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Abstract—A myoelectric controller should provide an intui-
tive and effective human-machine interface that deciphers user 
intent in real-time and is robust enough to operate in daily life. 
Many myoelectric control architectures have been developed, 
including pattern recognition systems, finite state machines, 
and more recently, postural control schemes. Here, we present 
a comparative study of two types of finite state machines and a 
postural control scheme using both virtual and physical assess-
ment procedures with seven nondisabled subjects. The South-
ampton Hand Assessment Procedure (SHAP) was used in 
order to compare the effectiveness of the controllers during 
activities of daily living using a multigrasp artificial hand. 
Also, a virtual hand posture matching task was used to com-
pare the controllers when reproducing six target postures. The 
performance when using the postural control scheme was sig-
nificantly better (p < 0.05) than when using the finite state 
machines during the physical assessment when comparing 
within-subject averages using the SHAP percent difference 
metric. The virtual assessment results described significantly 
greater completion rates (97% and 99%) for the finite state 
machines, but the movement time tended to be faster (2.7 s) for 
the postural control scheme. Our results substantiate that pos-
tural control schemes rival other state-of-the-art myoelectric 
controllers.

Key words: biomechatronics, electromyography, EMG, finite 
state machines, multigrasp hand, myoelectric control, postural 
control, prosthetic hand, Southampton Hand Assessment Pro-
cedure, transradial prosthesis.

INTRODUCTION

The replacement of the human hand with a prosthesis 
is a multidisciplinary engineering challenge that demands 
the development of complex mechatronic systems, intui-
tive control schemes, and clinically robust interfaces with 
the body. In the recent past, advanced prosthetic hands 
mechanically able to form the functional grasps neces-
sary for activities of daily living (ADLs) have been 
developed [1–2]. However, the control schemes imple-
mented on these devices are far from the coordinated 
control produced by the intact neuromuscular system. 
They only allow for simple open and close movements 

Abbreviations: ADL = activity of daily living, AMP = aver-
age electromyography amplitude, C1 = controller 1, C2 = con-
troller 2, C3 = controller 3, CR = completion rate, DOF = 
degree of freedom, EMG = electromyography, JAT = joint 
angle transform, MEC = myoelectric controller, MT = move-
ment time, PC = postural control, RMS = root-mean-square, 
SHAP = Southampton Hand Assessment Procedure, SD = 
Southampton Hand Assessment Procedure percent difference, 
SS = Southampton Hand Assessment Procedure score.
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combined with a trigger command to switch between 
states. Clearly, the human-machine interface is the bottle-
neck to the advancement of multigrasp prosthetic hands 
[3]. For this reason, body-powered or one or two motor 
myoelectric prostheses are still in widespread use even 
though myoelectric control represents the state of the art 
in prosthesis control [4]. In a myoelectric controller 
(MEC), electromyography (EMG) signals resulting from 
muscle contractions are recorded from the surface of the 
residual limb and used in order to operate an electrome-
chanical hand and/or arm. The optimal mapping of EMG 
signals to functions (or movements) by the MEC is an 
active research area.

Generally speaking, MECs should provide an intui-
tive and effective human-machine interface that deci-
phers user intent in real-time and is robust enough to 
operate in daily life [5]. The intuitiveness of the interface 
refers to the use of physiologically appropriate muscle 
contractions to control the same operation in the prosthe-
sis. For example, an intuitive interface would measure 
the contraction from the flexor or extensor digitorum 
muscles in order to close or open the digits of a prosthetic 
hand [6]. MECs for multigrasp prostheses implement dif-
ferent control architectures such as pattern recognition 
[7–9], finite state machines [10–12], and postural control 
(PC) schemes [13–15] that transform user intent in the 
form of EMG signals to motor commands sent to a pros-
thesis. Pattern recognition systems exploit artificial intel-
ligence algorithms (such as artificial neural networks, 
fuzzy logic algorithms, support vector machines, etc.) in 
order to detect and classify specific patterns of EMGs 
and map them to certain functions and/or movements in 
the prosthesis [8]. Pattern recognition can be intuitive 
when the muscle contraction that would generate a move-
ment in the unimpaired limb is mapped to the same 
movement in the prosthesis [8]. However, pattern recog-
nition schemes are sensitive to clinical conditions such as 
electrode shift, sweat, limb position, and movement [16]. 
MECs based on finite state machines are organized as a 
sequence of states where each state is associated with a 
particular posture and/or function. A trigger command 
(e.g., a brief cocontraction of two antagonist muscles) 
changes the state of the controller in a predefined order. 
The trigger command is a clinically robust control signal; 
however, its use is physiologically unintuitive. MECs 
based on PC schemes map multiple EMG signals into 
two control parameters that can be represented as a coor-
dinate in x–y planar space (the PC domain); the planar 

space is populated by a number of hand postures such 
that whenever the EMG-driven coordinate approaches a 
location populated by a particular posture, the hand 
morphs into that posture. The EMG signals are used like 
a joystick to maneuver a coordinate and thereby morph 
the hand posture. PC schemes do not require trigger com-
mands since the PC domain is a continuous space without 
discrete states.

