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Abstract—We have developed a haptic-based approach for 
retraining of interjoint coordination following stroke called 
time-independent functional training (TIFT) and implemented 
this mode in the ARMin III robotic exoskeleton. The ARMin III
robot was developed by Drs. Robert Riener and Tobias Nef at the
Swiss Federal Institute of Technology Zurich (Eidgenossische 
Technische Hochschule Zurich, or ETH Zurich), in Zurich, 
Switzerland. In the TIFT mode, the robot maintains arm move-
ments within the proper kinematic trajectory via haptic walls at 
each joint. These arm movements focus training of interjoint 
coordination with highly intuitive real-time feedback of perform-
ance; arm movements advance within the trajectory only if 
their movement coordination is correct. In initial testing, 37 non-
disabled subjects received a single session of learning of a com-
plex pattern. Subjects were randomized to TIFT or visual 
demonstration or moved along with the robot as it moved 
though the pattern (time-dependent [TD] training). We examined
visual demonstration to separate the effects of action observa-
tion on motor learning from the effects of the two haptic guid-
ance methods. During these training trials, TIFT subjects 
reduced error and interaction forces between the robot and arm, 
while TD subject performance did not change. All groups 
showed significant learning of the trajectory during unassisted 
recall trials, but we observed no difference in learning between 
groups, possibly because this learning task is dominated by 
vision. Further testing in stroke populations is warranted.

Key words: arm, coordination, haptics, motor control, motor 
learning, robotics, stroke, synergies, therapy, upper limb.

INTRODUCTION

Approximately 795,000 individuals have a stroke 
each year in the United States [1], and stroke remains the 
most common cause of chronic disability for adults in the 
United States. The majority of survivors of stroke have 
limited use of their hemiplegic arm [2–3], with some 
studies reporting that after stroke a full 65 percent of 
individuals are unable to incorporate the hemiparetic 
upper limb into daily function [4–5]. Even mild impair-
ment of upper-limb function after stroke significantly 
limits daily function and has been demonstrated to 
decrease health-related quality of life [6–8]. Reaching 
and grasping movements are components of many activi-
ties of daily living (ADLs) and are often impaired after 
stroke. Studies have reported a variety of impairments 
related to reaching and grasping, including decreased 
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muscle activation and weakness [9–12], disrupted inter-
joint coordination [13–16], decreased smoothness of 
movement [17–18], and dyscoordination between reach 
and grasp movements [19].

Abnormal interjoint coordination is commonly
observed after stroke and is the focus of this study. The 
most studied abnormal neural synergy is the inability to 
simultaneously abduct the shoulder and extend the elbow 
[20–23]. While compensatory strategies (excessive trunk 
movement) can overcome this impairment, recovery of 
interjoint coordination is possible with a focused interven-
tion [24]. Importantly, therapy strategies that promote 
relearning of normal interjoint coordination and move-
ment kinematics may critically affect actual real-world 
use of the limb in ADLs [25], while therapies that allow 
use of compensatory strategies may impede this process 
[26–27]. The concept that compensatory strategies can 
mask more normal movement patterns was demonstrated 
by Michaelsen et al. [28–29]. They showed that in a single 
session, when the trunk is restrained, reaching patterns in 
the shoulder and elbow improve toward normative 
performance [28]. Therefore, we have developed a ther-
apy method that inhibits compensatory strategies and pro-
motes learning of proper interjoint coordination during 
reaching movements.

The use of robotic devices to treat upper-limb move-
ment deficits is increasingly accepted, with several com-
mercial devices now available for the arm and hand [30–
31]. The earliest of these robots were end point-based, 
attached to the forearm and hand, and controlled move-
ments in extrinsic coordinates. These important first stud-
ies with MIME (Mirror Image Movement Enabler) [32–
33], ARM Guide [34–35], and MIT-Manus [36–37] dem-
onstrated that robot-assisted movement was safe and well 
tolerated by patients with stroke and resulted in measur-
able reductions in impairment. Meta-analyses and sys-
temic reviews of clinical trials have shown that using 
upper-limb robots has some advantages in recovery of 
strength and movement ability when compared with 
active control groups that did not use robots, but no 
advantages were seen for using robots in recovery of 
ADL ability [38–40]. However, these reviews group 
together the effects of a wide range of robots and control 
strategies, and further studies may eventually reveal that 
a subset of these approaches or new, untested approaches 
are effective in restoring ADL ability. A recent multisite 
clinical trial of several upper-limb robots found them 
comparable to dose-matched conventional therapy, but 

superior to usual and customary care in motor function 
scales at 36 weeks [41]. In contrast, two recent clinical 
trials of lower-limb robots found them inferior to conven-
tional methods [42–43]. This finding suggests that the 
type of robot and the control modes used do affect out-
come, and further studies are needed to optimize robotic 
approaches to movement therapy.

