to rest between movements (subjects rarely rested longer 
than a few seconds every hundred movements).

Starting from a point centered in front of the shoulder, 
subjects were presented a target at one of two locations 
10 cm distant (out and to the left or out and to the right).

Table 1.
Subject information for treatment and control subjects of this study (N = 15).

Subject Sex Assisted
Vision

Dominant
Hand Pathology Affected 

Hand Affected Neural Region

1 Female Yes Right Hemorrhagic stroke Right Left intercerebral hemorrhage
2 Male Yes* Right Stroke Left Unknown
3 Male No Right TBI followed by 2 strokes Right Unknown, left CVA
4 Female Yes* Right Stroke Left Right frontal cortex
5 Male Yes† Right AVM hemorrhage Left Right frontal and parietal lobe
6 Female No Right Hemorrhagic stroke, RIND 

1 yr previous
Left Right posterior internal capsule 

infarct
7 Female No Right Hemorrhagic stroke Left Right intercerebral hemorrhage
8 Male Yes Right Stroke Left Right thalamus
9 Male Yes* Left Stroke Right Left parietal lobe

10 Male Yes Right Stroke Left Right carotid artery, thrombotic
11 Female Yes Left Stroke Right Pons and midbrain
12 Male Yes Right Stroke Left Unknown
13 Male Yes Right Stroke Left Left subcortical lacunar
14 Female No Right Thrombotic stroke Right Left MCA, posterior
15 Male Yes* Right Thrombotic stroke with 

neurosurgery
Left Right subcortical

*Vision not assisted for experiment.
†Bifocals used for experiment.
AVM = arteriovenous malformation, CVA = cerebrovascular accident, MCA = middle cerebral artery, RIND = reversible ischemic neurological deficit, TBI = traumatic 
brain injury.
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These two “main” targets were 90° from each other and 
formed a “v” pattern that was centered along the paramid-
line extending from the shoulder (Figure 1(b)). Subjects 
were given a cue to return to the center point after they had 
either (1) initiated an attempt and 3 seconds had elapsed or 

(2) reached and stayed in the target (1 cm radius) for at least 
0.5 seconds. Subjects’ arms were eclipsed by the projection 
platform. Hence, they could only see the target and a cursor 
that represented the instantaneous location of the hand. 
Subjects were neither told about nor shown the desired 
movement, although they were instructed to try to move to 
the target at the appropriate speed in a straight line. Only 
the outward movements were recorded for this experiment. 
Additionally, we included two extra “generalization” tar-
gets that were not practiced but only experienced briefly at 
the beginning and end of the experiment. These targets 
were only 30° from each other and formed a “v” in the area 
between the main targets, also centered on the paramidline 
extending from the shoulder. The generalization targets 
were used to determine if any learning was carried to move-
ment directions that were not practiced.

We controlled for a peak speed of 0.288 m/s by giving 
subjects feedback at the end of each movement using col-
ored dots and auditory tones. These cues let subjects know 
if  they were going too fast, too slow, or within a range 
of  ±0.05 m/s. Consequently, subjects’ speeds remained 
roughly constant across the entire experiment. Subjects were 
instructed to initiate their movements at a self-determined 
time after they saw the target appear. To prevent fatigue, we 
instructed subjects to rest anytime they chose.

Machine Learning and Force-Field Design
As explained in greater detail elsewhere, a time-

record of training forces was custom-designed with an 
iterative machine-learning algorithm [19]. A machine-
learning phase iteratively determined the forces that shifted a 
subject’s movement to the “desired” trajectory, by 
intermittently exerting forces (once every four movements, 
randomly presented) and adjusting them based on the 
response of the subject. For this experiment, we used a 
smooth, minimum-jerk trajectory along a straight line to the 
target for which was believed to resemble a 
“healthy” trajectory [41]. For each iteration, a force  
was applied to the robot handle in the first 200 ms of the 
movement, where   and  (for i > 1) was 
adjusted from one movement to the next based on the error 
between the actual,  and the desired trajectories with 
the simple machine-learning rule

Here, the parameter μ is a learning rate, which has 
been heuristically found to work in the range from 10 to 

Figure 1.
Experimental apparatus from (a) side view and (b) top view. (c) Hand 
strap and posture used. Ball handle was on low-friction axle, so it was 
free to pivot in horizontal plane. (d) Subject seated at projection 
platform with movement target displayed. Only target and cursor 
representing hand were visible to subject.
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30 N•m–1. A μ that is too large leads to unstable learning, 
and a μ that is too small results in a lengthy machine-
learning session. We chose μ = 20 N•m–1 for our experi-
ments. The algorithm allowed the subject to initiate the 
movement when they chose. Forces initiated when veloc-
ity exceeded 0.1 m/s or the subject had exited the starting 
window. All subjects performed a total of 744 movements 
(trials), broken down into the following experimental 
phases:
  • Unperturbed familiarization: 58 movements (~6.5 min) 

for becoming familiar with the system and the task of 
moving the manipulandum.