These architectures address the challenge of an intui-
tive human-machine interface with differing strengths 
and weaknesses. Although comparisons across architec-
tures are essential in order to assess the efficacy of each 
MEC, few studies actually address this issue in a system-
atic manner. Previous works have compared pattern rec-
ognition MECs [17] and finite state machine MECs [11] 
but not the more recently proposed PC schemes. Thus, in 
this work we compared two types of finite state machines 
and a PC scheme using both virtual and physical assess-
ment procedures. We used the Southampton Hand 
Assessment Procedure (SHAP) [18] in order to study the 
effectiveness of each MEC to perform ADLs with a 
physical multigrasp artificial hand as well as a virtual 
hand posture-matching task in order to measure the abil-
ity of subjects to reproduce six target postures [14].

METHODS

This study compared three MEC architectures using 
a physical assessment (experiment A) and a virtual 
assessment (experiment B). The experimental setup con-
sisted of a three-site EMG acquisition system and a lap-
top running a custom application (LabVIEW, National 
Instruments Corp; Austin, Texas). The laptop processed 
the EMG signals, implemented the MEC algorithms (i.e., 
generated control commands as outputs), and stored the 
data for offline analysis. The outputs of the MECs were 
physically implemented by a multigrasp artificial hand 
and connected to the laptop (during experiment A) or a 
virtual hand displayed on the laptop screen (during 
experiment B).

The EMG signals were acquired using two surface 
electrodes targeting the flexor digitorum superficialis and 
extensor digitorum and a third surface electrode targeting 
extensor carpi ulnaris muscles when necessary (compare 
with “Controller 3: Postural Controller” subsection). Self-
adhesive snap electrode pairs (Noraxon USA Inc; Scotts-
dale, Arizona) with 2 cm center-to-center interelectrode 
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spacing were placed on the target muscle in a longitudi-
nal orientation. A Telemyo 2400R system (Noraxon USA 
Inc) sampled the EMG signals (3 kHz) with an analog 
low-pass cutoff frequency of 500 Hz while a data acqui-
sition board (USB 6211, National Instruments Corp) con-
nected to the laptop digitized them. These signals were 
processed using standard techniques (band-pass 10–450 Hz,
rectification, 100 ms moving average) and were used to 
produce control commands based on the specific MEC. 
Individual EMG gains and thresholds could be tuned for 
each subject.

Each of the three MECs had a unique architecture, 
while all other parameters were standardized in order to 
ensure a robust comparison. The hand posture was initial-
ized to hand flat throughout each experiment for all 
MECs. The closing speed of the fingers for all controllers 
and postures was set to ~1 s. The temporal coordination 
for each posture (i.e., the timing of the digit movements 
when closing the hand) was standardized across control-
lers. The six target postures and hand flat were identical 
in each MEC (Table 1), which ensured equal grip forces 
across each MEC. The six postures comprised functional 
postures and grasps used in ADLs [2] and were chosen in 
order to replicate the experimental setup used by Dalley 
et al. [12].

Controller 1: Commercially Available Finite State 
Machine

Controller 1 (C1) replicated the finite state machine 
implemented in a commercially available device: the i-
limb prosthetic hand (Touch Bionics; Mansfield, Massa-
chusetts) (Figure 1). This type of finite state machine is 

typical among available commercial prostheses [19–21]. 
The architecture consisted of six states corresponding 
with the six target postures, not including hand flat. A 
trigger iteratively changed states in a specified order. The 
trigger allowed for a progression in the sequence of states 
in a single direction. The trigger command occurred 
when both flexion and extension EMG signals supersede 
a tuned threshold (a brief cocontraction). The experimen-
tal apparatus provided an audible beep to indicate that a 
trigger command was recognized (such as in the i-limb 
prosthetic hand). Once inside a state, the magnitude of 
the difference between the flexion and extension EMG 
signals was proportional to the speed of the hand, and the 
sign of the difference corresponded with the opening or 
closing of the hand (a velocity control scheme). The fully 
closed posture of each state coincided with one of the tar-
get postures, while the fully opened posture coincided to 
hand flat (full extension of all digits). Therefore, the only 
available postures within a state were a linear combina-
tion of the corresponding target posture and hand flat.