One approach for robotic assistance is provision of an 
end point “tunnel” in three-dimensional (3-D) space that 
guides the hand toward the target but allows the subject to 
control movement timing [32,44–45]. However, in a study 
of the electromyography (EMG) patterns after training 
with an end point tunnel controller, a compensatory strat-
egy using excessive shoulder girdle movement appeared to 
compromise learning of normal reaching patterns [46]. 
Use of proximal joints in compensatory strategies can be 
made ineffective with an appropriate control law and an 
exoskeleton that has direct control of arm joints. Also, 
exoskeletons allow implementation of guiding constraint 
walls in joint space instead of end-point space, affording 
targeted training of specific interjoint coordination pat-
terns. Other advantages of a joint-based robot-human 
interaction strategy relate to motor learning studies in non-
disabled subjects. Motor learning of novel force fields 
appears encoded in intrinsic or joint-based coordinates 
[47]. Furthermore, multijoint movements may be learned 
as joint coordination ratios or relative joint patterns [48–
49]. Motivated by these results, researchers have focused 
on developing exoskeleton robots that directly control limb 
degrees of freedom (DOFs) [50–56].

Similar to a recently reported training mode devel-
oped for gait training [57], we have developed a robotic 
intervention for arm rehabilitation that specifically targets 
impaired interjoint coordination by requiring active 
patient participation in coordinating multiple joints. We 
implemented this training mode in the ARMin III exoskele-
ton [50], which can apply torques directly to each of the 
six DOFs of the arm (three shoulder torques, elbow flexion/
extension, supination/pronation, wrist flexion/extension). 
The ARMin III robot was developed by Drs. Robert Riener 
and Tobias Nef at the Swiss Federal Institute of Technology 
Zurich (Eidgenossische Technische Hochschule Zurich, 
or ETH Zurich), in Zurich, Switzerland. The new control 
method, called time-independent functional training (TIFT),
allows the patient to learn the desired movement in joint 
space at his or her own pace, while still requiring the 
patient to actively complete the movement. The TIFT 
mode was designed for retraining functional tasks after 
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stroke, but any trajectory and any number of arm DOFs 
can be used to control the movements. This system pro-
vides guiding joint-space walls to keep the subject close 
to the ideal joint-space path and holds the subject’s arm at 
the current point in the trajectory if he or she stops 
actively producing the required interjoint coordination. 
This approach is consistent with several principles of 
motor learning [58]. For example, the guiding walls assist 
with completion of the task with correct joint kinematics 
while minimally interfering with the map between muscle 
activation patterns and actual movement. We will show 
that this mode is passive in the sense that no positive 
work is done on the limb by the robot. This guarantees 
that the timing between correct muscle activation patterns 
and movement afference is preserved, which is important 
for cortical plasticity [59–60] and is often lost in assis-
tance modes in which timing is prescribed by the robot 
and not the patient. Also, the production of a joint torque 
pattern that has a positive component in the desired joint-
space direction is “rewarded” with advancement along 
the trajectory, while improper joint coordination patterns 
are “punished” by lack of movement. This operant condi-
tioning approach is the basis of constraint-induced therapy
[61]. Irrespective of the movement speed the subject 
chooses, if movement is within a deadband around the 
targeted joint coordination trajectory, movement proceeds 
with no intervention from the robot.

Comparing the relative effectiveness of different 
robotic therapy modes is difficult because of the literally 
infinite number of possible modes and the slow and 
tedious recovery process in subjects with stroke undergo-
ing training. Short of performing clinical trials, one 
approach to assessing the potential of a new therapy 
mode is motivated by the hypothesis that recovery of 
movement after neurological injury is related to motor 
learning of novel environments and acquisition of skill in 
nondisabled subjects [58,62–63]. Common neural mecha-
nisms may provide the foundation for these behavioral 
changes. This notion is attractive and has motivated the 
application of motor learning principles into the practice 
of physical and occupational therapy [64–67]. Based on 
this hypothesis, the effectiveness of robotic therapies can 
be initially tested by study of nondisabled subjects’ learn-
ing when exposed to the new training mode compared 
with other training modes. Since nondisabled subjects 
can already perform all the commonly used movements 
targeted for functional training in patients with stroke, 
studies focus on learning a difficult or novel task when 

assisted by the robot. This approach has led to insights 
into the role of haptic guidance in motor learning, which 
may have implications for stroke recovery [68–70].

Although novel path learning is typically achieved 
through repetitive task practice, visual demonstration has 
also been shown effective for learning a new path [70]. 
The mirror neuron system has been identified as the 
likely neurophysiological basis for the motor system to 
learn from observing movements in another person [71]. 
In fact, motor imagery may produce cortical plasticity 
similar to what results from actual repetitive practice 
[72]. For these reasons, the potential confounding effects 
of action observation need to be isolated when visual 
information is available during the haptic guidance.