  • Unperturbed baseline: 10 movements (~1.5 min) for 
establishing a baseline pattern of reaching movements.

  • Unperturbed baseline, generalization targets: 10 move-
ments (~1.5 min) for establishing a baseline pattern 
of  reaching movements on the generalization targets 
described previously.

  • Machine learning: 200 movements (~25 min) with 
forces exerted intermittently and randomly once in 
every 4 movements. The robot gradually learned the 
average forces necessary to push the subject to the 
“desired” trajectory. Note that because these forces 
occurred intermittently and randomly, these move-
ments did not lead to adaptation, because any small 
amount of adaptation was washed out in the move-
ments between the movements with forces.

  • Second unperturbed baseline: 10 movements (~1.5 min) 
for determining if the baseline pattern changed.

  • Second unperturbed baseline, generalization targets: 
10 movements (~1.5 min) for determining if the base-
line pattern changed on the generalization targets.

  • Learning: 222 movements (~30 min) with constant 
exposure to the training forces. These forces were the 
vector opposite of the forces that were determined in 
the machine-learning phase. 

  • Aftereffects catch trials: 80 movements (~10 min) 
with random, intermittent removal of the force field 
for 1 in 8 of the movements (catch trials) for deter-
mining the aftereffects.

  • Aftereffects catch trials, generalization targets: 80 move-
ments (~10 min) with random, intermittent removal of 
the force field for 1 in 8 of the movements (catch trials) 
for determining the aftereffects.

  • Training refresher: 2 movements (~15 s) identical to the 
learning phase.

  • Washout: 50 movements (~6 min) with no forces 
applied.

  • Final movements, generalization targets: 10 move-
ments (~2 min) with no forces applied on the generali-
zation targets.
The movements in each direction were divided 

equally in each phase. Subjects were also required to take 
breaks (approximately 1–2 min) after movements 54, 
278, 510, and 682 so they could rest and our data collec-
tion equipment could be reset. We chose the instance of 
these breaks to minimally disrupt the learning process 
and provide the subject with a chance to rest. The sub-
jects in the control group received no forces for the entire 
experiment but otherwise experienced the same protocol. 
The entire session lasted approximately 3 hours, which 
included screening by therapist and pre- and postclinical 
measures by the research occupational therapist.

Analysis
We restricted our focus in this study to the early part of 

movements for two reasons. First, stroke patients often 
make excessively large corrections later in their movements 
that may depend on earlier errors [42–43]. Second, we were 
primarily interested in the early phase of the movement that 
best reflects the operation of a feed-forward controller 
based on an internal model of the arm-environment dynam-
ics. Our measure, the initial direction error, reflected this 
early phase of movement by forming a vector from the start 
point to 25 percent of the distance to the target (2.5 cm). 
This measurement corresponded to approximately the first 
200 to 300 ms of a movement that, if no error corrections 
existed at the end of the movement, lasted about 1.1 s. Posi-
tive error corresponded to a counter clockwise rotation from 
the actual trajectory to the desired trajectory, and zero corre-
sponded to a straight line to the target. Initial direction error 
was used for testing our hypotheses on the feed-forward 
controller and also was found to be highly correlated with 
the perpendicular distance measure used in other adaptation 
studies [26,44–45]. Even though we were studying the ini-
tial part of movement, we were nonetheless also curious 
about whether “fixing” earlier stages of movement will cor-
rect (or improve) the latter part of movement.

All hypotheses were tested at an α level of 0.05. We 
tested for a shift in initial direction from baseline to after-
effects and for tendency of the aftereffects to disappear in 
the washout phase.
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RESULTS

For all the movements observed, unperturbed baseline 
movements for stroke subjects were approximately twice 
as variable as in nondisabled subjects for the same experi-
mental conditions (Figure 2) [19]. All subjects showed 
significant errors in one or more of the movement direc-
tions in the unperturbed baseline phase before any treat-
ment (Figure 2(a)). Initial errors averaged 17° of initial 
direction error. Intermittently in the machine-learning 
phase, these errors were pushed by corrective forces that 
evolved to eventually shift movements closer to a straight 
line (Figure 2(b)). The forces resulting from the machine-
learning phase ranged from 0 to 12 N and differed from 
subject to subject.