Controller 2: Vanderbilt University Controller
Controller 2 (C2) replicated the Multigrasp Myoelec-

tric Controller developed by Dalley et al. at Vanderbilt 
University (Figure 2) [12]. The architecture consisted of 
two states (opposition and reposition) with multiple tar-
get postures within each state. The two states were distin-
guished by the abduction position of the thumb: 
opposition and reposition. A cocontraction trigger 
switched between the two states. The trigger command 
and the hand opening or closing occurred 

Joint
Posture

Palmar 
Prehension

Tip 
Prehension

Lateral 
Prehension

Hook Pointer Opposition Hand Flat

Thumb Rotation () 90 90 20 0 0 90 0

Thumb Flexion () 65 65 90 0 90 0 0

Index Flexion () 70 70 70 70 70 0 0

Middle Flexion () 80 0 80 80 80 0 0

Ring Flexion () 80 0 80 80 80 0 0

Little Flexion () 80 0 80 80 80 0 0

Posture Image

identically to 

Table 1.
Target postures included in each myoelectric controller.
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C1. The

Figure 1.
Controller 1. Finite state machine based on i-limb prosthetic hand (Touch Bionics; Mansfield, Massachusetts). E = extension electro-

myography signal, F = flexion electromyography signal, T = electromyography trigger command.

 sequence 

Figure 2.
Controller 2. Finite state machine based on Multigrasp Myoelectric Controller developed by Dalley et al. [12]. E = extension electro-

myography signal, F = flexion electromyography signal, T = electromyography trigger command.

of postures within each state ensured 
that the digits closed or opened in a coordinated manner. 
The transition logic between postures was not reproduced 
exactly as described in Dalley et al. [12] because of 

mechanical constraints of the artificial hand used in the 
present study (see “Experiment A” subsection in the 
“Methods” section). Specifically, the actuator displace-
ment and force thresholds were not available for use in 
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the transition logic in our study. Instead, the transitions 
between the states solely depended on the volitional 
EMG input signals. The hand posture when transitioning 
between targets was a linear combination of the two near-
est target postures.

Controller 3: Postural Controller
Controller 3 (C3) was a postural controller based on 

previous 

Figure 3.
Controller 3. Postural controller developed previously by Segil 

and Weir [14]. Arrangement of target postures in postural con-

trol domain is shown as well as radial mapping of electromyog-

raphy (EMG) signals. E = extension EMG signal, F = flexion 

EMG signal, U = ulnar deviation EMG signal.

work by the authors (Figure 3) [14].* The archi-
tecture used EMG signals like a joystick to morph the 
hand posture. As described previously, the EMG signals 
were mapped into two control parameters that can be rep-
resented by a coordinate in the PC domain. All locations 
in the PC domain corresponded with a hand posture. In 
this work, the three EMG signals were mapped in a radial 

fashion about the origin of the PC domain (Figure 3). 
The vector summation of the root-mean-square (RMS) 
EMG values equaled the coordinate position in the PC 
domain. A position control scheme was used where qui-
escent EMG signals corresponded with the coordinate at 
the origin. The coordinate (PCx (t), PCy (t)) was con-
verted into a joint angle array () by a linear transform, 
the joint angle transform (JAT) (Equation 1):

The JAT varied depending on the closest target postures 
to the coordinate at any given time (i.e., the JAT was spa-
tially dependent). At all times, the hand posture (i.e., the 
joint angle array) was a linear combination of the two 
closest target postures where, when the coordinate 
equaled a target posture position, the MEC reproduced 
the target posture identically. The architecture did not 
include discrete states and therefore did not require a trig-
ger signal.

Experimental Methods
Seven nondisabled subjects (age [mean ± standard 

deviation]: 26 ± 3 yr, all right-handed) completed two 
experiments (A and B) using the three MECs. Experi-
ment A consisted of the SHAP using a modified IH2 
Azzurra artificial hand (Prensilia S.r.l.; Peccioli, Italy) 
mounted onto a splint [18]. Experiment A tested the abil-
ity of the subjects to manipulate physical objects. Experi-
ment B instead consisted of a virtual hand posture 
matching task (as in Segil and Weir [14]) in order to 
quantify the ability of the subjects to reproduce all six 
functional grasps available in each MEC. In a single 
experimental session (2 h), both experiments were per-
formed using a single controller (either C1, C2, or C3) 
with experiment A occurring first. Three sessions were 
scheduled on three different days for each subject. The 
order of the controllers tested across the three days was 
randomized across subjects. All subjects claimed to have 
normal vision and upper-limb function and were not 
practiced at myoelectric control. All subjects conducted 

*Segil J, Weir R. A novel postural control algorithm for control of 
multi-functional myoelectric prosthetic hands. J Rehabil Res Dev. In 
review.
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the experiment using their left arms to match the handed-
ness of the robot hand available.