We describe in detail the implementation of the TIFT 
mode with the ARMin III robot and discuss the advantages 
of this approach compared with other similar modes. In 
initial testing, nondisabled subjects received a single ses-
sion of training of a complex movement trajectory with 
one of three training modes. One subject group received 
TIFT, while another group received the commonly used 
robotic approach of asking subjects to “move along with 
the robot” as it moves the limb in a prescribed time-
dependent (TD) trajectory (TD training). The third subject 
group learned the trajectory by observing the robot move 
the arm of a stand-in person through the trajectory. We 
studied motor learning during the training task as well as 
learning rates during recall performance of the trajectory 
without robotic assistance. We hypothesized that when 
compared with the other training modes, the TIFT would 
induce faster and larger reductions in trajectory recall error 
because of the highly interactive nature of the TIFT, which 
promotes more active engagement during the training than 
the other two modes. The vision group was expected to 
have the smallest and slowest reductions of trajectory 
recall error because the TIFT and TD training groups have 
proprioception and visual information during training, 
while the vision group only has the visual demonstration 
information. We also expected that in the TIFT and TD 
groups, kinematic error and robot-applied guiding torque 
would decrease during the training trials.

METHODS

Motor Learning Testing
Thirty-seven nondisabled subjects were recruited and 

divided randomly into the three training groups: TIFT, 
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visual demonstration, and TD training. All subjects 
underwent two TD movements through the desired path 
with the subject’s arm passive in the robot; they then per-
formed a recall of the path with no robotic assistance so 
we could measure the subject’s initial performance of the 
task before training. Subjects performed 8 blocks of 10 
repetitions of the task training with recall testing and 1 min
of rest between each block. We gave no feedback to subjects
about their performance quality during recall or training. 
We did not use the ARMin III visual display because 
meaningful performance feedback of adherence to a com-
plex 3-D path is difficult to provide in a two-dimensional 
display, and graphical feedback could increase visual 
dependence in learning the path.

We chose the shoulder elevation and elbow flexion/
extension paths shown in Figure 1, largely because inter-
joint coordination is known to be impaired between these 

two joints after stroke [20–23]. This configuration pro-
duced a complex, novel, 3-D movement that would 
require motor learning for mastery. Using a novel move-
ment pattern is important for demonstrating measurable 
learning during the training. The main complexity of the 
path was in the elbow. Three extension and flexion move-
ments of the elbow were performed in each task repeti-
tion. However, we made the amount of elbow flexion 
different between the top and bottom shoulder positions 
to avoid symmetry that would simplify the task. The arm 
was positioned at 30° of internal rotation of the shoulder 
and with the wrist in the neural position. This produced 
movement that was not restricted to a single plane and 
further complicated the trajectory.

ARMin III Robot
All training and recall testing was performed in the 

ARMin III rehabilitation robot (Figure 2) [50,73]. The 
ARMin III is an exoskeleton robot with six active DOFs, 
which assist the patient with shoulder, elbow, and wrist 
movements. The ARMin III can measure the angle of and 
apply torque directly to each of these joints. We engaged 
the compensation for the robot’s weight and viscous fric-
tion to decrease the impedance of the robot. Gravity and 
friction compensation for the robot arm is vital for mini-
mizing the interaction forces required to move the robot 
in the “free” mode that is used in the recall trials for evalu-
ating the trajectory learning. Although the ARMin III has 

Figure 1.
Joint paths used in motor learning experiment: (a) shoulder elevation 
angle and (b) elbow flexion angle.

Figure 2.
ARMin III robot and passive hand device, HandSOME, being used in 
functional shelf task in time-independent functional training mode.
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a visual interface designed for patient feedback, as shown 
in the background of Figure 2, we did not use this inter-
face in this study.

In the TIFT mode, the desired joint rotation direction 
is known at each point in the trajectory. This directional 
information allows the robot to provide feed-forward 
static friction compensation in addition to gravity and 
viscous friction compensation. The robot provides a 
small torque in the desired direction that is approximately 
equal to the static friction value determined experimen-
tally. Although this torque does not move the robot, it 
decreases the amount of force required to initiate move-
ment at the joint. This feed-forward compensation effec-
tively doubles the force needed to initiate movement in 
the direction opposite to the desired direction. When the 
joint velocity is greater than a small value, this torque is 
set to zero and the viscous friction compensation is 
engaged. A complete description of this method and 
experimental determination of static and viscous friction 
of the ARMin III robot joints have been reported else-
where [74]. The torque required to initiate movement at 
the elbow flexion and shoulder elevation joints of the 
robot was 0.39 Nm [74].

TIFT
The TIFT mode was designed for retraining func-

tional tasks after stroke but can be used for training any 
path. The mode can be controlled by any of the robot 
joints in any pairing combination. Although all the joints 
could be set as control joints, moving through the path 
with only the main joints used in the trajectory set as con-
trol joints is easiest. Usually, the two joints with the larg-
est range of motion (ROM) during the task are chosen as 
control joints. For example, to put an object on a shelf, 
the main two movements are elbow extension and shoul-
der elevation. These are the joints that would be set as the 
default control joints for that task. The subject is required 
to appropriately coordinate the two control joints to 
progress along the trajectory. Haptic walls are provided at 
the control joints to constrain the subject to the proper 
interjoint coordination between the shoulder and elbow. 
If the proper shoulder-elbow coordination is performed, 
these haptic walls allow the subject to move through the 
trajectory at his or her own pace and without resistance or 
assistance from the robot. In the shelf task, the shoulder 
must be elevated and the elbow extended at the same 
time for proper completion of the task. The robot will not 
allow advancement in the trajectory if the subject first 

raises his or her shoulder and then extends his or her 
elbow in sequence. Advancement is also not allowed if 
simultaneous shoulder elevation and elbow flexion occur 
instead of elbow extension. If the ratio of shoulder eleva-
tion and elbow extension is within a desired window 
(desired ratio plus or minus a deadband), movement is 
allowed and the haptic walls guide the joints toward the 
correct ratio. In this way, the TIFT mode requires the 
subject to actively produce the proper joint coordination 
to move through the trajectory. While the subject navi-
gates the two control joint trajectories, the other joints are 
moved along their desired trajectories with a propor-
tional-derivative (PD) position feedback controller. 
Advancement at all joints, control and slaved, is coordi-
nated through a global advancement parameter that 
assures normal limb kinematics during the task.