Subjects then began the learning phase in which the 
forces learned by the robot were inverted and applied repeat-
edly (Figure 2(c)). These training forces tended to amplify 
(double) the initial errors we saw in the unperturbed baseline 
phase. By the end of the learning phase, however, subjects 
had reduced their errors (Figure 2(d)) to a level similar to 
their unperturbed baseline phase. Beneficial aftereffects 
were observed in some catch trials, where for a single 
motion, the forces were removed and the subject was 
returned to the “normal” world (Figure 2(e)). Finally, we 
tested to see if the effects of the adaptation washed out by 
leaving the forces off for 60 more movements. For most of 

the subjects, the benefits were retained until the end, as was 
the case for the subject shown in Figure 2(g).

However, in this initial investigation, we failed to 
detect, from direct analysis of the data whether, as a 
group, subjects statistically benefited from training by 
having aftereffects lie closer to nondisabled movement. 
Several subjects did not appear to adapt for one or both of 
the movement directions (Figure 3). We suspected that 
this was due to a combination of several factors. First, it 
could have been because of a small (or no) effect size. 
Second, it could have been because of a large amount of 
variability in the data. Third, and most importantly, it 
could have been because some subjects’ movements had 
no room for improvement.

To test the hypothesis that benefit was difficult to 
detect because there was nothing to improve upon, we sin-
gled out subjects’ movement directions that actually 
showed significant error before training (i.e., their baseline 
movement errors were significantly different from zero). 
This reduced the analysis to 13 movement directions for 
the treatment group and 8 movement directions for the 
control group (about half the data). By this criterion, data 
from two subjects of the treatment group and four subjects
of the control group was not considered further because 
their baseline movement errors were not significantly dif-
ferent from zero (Tables 2 and 3).

Figure 2.
Typical patterns for successive phases of experiment for single stroke subject: (a) unperturbed baseline, (b) late machine learning, (c) early training, 
(d) late training, (e) aftereffects, (f) early washout, and (g) late washout. Shown 315° movement direction for clarity only. Desired trajectories are 
bold dotted lines, average trajectories are bold solid lines, individual trajectories are thin lines, and shaded areas indicate running 95% confidence 
intervals of ensemble. Note that although dotted tracing indicates an ideal trajectory, only target and cursor representing hand were visible to subject.
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Surprisingly, all but one of the treatment group move-
ments showed beneficial aftereffects (Figure 3, bars, 
average reduction in error of –54%, p < 0.05, t-test on per-
cent reduction in error). One subject’s error reduction was 
300 percent because the training process caused a rotation 

of the movement direction that went beyond the goal. 
Nevertheless, if this outlying data point was not consid-
ered, the error reduction for all the remaining subjects was 
still significant (p < 0.01). Interestingly, this subject’s 
overcorrection snapped back to almost zero error by the 
end of the experiment.

The most critical question, however, was whether 
these beneficial aftereffects could be retained. While we 
chose this initial experiment not to extend our examina-
tion beyond the single 3-hour visit to the lab oratory 
(days or weeks would be necessary to be clinically con-
vincing), we decided to check if beneficial aftereffects 
were retained beyond the normal time that nondisabled 
people wash out their aftereffects (about 20 movements). 
Similar to the evaluation of aftereffects (Figure 3, 
“Change to second baseline”), the final 10 movements of 
the 50 movements of the washout phase were also evalu-
ated for a reduction in error from baseline. We found that 
10 of the 13 subjects’ error remained low and some were 
even lower than in the aftereffects phase. As a group, this 
reduction in error was marginally significant (p < 0.054, 
t-test on percent reduction in error, Figure 3, diamond 
symbols and bars for “Persistence”).

An additional evaluation was whether subjects could 
generalize what they had learned and perform better in 
directions that were not practiced. We inspected the 
reduction in error movements that subjects made in the 
unpracticed generalization-target trials. However, we 
found no evidence of benefit either in the aftereffects or 
by the end of the experiment (not displayed).