Experiment A
In experiment A, the subjects performed the SHAP 

wearing the artificial hand. The hand was mounted on a 
nondisabled splint that included a handlebar so that the 
physiological limb would maintain an anatomically neu-
tral position. The SHAP is a standardized, time-based 
hand assessment procedure that measures the hand func-
tion relative to normal nondisabled function using 26 
ADL tasks that span the functional grasps (Table 2) [18]. 
It was shown to be reliable and was validated so that 
results of independent studies can be compared [18]. For 
example, it was used by Otr et al. to compare prosthetic 
hands [22] and by Dalley et al. to functionally assess the 

Multigrasp Myoelectric Controller (i.e., the controller 
replicated in this work) [12]. As instructed by the SHAP 
protocol, subjects were asked to complete tasks consist-
ing of the physical manipulation of abstract objects (cyl-
inders, spheres, tabs, etc.) and physical ADLs (turning a 
door handle [Figure 4], picking up coins, moving con-
tainers, lifting a tray, etc.). The 26 tasks were performed 
as quickly as possible and were self-timed by the subject 
using a start and stop button as prescribed by the SHAP. 
Only a subset of grasps (palmar, tip, and lateral prehen-
sion) in each MEC was necessary to perform the SHAP 
(Table 2). The duration of each task was used to calculate 
a SHAP score (SS), which described the overall function 
of the subject. The calculation of the SS occurred by 
inputting the duration of each 

Task (Type and No.) Name Grasp

Abstract Object*

1 Spherical (lightweight) PP
2 Tripod (lightweight) TP
3 Power (lightweight) PP
4 Lateral (lightweight) LP
5 Tip (lightweight) TP
6 Extension (lightweight) TP
7 Spherical (heavyweight) PP
8 Tripod (heavyweight) TP
9 Power (heavyweight) PP

10 Lateral (heavyweight) LP
11 Tip (heavyweight) TP
12 Extension (heavyweight) TP
Activity of Daily Living
13 Pick up coins TP
14 Button board PP
15 Food cutting LP
16 Page turning LP
17 Jar lid PP
18 Jug pouring PP
19 Carton pouring PP
20 Heavy object lift PP
21 Light object lift TP
22 Tray lift LP
23 Rotate key LP
24 Open/close zipper LP
25 Rotate screw PP
26 Door handle LP

task in seconds into the 

Table 2.
Southampton Hand Assessment Procedure tasks.

*Light- and heavyweight abstract objects were made of wood and metal, respectively.
LP = lateral prehension, PP = palmar prehension, TP = tip prehension.
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proprietary 

Figure 4.
(a) Experimental platform consisted of IH2 Azzurra artificial hand (Prensilia S.r.l.; Peccioli, Italy) mounted onto nondisabled splint, 

three-site surface electromyography (EMG) acquisition system, Southampton Hand Assessment Procedure (SHAP) briefcase, and 

door handle task. (b) IH2 Azzurra artificial hand with nine joints (circles) and five motors (dashed circles, ring and little fingers are 

coupled as shown by solid line).

algorithm provided by the SHAP organization
through their Web site (http://www.shap.ecs.soton.ac.uk/
index.php). Since the SHAP used a time-based protocol, 
the best performance equated to the fastest average per-
formance across all tasks.

The artificial hand used during the SHAP was a mod-
ified IH2 Azzurra hand. The unmodified version of this 
hand consists of five underactuated digits (two joints per 
digit) driven by five motors that actuate the flexion or 
extension of the thumb and index, middle, and ring and 
little (as a pair) fingers and the abduction or adduction of 
the thumb. The hand was modified in order to improve 
grasp stability during tip and lateral prehension. In partic-
ular, the thumb and index fingers were splinted so that 
they became a single jointed digit about the metacarpo-
phalangeal joint (Figure 4(b)), and compliant material 
was added to the fingertips.

Before the experiment, the EMG control sites were 
located by palpating the forearm, and the electrodes were 
fixed as described previously. Then, the splint with the 
robot hand was fitted to the subjects’ forearms using 
adjustable straps in an anatomically correct position. The 
EMG gains and thresholds were tuned as the subject sus-
pended the hand and splint in order to best compensate 

for the nominal EMG activity due to the weight of the 
system.

During the experiment, subjects sat in an upright 
position in front of a table where the SHAP materials 
were placed. The subject rehearsed each SHAP task until 
he or she was able to reliably perform it as suggested by 
the SHAP assessor’s manual [23]. The subject performed 
the task until satisfied that he or she had achieved the 
fastest possible time. Five tasks of the original SHAP 
were not included in our study (button board, food cut-
ting, rotate key, zipper, and screwdriver tasks) due to the 
mechanical limitations of the hand available and were 
given the maximum time (100 s) as prescribed by the 
SHAP assessor’s manual. Subjects were instructed to rest 
between SHAP tasks as needed.