Trajectory Progression with TIFT
Joint angle paths for all joints move through the task 

and then back, with the same coordination, to the starting 
position as one repetition. The angle values over time for 
each joint were normalized between 0 and 1 to make the 
ROM of the joints easily variable with gains. The time 
dimension of these paths was also normalized between 0 
and 1.

The global variable G is defined as the current point 
and is the fraction of the trajectory completed. This vari-
able begins at 0 and moves to 1 as the subject returns to 
the initial position. For all joints, the current G value and 
the target joint angle paths determine a reference angle 
for each joint (qref). The uncontrolled joints are servoed 
with a PD controller to qref. For control joints, haptic 
walls in front and behind the qref are constructed with a 
4° deadband. Therefore, for a constant G, each control 
joint has 4° of free play before hitting a wall. This 4° 
deadband is wide enough for smooth unrestricted move-
ment through the path when the subject is producing the 
correct joint coordination, but it will still keep the subject 
close to the correct joint kinematics when he or she is 
maneuvering through the joint-space walls. The current 
position (qact) is used for calculating the single joint 
advancement variable, g, and provides a measure of that 
joint’s location relative to its desired path. This calcula-
tion is not straightforward, as shown in Figure 3. 
Because of possible reversals in the joint path, a value of 
qact can be associated with multiple g values. Therefore, 
the method relies on a linear approximation to calculate 
g as a function of qact, qref, and the joint angle for a
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2 percent advancement in the local g value (qrefplus).
Figure 4 illustrates this algorithm and describes the spe-
cial case in which the joint path reaches a plateau.

The change in G is determined by adding the mini-
mum progression of all of the control joints (g) along 
the trajectory. The addition of the smallest g to obtain 
the new G guarantees that all the joints must progress 
together to complete the task. The new G establishes new 
reference joint angles for all joints (qref). Negative g
values are set to 0 to prevent subjects from moving back-
ward along the trajectory. When the subject returns to the 
initial position, the G value becomes 1 and is then reset to 
0 so the subject can repeat the pattern as many times as 
desired.

Boundary Walls for Trajectory
We used the g value of each control joint to deter-

mine the locations of boundaries for haptic walls in front 
and behind qref. A deadband of 4° provides a joint-space 
channel that the subject can move through to complete 
the trajectory without hitting a wall. The joint walls were 
defined with exponential stiffness as described in Figure 5, 
where  is the boundary wall torque, C is a constant that 
determines the stiffness of the wall, and D is the dead-

band angle. The wall stiffness constant, C, was tuned for 
each joint to ensure proper feedback and adherence to the 
4° deadband (Cshoulder = 1.5°–1, Celbow = 1.2°–1). Slaved 
joints were given a deadband of 0.4° so some compliance 
would exist in the joints but they would still track their 
trajectory according to the progression of G. We applied 
an additional gain factor to convert the exponential terms 

Figure 3.
Shoulder trajectory in shelf path: demonstration that g (single-joint 
advancement variable) is not unique for given shoulder joint angle 
(qact).

Figure 4.
Algorithm for calculation of change in single-joint advancement 
variable g. qact = current joint angle, qref = reference joint angle on 
path, qrefplus = reference joint angle for 2% advancement in g (single-
joint advancement variable), i = robot joint.

Figure 5.
Torque applied to ARMin III robot control joints based on their position
relative to reference position on trajectory.  = torque applied by robot, 
qact = current joint angle, qref = reference joint angle, qrefplus = reference 
joint angle for 2% advancement in g (single-joint advancement variable), 
D = deadband, C = constant that determines stiffness of joint walls, i = 
robot joint.
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into the torques applied by the motors (Kshoulder = 1.5 Nm,
Kelbow = 1 Nm). The torque applied when the subject is 
moving 1° beyond the deadband of the shoulder is 3.48 Nm
in the TIFT mode. This torque provides a solid barrier to 
keep the subjects within the desired joint position range.