Two important intermediate questions were whether 
(1) the machine-learning phase alone had any influence on 
movement error and (2) mere practice without forces 
might also result in some benefit (tested by the control 
group). Both of these questions are related and relevant to 
the assertion that a small amount of practice alone might 
lead to benefits that could confound results from the 
custom-designed force fields [46]. To test this, we first 
evaluated the error reduction by the final 15 trials of 
machine-learning phase and the corresponding trial num-
bers for the control group (Figure 3, “Change to second 
baseline”). Second, we evaluated the error reduction for 
the control group for trials that corresponded to those eval-
uated for the treatment group (Figure 3, circles). Although 
we failed to detect any significant difference between the 
control and the treatment groups, the treatment group 
showed a significant benefit while the control group did 
not (Figure 3, circles vs diamonds). 

Figure 3.
Percent improvements from training only for movements in which 
error existed before training. Reduction of errors are negative values 
and were evaluated at second baseline phase (after end of machine 
learning; left two columns of data), at aftereffects phase (after force-
field training; center two columns of data), or at end of experiment 
(after forces had been off for 50 movements; right two columns of 
data). Each subjects’ average improvement for each movement 
direction is indicated by symbol: data from treatment group (◊) and 
control groups ( ) are separated into columns. 95% and 90% 
confidence intervals are indicated as thin and thick vertical shaded 
bars behind symbols, respectively, indicating where t-tests showed 
significant benefit from training. Bars indicate significant benefit for 
treatment group in aftereffects trials and marginally significant 
persistence of benefit by experiment end. *Indicates significantly 
different than zero at 0.05 level. (*)Indicates significantly different 
than zero at 0.07 level.
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Finally, the FM clinical scores also improved 
slightly in the treatment group. For the treatment group, 
FM scores marginally increased an average of 1.6 
(Table 2, p = 0.06). No such improvement was seen in 

the control group (Table 3, p > 0.27). This mild 
improvement was also only loosely correlated to partic-
ipants’ error reduction (i.e., a Pearson correlation coef-
ficient of 0.21).

Table 2.
Selected characteristics and experimental data for treatment group (n = 12).

Subject Age
(yr)

Time Since 
Stroke (mo)

Height
(m)

Mass
(kg)

Elbow 
MAS*

Fugl-Meyer Upper Extremity Initial 
Significant 

Error†

Movements

Final Mean Δ 
Error‡Pretreatment Δ Pre- to 

Posttreatment
1§ 30 129 1.60 70.45 — 26 0 — —
2 48 55 1.73 75.45 — 37 2 R –114
3§ 37 132 1.75 71.82 — 52 4 R 15
4 76 19 1.73 75.00 — 44 5 R –143
5¶ 56 94 1.80 106.82 2 43 6 R –58
6 49 54 1.47 60.00 2 32 –1 LR –124
7¶ 51 73 1.60 47.73 2 51 –2 R –37
8 48 26 1.78 84.09 3 15 1 — —
9§ 72 96 1.70 72.72 2 33 1 LR –53

10¶ 53 113 1.85 90.89 2 22 2 L –63
11 40 26 1.65 68.18 4 — — LR –10
12 48 110 1.80 102.27 2 23 0 R 135

Mean 50.7 77.3 1.7 77.1 2 34 1.6 — –45.2
*Scale 0 to 4. 
†L indicates movement out and to left and R indicates movement out and to right. 
‡Percent of baseline error. 
§Subjects served as their own control and were randomized into treatment group first. 
¶Subjects served as their own control and were randomized into control group first. 
MAS = modified Ashworth scale.

Table 3.
Selected characteristics and experimental data for control group (n = 9).

Subject Age
(yr)

Time Since 
Stroke (mo)

Height
(m)

Mass
(kg)

Elbow 
MAS*

Fugl-Meyer Upper Extremity Initial 
Significant 

Error†

Movements

Final Mean Δ 
Error‡Pretreatment Δ Pre- to 

Posttreatment
1§ 30 131 1.60 70.45 — 23 1 — —
3§ 37 132 1.75 71.82 — 52 0 LR –46
5¶ 56 93 1.80 106.82 2 47 0 L –45
7¶ 51 72 1.60 47.73 2 46 2 R –24
9§ 72 97 1.70 72.72 2 30 1 R –28

10¶ 53 111 1.85 90.89 2 23 1 R –5
13 55 11 1.83 79.09 2 43 0 LR 82
14 57 85 1.63 50.91 3 26 –2 — —
15 46 167 1.80 81.82 — 25 1 — —

Mean 50.8 99.9 1.7 74.7 2.1 35 0.4 — –11.1
*Scale 0 to 4. 
†L indicates movement out and to left and R indicates movement out and to right. 
‡Percent of baseline error. 
§Subjects served as their own control and were randomized into treatment group first. 
¶Subjects served as their own control and were randomized into control group first. 
MAS = modified Ashworth scale.