Experiment B
In experiment B, the subjects performed a virtual 

hand posture matching task by controlling the move-
ments of a virtual hand displayed on the laptop using the 
same EMG control sites as in experiment A. The virtual 
hand posture matching task was meant to quantify the 
ability of the subjects to reproduce all six functional 
grasps available in each MEC (as opposed to the subset 

http://www.shap.ecs.soton.ac.uk/index.php
http://www.shap.ecs.soton.ac.uk/index.php
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of grasps used during the SHAP). The virtual hand had 
the same physical architecture of the IH2 Azzurra artifi-
cial hand and responded in real-time to the output of the 
MECs. During the experiment, subjects sat in an upright 
position in front of the laptop (the splint and the robot 
hand were not used). The subjects were asked to match 
the posture of the virtual hand to one out of six target 
postures as quickly as possible. The target posture was 
displayed as a static image of the virtual hand in the 
appropriate position [14]. A successful trial consisted of 
matching the virtual hand to the target posture in 10 s or 
less (including a 1 s hold time), otherwise the trial was 
considered a failure. The virtual hand matched the target 
posture when the coordinate was within the 14 percent 
radii of the target position in the PC domain and was 
indicated by the visual interface [24]. The experiment 
consisted of 60 trials (10 attempts at each target posture). 
The sequence of target postures was randomized across 
subjects. Before experiment B, the EMG acquisition was 
retuned. The virtual hand task tested the ability of each 
subject to produce the specified target postures, as 
opposed to the SHAP, which required the completion of 
the task and not a specific posture.

Performance Metrics
In experiment A, the SS was used as one of the per-

formance metrics [23]. The SS was designed to measure a 
subject’s artificial hand function and was derived from 
the time to complete the SHAP tasks, where 100 = non-
disabled hand function and 0 = minimal function [23]. 
The SS was calculated as an across-subject average 
(unpaired) and was reported in order to compare the pros-
thetic system with previous studies using the SHAP.

In this work, we introduced the SHAP percent differ-
ence (SD), which was the percent difference from the 
subject average SS as described by Equation 2, where n =
the total number of subjects and c = the MEC:

Positive SD occurred when the SS for the MEC was 
greater than the subject’s average and vice versa. The SD
was the preferred performance metric compared with the 
SS since it was a within-subject comparison and therefore 

was a more sensitive measure of the relative utility of the 
MECs.

In experiment B, several metrics were used to quan-
tify the performance. The completion rate (CR) is the 
number of successful trials per total number of trials. The 
movement time (MT) is the duration of successful trials 
in seconds, not including the 1 s hold time. The average 
EMG amplitude (AMP) is a measure of effort based on 
the RMS of the EMG activity from each electrode (i) for 
each posture (p). AMP is a within-subject measure and is 
calculated as the percent difference from the subject 
RMS AMP for each controller (c) (Equation 3) [25]:

Positive AMP occurs when the subject produces more 
EMG activity (i.e., effort) for a controller or posture than 
the subject average and vice versa. The standardization of 
the EMG tuning methods, as described previously, 
ensured that the AMP metric accurately reflected the 
effort of the subject. AMP was only calculated for exper-
iment B since the manipulation tasks in experiment A 
caused compensatory EMG activity, which was not of 
interest.

Better performance in experiment A was quantified 
by higher SS and SD; better performance in experiment B 
was quantified by higher CR, lower MT, and lower AMP. 
One-factor analyses of variance were used throughout 
and Bonferroni post hoc corrections for multiple compar-
isons were used when applicable, with a significance 
level of 0.05. Experimental results report mean ± stan-
dard error of the mean.

RESULTS

The transformation of EMG signals to joint angle 
commands for the artificial (or virtual) hand for each 
MEC was compared (Figure 5). The representative plots 
in Figure 5 depict the differing logic performed by the 
three MECs while producing the same outputs. The control
sequence for C1 shows a trigger command (vertical gray 
bar) into the tip prehension state followed by extension, 
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Figure 5.
Transformation of root-mean-square (RMS) electromyography (EMG) signals into five joint angles. Smoothed EMG signal in red 

from extensor digitorum (E), flexor digitorum (F), and extensor carpi ulnaris (U) showed muscle activity after filtering and tuning. 

Joint angle traces from top to bottom for thumb abduction (AB), thumb flexion (TH), index flexion (IN), middle flexion (MI), and ring/

little flexion (RL) corresponded with hand posture shown, including hand flat (HF), tip prehension (TP), and opposition (OP). State 

and posture of controller 1 (C1) and controller 2 (C2) is depicted, and cocontraction trigger signal is highlighted by vertical gray bar. 

Note that controller 3 (C3) does not require trigger signal since postural control architecture controls hand posture in continuous 

domain without discrete states.

flexion, and extension EMG activity to cause hand flat, 
tip prehension, and hand flat, respectively. The example 
for C2 shows a trigger command from the hand flat state 
into the opposition state followed by a flexion and exten-
sion EMG activity to move between opposition, tip pre-
hension, and opposition. A second trigger command 
changed states from opposition back to hand flat. The 
example for C3 shows predominately extension EMG 
activity that drives the hand posture from hand flat to tip 
prehension followed by quiescent EMG activity that 
relaxes the hand posture back to hand flat.