TD Training, Visual Demonstration, and Recall Testing
Two training modes were developed in conjunction 

with TIFT for examining the effectiveness of TIFT. TD 
training, visual demonstration, and TIFT were used as the 
training methods. TD training is commonly used for 
robotic therapy. The robot moves a subject’s arm through 
the task using a PD feedback controller tuned for each 
joint so that small errors occur in joint positions relative 
to the ideal reference trajectory (Kshoulder = 62 Nm/°, 
Kelbow = 5 Nm/°). The subject is asked to actively move 
along with the robot through the task. In visual demon-
stration, the subject stood behind the robot, as close as 
possible to the perspective of the stand-in person in the 
robot. The subject was then asked to watch the stand-in’s 
arm as it was moved through the path by the robot. The 
subject was told not to move his or her arm as he or she 
learned the movement. The stand-in was used for visual 
demonstration training because visualizing arm joint 
position without a human arm in the exoskeleton robot 
was difficult. The robot used a stiff PD controller to 
move along the trajectory with minimal kinematic error, 
so the stand-in did not noticeably affect the trajectory. 
Therefore, the visual image of a human arm moving 
through the trajectory was consistent across the three 
training groups. As in the study by Liu et al., we used the 
visual demonstration group to examine the effectiveness 
of visual demonstration on learning a novel task for com-
parison with the haptic robot-assisted modes that provide 
both robotic guidance and visual demonstration [70].

For all subjects, trajectory recall was tested before 
and after each training block. In the recall phase, the sub-
ject was asked to repeat the trained shoulder-elbow tra-
jectory three times in the robot while the other joints 
were locked in their appropriate positions. The elbow and 
shoulder of the robot were in “free” mode with minimal 
resistance to movement. The robot provided the best pos-
sible “free” mode by compensating for the robot’s weight 
and viscous friction during recall. The most backdrive-
able joints (shoulder elevation, elbow flexion/extension) 
were chosen for the trajectory. Although robot inertia 
would affect the movements, the subjects controlled the 
speed of the recall movements and moved the robot at a 

self-selected velocity, which minimized the influence of 
robot inertia. Haptic walls were placed 1° beyond the 
ROM of the shoulder in both directions. This kept the 
subjects within the ideal ROM of the shoulder and made 
for easier analysis of data. In all the modalities, a PD con-
troller moved the robot to the initial position of the task 
before starting training or recall.

In both the TD training and visual demonstration 
modes, each repetition was completed in 12 s. TIFT 
mode subjects were informed if they were going slower 
than the 12 s required to complete a single-task repetition 
in the TD training mode to avoid any possible advantage 
they could have from extended time learning the path. On 
average, the TIFT movement time was 13.1 s and not sig-
nificantly different from the 12 s time in the TD group (p =
0.09). The 12 s path time allowed a comfortable and 
smooth movement in the robot during the training modes. 
This relatively slow path encouraged similarly slow 
movement in the robot during recall attempts, which mini-
mized inertial effects. The average subject movement 
time in recall was 12.25 s, which was not significantly 
different from the 12 s demonstration speed (p = 0.60). 
For the entire experiment, the only visual feedback 
received by the subjects was looking at a human arm 
moving through the pattern (their own arm or the arm of 
the stand-in).

Data Processing
We calculated three performance metrics for each 

recall phase: joint error, slope error, and movement vari-
ability. Each recall consisted of three repetitions of the 
movement. The simplicity of the shoulder trajectory 
results in a unique desired elbow angle for each shoulder 
position. The shoulder ROM was divided into 1° bins. 
For each bin, we determined the six time intervals when 
the shoulder angle was within this bin. The elbow angle 
was averaged within each of the six time intervals. We 
then averaged these six values of elbow angle to produce 
an estimate of the elbow angle associated with the corre-
sponding shoulder angle. This resulted in the phase plane 
plots shown in Figure 6. We also calculated the standard 
deviation over these six elbow angle values, and used the 
mean of these standard deviations over the ROM of the 
shoulder as an estimate of movement variability. We then 
calculated the absolute value of the difference between 
the ideal reference elbow angle for each shoulder position 
and the recall elbow angle at that shoulder position. We 
then added these values across the ROM of the shoulder 
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to provide the area between the reference and actual 
phase plane plots shown in Figure 6. We obtained the 
subject’s joint error in the trajectory by dividing this error 
area by the ROM of the shoulder. The phase plane trajec-
tory was then divided into three phases with different 
shoulder-elbow movement ratios. We calculated the 
slopes of the subject recall data within each phase. We 
calculated the slope error as the absolute value of the dif-
ference between actual slope and ideal slope for the cor-
responding phase. The mean slope error over the 
trajectory was the mean of the slope errors over the three 
trajectory phases. We performed the same procedure on 
the training data and computed average metrics for each 
training block.

We used univariate analysis of variance (ANOVA) to 
test for group differences at baseline in age and the 
performance metrics and chi-square tests to test for group 
differences in sex. We used repeated measures ANOVA 
(within-subjects factor of block, between-subjects factor 
of group) to assess group differences in the pattern of 
learning across training as well as recall trials.

RESULTS

Thirty-seven subjects completed the training. Outliers
were defined as those subjects with baseline performance 
errors greater than the upper quartile + 1.5 × interquartile 
range or less than the lower quartile – 1.5 × interquartile 
range. Two subjects had very large initial recall errors 
and were determined to be outliers. Deletion of these two 
poor performing subjects significantly improved the 
between-group balance in baseline performance. The fol-
lowing analysis is limited to the remaining 35 subjects 
(12 in the vision group, 14 in the TIFT group, and 9 in the 
TD group). The mean ± standard deviation age was 33 ± 
13 years, and ANOVA found no group differences in age 
(p = 0.12). The ratio of male to female subjects did not 
differ from a 1:1 ratio in any of the groups (p > 0.1). Two 
subjects were left-hand dominant and one subject was 
ambidextrous.