651

PATTON et al. Custom-designed haptic training for individuals with poststroke hemiparesis
DISCUSSION

We conducted this initial pilot study to demonstrate 
how adaptive training might be useful for restoring arm 
movement. The stroke patients in this study showed less 
conspicuous results compared with nondisabled subjects 
exposed to the same algorithm [19]. Nevertheless, when 
we restricted our analysis to movement directions that 
were affected by significant error before training, results 
were quite evident in the stroke group: movements 
showed beneficial aftereffects after training (error 
decreased) that persisted in all but three patients. This 
persistence was twice as long as for nondisabled people. 
While these results are only an encouraging hint at what 
might be a possible therapeutic intervention, we believe 
that these results suggest the need for a longer, more 
comprehensive look at adaptive training as a means of 
restoring function following brain injury.

A key assumption of our approach was that motion is 
impaired because of an ineffective motor plan that can be 
changed through adaptive training. However, one alterna-
tive explanation of impairment is that passive contrac-
tures, commonly seen in chronic stroke patients, alter the 
movement pattern. Indeed, this may explain the three sub-
jects who deadapted to a pattern that was perhaps the most 
biomechanically optimal for the characteristics of their 
contracted limb. Another alternative explanation for the 
three subjects is that some subjects may have less ability 
to adapt. Indeed, other studies have reported diminished 
ability to adapt in some stroke patients [18,20,38]. 
Another alternative explanation is that shifts in movement 
patterns may have actually been present but were “buried 
in the noise” of motor variability and therefore statistically 
undetectable—a statistical power problem. Motor vari-
ability is a commonly reported feature of stroke patients 
[38,43,47–49]. Another possibility may be that subjects 
could have been so highly functional that no improvement 
was possible in the context of this experiment—the so 
called “ceiling effect” in the learning process [50]. But 
after all movements that did not exhibit significant error 
before training were stripped away, the remaining move-
ments showed signs of beneficial adaptation.

Whether this technique will lead to benefits that 
might persist for days or weeks remains to be seen. 
Another possibility is to consider prolonging this type of 
training over many days to get ever closer to the desired 
outcome. As rehabilitation training typically requires a 
balance of repetitive practice, strengthening, and expert 

guidance, we believe that the pilot results we present here 
may inspire other new forms of rehabilitation.

One limitation of our approach is that the forces that 
push the subject over to the desired trajectory xD(t) are 
recorded in a Cartesian coordinate system. The assumption 
is that these forces can be learned correctly even though 
the hand is not moving along the desired positions with the 
desired velocities. Because a nonlinear relationship exists 
between joint torques and endpoint forces, the torques 
applied along one trajectory are not necessarily appropriate 
for another [51]. However, we argue that if that the desired 
and expected trajectories are within a “domain of proper 
generalization” [21], the forces applied are a good enough 
approximation and can lead to desirable aftereffects. 
Recent studies have presented evidence that motor learn-
ing is broadly tuned so that training in one set of directions 
can influence others [24,26,52–54]. Furthermore, this 
learning process is quantifiable via an adaptation model 
[45]. Still, more sophisticated machine-learning algorithms 
would likely improve the performance by storing the 
machine-learning forces in the intrinsic (joint or muscle) 
coordinate system.

Most subject data (10 of 13) displayed persistent bene-
fits for the duration of the experiment (50 washout move-
ments)—beyond the time a nondisabled subject would 
take to deadapt. Consequently, the data strongly suggests 
that the benefits of the aftereffects are retained because 
they are perceived to be an improvement. The motor con-
trol system may respond to and retain the benefits of this 
type of adaptive training for several reasons. One reason 
may be that stroke patients have the confusing challenge of 
being able to use only a few remaining motor pathways 
after their injury. The brain attempts to send conventional 
(preinjury) motor command signals, which are now inap-
propriate because of injury, to the descending motor path-
ways. The training methods of this experiment may coax 
the nervous system to attempt a new motor strategy that is 
not intuitively obvious to the injured system but becomes a 
“motor epiphany” following the removal of the training 
forces. In this scenario, the nervous system is essentially 
shown the right way to execute the task, much like a coach 
may get an athlete to try a new strategy.