Experiment A
The SS for each controller was equal to 38.0 ± 2.5, 

41.0 ± 1.9, and 45.0 ± 1.0 for C1, C2, and C3, respec-
tively (Figure 6(a)). The SS was not significantly differ-
ent across MECs (p = 0.08). However, the within-subject 
average SS ranged from 35 to 48 and was found to be
significantly different (p < 0.05, not shown). In other 
words, some subjects were more proficient at the SHAP 
than others, independent of the controller. Therefore, the 
SD was the preferred performance metric used since it 
normalized the SS to the subject average. The mean SD
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Figure 6.
Experiment A results for each controller with standard error 

bars (n = 7). (a) Southamptom Hand Assessment Procedure 

score (SS) describes artificial hand function, where 100 = non-

disabled hand function. (b) Southamptom Hand Assessment 

Procedure percent different (SD) is percent difference of SS of 

each controller compared with subject mean. *p < 0.05. C1 = 

controller 1, C2 = controller 2, C3 = controller 3.

across subjects was equal to 8.0 ± 2.6, 0.6 ± 1.6, and 
8.6 ± 2.2 percent for C1, C2, and C3, respectively (Fig-
ure 6(b)). Post hoc analysis found that the SD for C3 was 
significantly greater than for both C1 and C2 (p < 0.001 
and p < 0.05, respectively), thereby proving that, on aver-
age, subjects performed the ADLs more proficiently 
using C3 than C1 or C2.

Experiment B
The CRs equaled to 97.0 ± 1.4, 99.0 ± 0.3, and 86.0 ± 

2.9 percent for C1, C2, and C3, respectively (Figure 7(a)). 
Post hoc analysis found that the CR for C3 was signifi-
cantly less than for both C1 and C2 (p < 0.01 and p < 
0.001, respectively). The MTs equaled 3.9 ± 0.3, 3.3 ± 

0.2, and 2.7 ± 0.4 s for C1, C2, and C3, respectively (Fig-
ure 7(b)). There was no significant difference between 
the three controllers (p = 0.06); however, there was a 
strong trend where the MT decreased from C1 to C2 to 
C3. The AMP equaled 25 ± 24, 1 ± 26, and 24 ± 
13 percent for C1, C2, and C3, respectively (Figure 
7(c)). There was no significant difference between the 
three controllers (p = 0.31); however, there was a trend 
where the AMP decreased from C1 to C2 to C3. To sum-
marize, C3 was the least accurate controller in reproduc-
ing the six target postures; however, it tended to be the 
fastest and least effortful controller.

The same results were sorted by target posture in 
order to analyze the intricacies of the PC architecture 
used in C3 (Figure 8). In C3, the target postures that 
required the activation of a single EMG site (palmar, tip, 
and lateral prehension) are considered 1-degree of free-
dom (DOF) targets. The 2-DOF target postures (hook, 
pointer, and opposition) required the activation of two 
EMG control sites (i.e., a cocontraction). All target pos-
tures in C1 and C2 are considered 1-DOF since none 
require cocontraction. The CR for the 1-DOF trials 
equaled 97.0 ± 1.4, 99.0 ± 0.3, and 96.0 ± 2.2 percent for 
C1, C2, and C3, respectively. There was no difference in 
CR between the controllers for the 1-DOF trials (p = 
0.40). However, the CR for C3 2-DOF trials equaled 78.0 ±
4.2 percent and was significantly different (p < 0.001) 
than the 1-DOF trials. In other words, the failed attempts 
when using C3 occurred almost exclusively when the tar-
get posture required a cocontraction (a 2-DOF target). 
The MT for the 1-DOF trials equaled 3.9 ± 0.3, 3.3 ± 0.2, 
and 1.9 ± 0.4 s for C1, C2, and C3, respectively, and the 
MT for the 2-DOF C3 trials equaled 3.8 ± 0.4 s. The MT 
for the C3 1-DOF trials was significantly less than the 
MT for the C1, C2, and C3 2-DOF trials (p < 0.001). The 
AMP for the 1-DOF trials equaled 25 ± 24, 1 ± 26, and 
34 ± 11 percent for C1, C2, and C3, respectively, and 
the AMP for the C3 2-DOF trials equaled 15 ± 15 per-
cent. There was no significant difference between AMP 
for the 1-DOF or 2-DOF trials (p = 0.24); however, there 
was a strong trend where the AMP decreased from C1 to 
C2 to C3 2-DOF trials to C3 1-DOF trials. In general, the 
C3 1-DOF trials were equally accurate, faster, and tended 
to be less effortful than C1 and C2. On the contrary, the 
C3 2-DOF trials were less accurate, equally timely, and 
were equally effortful than C1 and C2.