Figure 7 shows the typical change in the training pat-
tern in a TIFT subject from the first to the eighth block. 
In the first block, the subject got stuck in the path repeat-
edly, and two distinct paths were visible for different 
directions of movement, showing that the subject was 
relying heavily on the walls. However, in the eighth 
block, the variability had decreased and the movement 
had become smoother. Repeated measures ANOVA of 
TIFT and TD training data showed a significant group × 
block number interaction in error (p = 0.002) and vari-
ability (p = 0.04). Subjects who received TIFT had 
significant reductions in error (p < 0.001), while TD 
trained subjects did not reduce error during training (p = 
0.76) (Figure 8(a)). Movement variability decreased sig-
nificantly over training in both the TIFT (p = 0.009) and 
TD training modes (p = 0.02). Mean reductions in error 
and variability in the TIFT group were 18.7 and 20.9 per-
cent, respectively, while mean reductions in error and 
variability in the TD training group were 0.48 and 23.4 per-
cent. For slope error, the block factor and the group × 
block interaction were not significant (p > 0.60).

A similar result can be seen in the robot-applied 
elbow guidance torque during training (Figure 8(b)). The 
mean elbow torques for the TD and TIFT modes were not 
significantly different for the initial passive movement 
trials (p = 0.10) or in the first training block (p = 0.56). 
However, the pattern of change in elbow torque across 
training blocks was significantly different between 
groups (group × block number interaction, p < 0.001). 
The applied torque decreased significantly across blocks 

Figure 6.
Joint coordination pattern of shoulder and elbow in motor learning 
testing. Thick gray line is desired reference trajectory and thin black 
curve is typical actual trajectory. At shoulder angle of 55°, elbow 
should be at 49°. However, elbow is actually about 65°, an error of 
16°. However, when shoulder is at 75°, elbow error is nearly 0.
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in the TIFT mode (p < 0.001), but not in the TD training 
mode (p = 0.67). Applied elbow torque during passive 
movement was 5.1 ± 0.2 Nm in the TD training group, 
significantly greater than during the first training block 
(p = 0.02), demonstrating that subjects were attempting 

to move with the robot during the TD training. Because 
the TD subjects were trying to move with the robot, one 
would expect a reduction in applied elbow torque as they 
learned the trajectory. The minimum possible robot-
applied torque for the TD training mode is equal to the 

Figure 7.
Joint coordination pattern of shoulder and elbow during time-independent functional training in a typical subject: (a) first training block and (b) eighth 
training block. Trajectories were disjointed in first training block but improved in smoothness by last training block.
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applied torque without a subject’s arm in the robot. This 
represents the best possible subject performance, when 
the subject moves along with the robot perfectly and no 
interaction forces are applied between the robot and 
human. However, the TD group did not show any 
decrease in torque toward this minimum value during 
training. The minimum possible elbow torque value for 
the TIFT is the torque the robot applies to compensate for 

robot weight and friction when the subject moves 
through the path perfectly without hitting the haptic guid-
ance walls. TIFT subjects showed a steady decrease in 
robot-applied elbow torque across the training blocks, 
although they did not reach the minimum torque value. 
We did not examine shoulder torque trends because of 
changes between subjects in the spring and cable system 
that assists with gravity compensation. The spring parame-
ters are incorporated into the shoulder motor’s gravity 
compensation algorithm, so the motor torque applied to 
each subject differed based on the specific spring parame-
ters used during testing [75].

Initial recall data showed no group differences in 
baseline error values (p = 0.36). Figure 9 shows the 
learning curves for the three groups in the joint error met-
ric. Mean reductions in joint error between the first and 
ninth recall tests across all subjects was 35 percent. We 
performed repeated measures ANOVA to determine 
group differences in the pattern of learning over the nine 
recall blocks. The block factor was significant in joint 
error (p < 0.001), slope error (p = 0.02), and variability 
(p < 0.001), indicating that all groups improved in all 
metrics during the recall blocks. The group × block inter-
actions were not significant in any of these metrics (p > 
0.20). This result indicates that all three groups learned 
with a similar pattern.

Figure 8.
(a) Mean error reductions during training blocks for time-independent 
functional training (TIFT) and time-dependent (TD) groups with stand-
ard error bars. Joint error decreases over 8 training blocks in TIFT 
subjects but is unchanged in TD subjects. (b) Mean elbow torque 
applied by robot during training blocks for TIFT and TD groups with 
standard error bars. Minimum possible torque for TD is shown, which 
is elbow torque required to move through path without human arm in 
robot. This corresponds to best possible performance in TD training 
mode. Minimum possible TIFT value is also shown, which is applied 
torque if subject moves through trajectory perfectly without hitting 
any haptic walls.