One might also speculate that change in reflex tone 
leads to better movement. Reflex torque elicited by an 
imposed stretch of the elbow has been shown to cause 
decreases on average of 50 percent with tens of stretches 
in a single experiment on flexor but not extensor muscles 
[55]. However, if a spastic muscle pulls the limb to the 
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side and then a robot pushes to increase the error as is 
done in this experiment, the spastic muscle would be 
shortened. Therefore, this muscle would have less stimu-
lation that might cause a spastic response.

Another reason adaptive training could lead to bene-
fits is that the impaired nervous system does not react to 
nor does it try to learn from small errors in movement. 
Our approach might promote learning by making errors 
more noticeable. One can imagine many possible strate-
gies for amplifying error, and recent research in our 
group has shown promising results with several different 
types [38,56]. Models of learning systems, such as neural 
networks, suggest that error drives learning. As a conse-
quence, these systems can learn better and faster if error 
is larger [18,57–59]. Such error-driven learning processes 
are believed to be central to the acquisition and adapta-
tion of skill in human movement [59–60]. Augmenting 
error may heighten motivation and attention or lead to 
anxiety, which has been suggested to correlate with learn-
ing [61]. Moreover, intensifying error can raise the sig-
nal-to-noise ratio for sensory feedback and self-
evaluation. Errors that are more noticeable may trigger 
responses that would otherwise not be perceived. Other 
studies agree with the hypothesis that error augmentation 
can enhance learning and “trick” the nervous system into 
certain behaviors by giving altered sensory feedback 
[62–71]. Conversely, suppression of visual feedback can 
slow down the deadaptive process [19]. However, not all 
kinds of augmented feedback on practice conditions have 
proven to be therapeutically beneficial in stroke [72]. 
Hence, limits may exist to the amount and type of error 
augmentation that is useful [64,73].

Straightening movements may be considered a small 
clinical goal compared with extending the functional 
workspace or enhancing reach-and-grasp capability. This 
initial effort merely tested the promise of this approach in 
a well-known framework. More protracted studies lasting 
weeks—currently underway in our laboratories—are 
needed to provide more clinical significance to this 
approach by demonstrating lasting and functional bene-
fits of repeated treatments.

Encouraging evidence points to future studies that 
exploit the natural adaptive tendencies in the nervous sys-
tem for restoring function. Perturbation and electromyo-
graphic studies may challenge the hypothesis of reflex 
modulation. Imaging and transcranial magnetic stimula-
tion studies may determine if alternate motor pathways 
are used or if the cortex is used differently after training. 

Lesion site locations from magnetic resonance images 
may indicate whether damage to certain functional areas 
leads to limits in one’s ability to recover via adaptive 
training.

While this research focuses on adaptation to forces 
(kinetics), researchers have also observed similar adapta-
tion to a more easily implemented visuomotor distortion 
(kinematics). These distortions involve complex transfor-
mations using prisms [74], nonlinear mappings [65], or 
simple rotations or stretches [75–76]. All of these distor-
tions appear to also induce an adaptation process and can 
trigger rapid recovery from sensory disorders, such as 
hemispatial neglect, seen in stroke patients [36], which 
shortens the recovery process from months to hours. 
Moreover, adaptation to both visual and mechanical dis-
tortions appears to involve the same mechanism [77].*
One sensory system can facilitate the other, and a combi-
nation is the most powerful. One might consider distor-
tions to induce an inappropriate and indirect form of 
learning, but the addition of more sensory inputs, such as 
the cutaneous sensors in the hand, the proprioceptive mus-
cle spindles, and Golgi tendon organs may facilitate the 
learning process by providing more signals. Combining 
haptics (robotic forces) with sophisticated graphics (such 
as virtual reality) may provide the most promising form of 
rehabilitation for individuals with brain injury. However, 
recent work suggests going beyond virtual reality to dis-
torted reality in order to facilitate functional recovery. 
This is currently of great interest to our group [14].

CONCLUSIONS

New opportunities for recovery after stroke are 
offered by extending intensive therapy beyond present 
inpatient rehabilitation stays, and robotic therapy may be 
one way to economically accomplish this [78]. While 
specialized forces are useful for inducing adaptive 
responses, they are likely to be most effective if com-
bined with other rehabilitation strategies. We believe that 
the error-amplification approach presented here for indi-
viduals with stroke provides a new pathway for augment-
ing motor relearning in individuals with brain injury.

*Wei Y, Patton JL. Forces that supplement visuomotor learning: A ‘sensory 
crossover’ experiment. Unpublished observations, 2006.
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