Further sorting was performed in order to provide 
insight into the AMP required to produce the different 
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Figure 7.
Experiment B results averaged for each controller with standard error bars (n = 7). (a) Completion rate (CR) refers to percentage of 

successful attempts during virtual hand posture matching task. (b) Movement time (MT) describes time to completion during virtual 

hand matching task. (c) Average electromyography (EMG) amplitude (AMP) is measure of effort based on root-mean-square aver-

age of EMG activity and is calculated as percent difference from subject average. Positive AMP describes more than average EMG 

activity. *p < 0.05. C1 = controller 1, C2 = controller 2, C3 = controller 3.

target postures within each MEC (Equation 3, Figure 9). 
It is worth recalling that a zero AMP occurred when the 
posture required the average EMG activity for the sub-
ject. For C1, the AMP monotonically increases from the 
initial target posture (tip prehension) to the most distant 
one (opposition). This finding is logical since a trigger 
command is required to sequentially move between states 
and thereby increases the required effort to reach the 
more distant target postures. For C2, the AMP is signifi-

cantly greater (p < 0.001) for target postures in the oppo-
sition state (opposition, tip prehension, and palmar 
prehension) than for the reposition state (pointer, hook, 
and lateral prehension). Since the hand posture in experi-
ment B was initialized to the hand flat state for all trials 
and MECs, the opposition state in C2 required an extra 
trigger command (more EMG activity) to switch from the 
reposition state. For C3, the AMP is significantly greater 
(p < 0.001) for the 2-DOF target postures (hook, opposition, 
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Figure 8. 
Experiment B results sorted by target type and controller with 

standard error bars (n = 7). Solid outlines indicate 1-degree of 

freedom (DOF) targets; dashed outlines indicate 2-DOF targets. 

2-DOF targets require activation of two electromyography sig-

nals (cocontraction). *p < 0.05. AMP = average electromyogra-

phy amplitude, C1 = controller 1, C2 = controller 2, C3 = 

controller 3, CR = completion rate, MT = movement time.

Figure 9.
Average electromyography (EMG) amplitude (AMP) sorted by 

posture and controller with standard error bars (n = 7). (a) Con-

troller 1, (b) controller 2, and (c) controller 3, where positive 

AMP refers to postures that require more EMG activity than 

subject average and vice versa. Postures are arranged along x-

axis based on sequence of postures within each controller. *p < 

0.05. HK = hook, LP = lateral prehension, OP = opposition, PP =

palmar prehension, PT = pointer, TP = tip prehension.

and pointer) than for the 1-DOF target postures (palmar, 
tip, and lateral prehension). This is a logical finding since 
modulation of two control sites (a cocontraction) is a 
more effortful task. While the controllers were equally 
effortful on average, the effort for each target posture dif-
fered significantly within each control architecture.

DISCUSSION

Significantly different results from both the physical 
and virtual assessment procedures were found. An asset 
of the present study was that it allowed for comparisons 
between MECs due to the standardized experimental 
design where the same interface and hardware were used 
for all conditions.

In experiment A, C3 proved to be the best perform-
ing architecture as described by SD (Figure 6). The trig-
ger command used in C1 and C2, but not in C3, 
inherently retarded the completion of the ADL. Subjects 
were observed producing the trigger command during the 
reaching phase of the ADL in order to complete the task 
as quickly as possible when using C1 and C2. The 
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absence of a trigger command in C3 proved to be advan-
tageous. This finding supported a similar study in which 
pattern recognition (without trigger commands) and state 
machine MECs were compared [26]. Furthermore, the 
architectures of C1 and C2 required extension activity in 
order to release an object, whereas C3 required quiescent 
activity. These traits resulted from the velocity control 
scheme in C1 and C2 compared with the position control 
scheme in C3. A velocity control scheme deciphered 
EMG activity as a speed and direction of hand movement 
and therefore quiescent EMG activity equated to no hand 
movement. EMG activity was necessary to close and
open the hand. A position control scheme deciphered 
EMG activity as a position within the architecture. In C3, 
EMG activity was only necessary to close the hand; the 
hand opened when quiescent EMG activity was detected. 
However, the velocity control scheme used in C1 and C2 
allowed the user to relax while grasping an object as 
opposed to in C3, which required continual EMG activity 
in order to maintain a grasp. This fact could cause fatigue 
(although not noticed here) and might need to be miti-
gated with switches or other logic within C3. In general, 
the need for extension activity in order to release an 
object in C1 and C2 seemed to slow the completion of the 
tasks compared with C3.

In experiment B, C3 was the least accurate (lowest 
CR) controller (Figure 7). We found that the dimensional-
ity of the architectures affected the accurate reproduction 
of target postures. More specifically, the state machine 
architectures used in C1 and C2 restricted the subject to a 
linear arrangement of states, and therefore, the posture-
matching task only required the modulation of one EMG 
signal at a time. This linear arrangement in C1 and C2 
provided a more accurate interface. The PC architecture 
used in C3 presented the same postures in a planar, two-
dimensional arrangement. Thereby, half of the target pos-
tures required the modulation of one EMG signal (1-
DOF) and half required the modulation of two EMG sig-
nals (2-DOF) in order to reproduce the target posture. The 
added dimension of the PC architecture in C3 (i.e., the 
need for cocontractions) negatively affected the CR of the 
MEC (Figure 8(a)). These results supported our previous 
findings that described a reduction in CR with an increase 
in dimensionality [14]. We believe that the dimensionality 
of the MEC is a major determining factor in the ability of 
a subject to control a prosthetic hand.