Figure 9. 
Joint error reductions during recall blocks with standard error bars. Sig-
nificant learning was present in all groups, but no group differences 
were present in learning rates or amount of error reduction. VIS = visual 
demonstration, TIFT = time-independent functional training, TD = 
time-dependent training.



309

BROKAW et al. Robotic interjoint coordination training after stroke
DISCUSSION

We presented details of the TIFT mode for training of 
interjoint coordination as well as a motor learning study 
to provide initial validation of the modality. During the 
recall tests, all subject groups significantly reduced joint 
error, slope error, and variability. However, the pattern of 
learning did not differ between groups. Thus, all groups 
performed equivalently in recall despite significantly bet-
ter error and torque reductions during TIFT than during 
TD training. Analysis of the training data showed evi-
dence of learning in the TIFT group, as subjects reduced 
joint error and movement variability in the robot over 80 
repetitions. In contrast, the subjects who received TD 
training did not reduce error during the training. Similar 
results were seen in robot-applied elbow torque, with 
significant torque reductions during TIFT but no change 
in torque during TD training.

Learning the kinematics of a complex novel move-
ment is possibly dominated by vision, because the addi-
tional haptic guidance provided to the TIFT and TD 
groups did not produce measurable benefits compared 
with only visual presentation of the trajectory. This result 
is similar to the findings of Liu et al., who reported no 
difference in learning of a 3-D endpoint trajectory 
between visual demonstration and TD training [70]. The 
powerful role of the vision system in motor learning is 
becoming apparent, with studies showing similar brain 
activation and plastic adaptation between repetitive prac-
tice and action observation [71]. Stroke therapy consist-
ing of motor imagery combined with physical therapy 
improved functional task performance compared with 
time-matched physical therapy alone [76]. Thus, the 
presence of vision information possibly overshadowed 
potential differences between the TD and TIFT modes. In 
future work, we plan to perform experiments with vision 
occluded. This research may uncover differences 
between TIFT and TD, as subjects will be forced to rely 
entirely on haptic and proprioceptive information to learn 
the novel trajectories.

Examination of the training data suggests advantages 
of the TIFT mode compared with the TD training mode, 
which may lead to improved outcomes in stroke popula-
tions. TIFT promoted learning, with the error and guiding 
elbow torque decreasing significantly during the training. 
This learning effect may be related to the gradual reduc-
tion of interaction forces observed when subjects are 
exposed to endpoint “tunnels” during learning of novel 

dynamic environments [77–78]. In contrast, TD subjects 
did not vary their movement strategy during training as 
the error and guiding elbow joint torque remained con-
stant throughout, despite significant learning of the tra-
jectory in recall trials. Because the instruction to TD 
subjects was to “move with the robot” and the trajectory 
was complex and novel, one would have expected errors 
and elbow torque to reduce during training as subjects 
learned the trajectory. If common mechanisms subserve 
motor learning and recovery of motor control after 
stroke, then a training mode that promotes decreases in 
training errors with practice would be hypothesized to be 
more effective in stroke rehabilitation than a mode in 
which subjects do not change strategy with repeated tri-
als. A second potential advantage of the TIFT is that it 
allows for much greater kinematic variability during 
training, which has been hypothesized to have advan-
tages to fixed trajectory robotic training with small kine-
matic errors [79–81]. Mean errors during TIFT were 
more than five times larger than those for TD training. 
While larger errors in the TD training mode could have 
been achieved with smaller gains in the position feedback 
controller, this would not likely have promoted the learn-
ing seen in the TIFT data. Therefore, TIFT promotes vol-
untary exploration of a fairly large kinematic workspace, 
while the robot rewards correct movements with trajec-
tory advancement and punishes incorrect movements by 
not allowing advancement.

Despite these potential advantages of TIFT over TD 
training, our recall data showed that TIFT was not better 
than TD in promoting learning of a complex trajectory in 
nondisabled subjects. A potential drawback of the TIFT 
in this learning task is the much larger kinematic errors 
that occurred during training compared with the other 
modes. Furthermore, learning in TIFT was disjointed 
early in the training, with subjects often hitting the path 
walls, stopping and trying several strategies before deter-
mining the correct shoulder-elbow coordination needed 
to advance within the path. Nevertheless, for stroke reha-
bilitation, we believe further study into assistance modes 
such as TIFT is needed, given the recent negative find-
ings in robots that have used the TD training mode [42–
43] and the evidence that passive movement training 
does not improve motor control [82–83]. For example, 
Bluteau et al. found that in a drawing task, haptic guid-
ance with a position-based controller similar to our TD 
training mode was inferior to a force-based controller for 
motor learning [84].
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Although the neural control mechanisms of locomo-
tion and upper-limb function differ greatly and may 
require different robotic control algorithms, the concept 
of promoting patient interaction and maintaining proper 
joint coordination is important in both areas of therapy 
and has motivated parallel development of similar control 
modes for both upper and lower limbs. The recently pub-
lished article by Duschau-Wicke et al. discusses a new 
modality for the Lokomat (Hocoma AG, Volketswil, 
Switzerland) assistive robot for gait training [57]. This 
modality has some similarities to TIFT in that it uses joint 
space haptic walls to maintain the hip and knee within a 
desired joint space trajectory. The key difference between 
this implementation and the TIFT mode is the algorithm 
for advancement within the trajectory (Figure 10). In the 
Duschau-Wicke method, when the limb is moved to a cer-
tain point in joint space, the current location along the 
desired trajectory (which determines the location of the 
haptic walls) is advanced to the point on the desired tra-
jectory closest (in the Euclidean sense) to the current limb 
position. However, as shown in Figure 10, in many cases, 
this approach allows advancement along the trajectory to 
be driven by rotating one joint in the correct direction, 
while the other joint is pushed along by the robot. There-
fore, no coordinated movement of the two joints is 
required to advance. In the TIFT mode, movement of only 
one joint does not allow one to advance in the trajectory; 
proper interjoint coordination is required for advancing. 
Thus, the TIFT mode is purely passive in that no energy 
can be injected into the limb. In contrast, the Duschau-
Wicke method allows for significant energy to be trans-
ferred to the limb by the robot.