The MT metric in experiment B described the same 
trend seen in the SS in experiment A (Figure 7). The MT 

tended to decrease from C1 to C2 to C3, which mirrored 
the SS and SD metrics. Furthermore, the MT for the C3 1-
DOF trials proved to be significantly faster than the other 
controllers (Figure 8(b)). The similar trend between the 
SS and the MT metric was logical since both are time-
based metrics. This trend supported the fact that both the 
physical and virtual assessment protocols limited con-
founding variables and therefore produced similar results 
across assessment techniques.

The AMP metric described the relative effort 
required for each controller and posture. While the con-
trollers required equal effort on average (Figure 7(c)), 
the effort for each target posture within each MEC dif-
fered significantly and depended on the controller archi-
tecture. In general, the sequential arrangement of states in 
C1 caused the closer postures to the initial position to be 
achieved more easily. Similarly in C2, the postures 
within the initial state (hand flat state) were achieved 
more easily than the postures not in the initial state 
(opposition state). In C3, the AMP metric highlighted the 
difficulty of commanding the 2-DOF target postures 
compared with the 1-DOF target postures. Note that the 
AMP metric was biased by controller architecture. The 
initial posture and state within each controller was the 
same for all trials in experiment B to ensure a standard-
ized methodology across controllers. The reordering of 
states within C1 and/or the rearrangement of postures in 
the PC domain in C3 would have caused the AMP values 
to differ for the specific postures. However, we con-
cluded that the general insights still hold for all of the 
controllers; the effort increased with the number of trigger
commands required in C1 and C2, and the 2-DOF pos-
tures in C3 required more effort than the 1-DOF postures.

The clinical implementation of the three controllers is 
feasible today. The EMG acquisition and processing was 
performed using clinically available hardware and stan-
dard processing techniques. Several five-motor prosthetic 
hands are available today [1], and six-motor devices are 
becoming available [19]. A clinical consideration when 
implementing the finite state machine architectures (C1 
and C2) is the design of the trigger signal. This work 
implemented the same trigger design as Dalley et al. [12] 
for both C1 and C2; however, more complex trigger 
designs, including hold open, double impulse, and/or tri-
ple impulse, are clinically available [19]. In general, the 
trigger design must balance the ease of use for the subject 
with the reliability of the trigger signal. Subject overexer-
tion and/or false triggers should be minimized in order to 
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maintain a high-quality control interface when using 
finite state machine architectures. A clinical consider-
ation when implementing the PC architecture (C3) is the 
availability of three independent surface EMG sites on 
the residual limb of persons with transradial amputation. 
Three control sites are preferable to two in order to span 
the entire PC domain using a radial mapping of EMG sig-
nals in the PC domain. Our previous work discussed two-
, three-, and four-site EMG control interfaces using dif-
ferent maps in the PC domain [14]. Anecdotally, we have 
found that three independent sites can be found on the 
residual limbs of subjects with both congenital limb loss 
and trauma-induced limb deficiency [27]. However, the 
two-site system used for both C1 and C2 is advantageous 
since it reduces the cost of the prosthesis system com-
pared with the three-site system required for C3.

The limitations of this work include the use of a left-
handed prosthesis, the lack of training time, the lack of 
subjects with transradial amputation, and the disregard 
for pattern recognition MECs. The experiments were per-
formed using the left limb of the subjects due to the hand-
edness of the physical prosthesis even though all seven 
subjects were right-handed. We believe that the ability of 
subjects to use these MECs would change with additional 
training time but that these results are robust to additional 
training and still describe the clear differences in MEC 
architectures. In the future, we plan to further test the PC 
architecture implemented in C3 within a population of 
persons with amputation. We did not test a pattern recog-
nition-based MEC in this work since we are not aware of 
an algorithm that can classify seven hand postures reli-
ably during a clinically focused test like the SHAP. A 
surprising development from this work was the advan-
tage to using a position control scheme as opposed to a 
velocity control scheme in the PC architecture. We 
described the opposite preference when used in a virtual 
center-out target acquisition task.* 

CONCLUSIONS

We conclude that the optimal parameters for PC 
architectures depend on whether the MEC is being used 

in a virtual environment or with a physical device; veloc-
ity control schemes are beneficial for virtual tasks while 
position control schemes are beneficial for physical tasks, 
including object manipulation and other ADLs. Here, we 
show using virtual and physical assessment techniques 
with standardized protocols that the PC architectures 
rival the state-of-the-art finite state machine architectures 
for clinically viable MECs.
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