We acknowledge that the Duschau-Wicke method 
will ease advancement, and some subjects with stroke 
may not be able to advance in the TIFT mode. However, 
we were targeting interjoint coordination specifically 
when we designed the TIFT mode, and based on motor 
learning principles, we did not want to allow trajectory 
advancement unless the proper coordination was pro-
duced. Furthermore, TIFT maintains normal timing 
between proper muscle activation patterns and move-
ment. Electrophysiology experiments have demonstrated 
that afferent feedback can facilitate plasticity in the 
motor system if it arrives synchronously with ongoing 
motor output [59–60]. This has motivated a number of 
robotic strategies to assure proper timing between effort 
and movement, including movement of the contralateral 
limb to control movement of the paretic limb in bilateral 

tasks [32,85–86] and EMG-controlled movement [83,87–
88]. The TIFT mode assures proper timing between effort 
and movement by presenting a passive environment to 
the limb, such that no energy is injected into the limb. 
Proper timing cannot be guaranteed in systems that inject 
energy into the limb. However, the drawback of a passive 
environment is that some subjects with stroke will not be 
able to complete movements in the TIFT mode. In these 
subjects, a graded assistance level can be used that is 
controlled adaptively to prevent slacking behavior by 
patients [89]. This approach appears promising for 
retraining reaching movements after stroke [90–93].

Several adaptations to the TIFT mode have been 
implemented for future research with the stroke popula-
tion. We have implemented TIFT into functional ADL 
tasks, such as putting an object on a shelf, pouring from a 
pitcher, and sorting objects. This effort was made possible 

Figure 10.
Contrast between time-independent functional training (TIFT) and Dus-
chau-Wicke methods for trajectory advancement. Current point on tra-
jectory is A. Points B and C are two possible movements in joint space. 
Gray and dotted arrows point to resulting advancement points on trajec-
tory for two methods. Because current point on trajectory determines 
location of haptic walls, energy injection into limb is possible in Dus-
chau-Wicke method, while TIFT mode is passive. Note that for point C, 
Duschau-Wicke method allows advancement along trajectory even 
when shoulder is rotating in wrong direction. Since TIFT method does 
not allow moving backward in trajectory, movement to point C does not 
change current point on trajectory. TIFT mode only allows progression 
for movements to right and above thin black lines.
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by incorporating a passive hand device (HandSOME) 
[94–95]. The ARMin III, in conjunction with the Hand-
SOME device, helps patients manipulate real or virtual 
objects during training to increase patient interaction dur-
ing ADL functional training. Training in nonfunctional, 
low-DOF tasks is also possible and may be more effective 
than training in complex, high-DOF ADLs [96]. A visual 
interface helps subjects with stroke understand the TIFT 
haptic guidance by providing visual cues on the required 
direction of joint rotation for task completion in the robot. 
Graded human arm gravity compensation has been added 
to the TIFT mode to help patients overcome weakness and 
abnormal synergies. This arm gravity compensation can 
be varied from 0 to 100 percent of the arm’s weight to 
encourage the subject but still maximize his or her effort 
during training.

CONCLUSIONS

The trajectory recall data of this motor learning study 
showed that provision of haptic and proprioceptive infor-
mation did not improve learning of a complex trajectory 
above what was possible with vision information alone. 
We are currently repeating these experiments with vision 
removed to directly compare the TIFT and TD training 
modes. We acknowledge that currently we have no 
empirical evidence to recommend use of TIFT over the 
more easily implemented TD training mode. However, 
we believe further study of the TIFT mode is warranted 
based on the theoretical advantages of TIFT and subject 
performance in the training trials. Compared with TD 
training, TIFT has several theoretical advantages: mini-
mally interfering with the input/output map between cor-
rect muscle activation and movement, allowing greater 
kinematic variability during training, and requiring sub-
jects to produce proper interjoint coordination to advance 
within the trajectory. We also observed advantages of 
TIFT in the training data. TIFT had lower interaction 
forces between the robot and human arm than those of 
TD training, which shows that the human arm was con-
tributing more to the movements during TIFT than dur-
ing TD training. Also, error and assistance forces 
gradually reduced during TIFT, but no changes occurred 
in these metrics during TD training.
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