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Processing computer tomography bone data for prosthetic finite 
element modeling: A technical note
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Abstract—A software scheme is presented to extract the
shapes of tibiae and fibulae from amputee computer tomogra-
phy (CT) data for use in prosthetic finite element modeling. A
snake algorithm is implemented to overcome challenges of
bone-soft tissue edge detection common in this application.
Means to enhance initial guess contours, ensure contour conti-
nuity, overcome point-clustering problems, and handle high-
curvature regions are also described. Effectiveness of the algo-
rithm is demonstrated on image data from a unilateral transtibial
amputee subject.
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INTRODUCTION

An important challenge in the development of
prosthetic finite element (FE) models to study residual
limb/prosthetic socket mechanical interactions is accu-
rate specification of the bone shapes within the residu-
al limb [1–3]. Several methods can be used to obtain
bone shapes, for example, computer tomography (CT), 
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magnetic resonance imaging (MRI), and ultrasound.
Ultrasonic imaging systems for prosthetics require long
scan times and thus are susceptible to subject movement
as well as soft tissue distortion because of residual limb
submersion in a water tank or mechanical pressure from
the transducer [4]. CT does not have these problems and
has advantages over MRI in that image quality of the
bone, the component of interest here, can be more clearly
distinguished.

Despite the capabilities of CT imaging, it is difficult
to develop automated or semiautomated methods to
extract bone shapes from the CT data for prosthetic FE
model applications. Typically, an edge-detection method
is used with some form of contouring. However, this
approach has two major difficulties. First, the threshold
value to achieve effective bone edge detection varies
from slice to slice, leading to significant errors [5]. Sec-
ond, often the cortical bone is so thin, particularly in the
proximal tibia, that the edge is not discernable between
the soft tissue and the cancellous bone, causing automatic
edge-detection algorithms to drift away into the body of
the bone. Contouring requires pixel-to-pixel continuity of
the edge outline; thus, even sophisticated edge-detection
filters have gaps in the outlines that must be rectified
manually. Such manual manipulation of the images is
tedious and time-consuming.

The purpose of this technical note is to describe an
approach for overcoming these two problems. A model-
based segmentation method is used, whereby rather than
each contour being fixed manually, the model automati-
cally bridges gaps in the contour. So-called “active
609
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contour models,” recently applied to nonamputee pros-
thetic applications in biomedicine, are influenced by glo-
bal feedback in addition to image features at the local
level [6–8]. Thus, they have the potential to overcome the
difficulties just described. Means to apply this approach
to lower-limb bone extraction are described for use in
prosthetic FE modeling application.

 THEORY

“Energy-minimizing active contour models” (snakes)
were introduced by Kass et al. in 1988 [9]. The term
“active” refers to the deformability or flexibility of the
snake to minimize its energy dynamically in order to
adapt it to given image data. In the present application,
snakes are used to identify the boundary between bone
and soft tissues in the lower limb. The boundary extrac-
tion process is initiated by placing an estimated contour
close to the intended boundary within the image. The
snake algorithm then adjusts this estimate by minimizing
the snake’s total energy so that it locks onto the boundary.
The total energy includes a feature energy term and addi-
tional terms to ensure contour smoothness. The total
energy functional of the snake, represented by a contour
v(s) = (x(s),y(s)), where s is the arc length, can be written
as [9]

Eint is the internal energy due to forces of bending and
stretching that maintain snake smoothness. Eimage is the
energy due to image forces that push the snake to take the
shape of the image features of interest. In the present
application, we used the two-dimensional gradient of
pixel intensity to determine image energy, since the
boundaries appear as local maxima in the gradient
images. Eint can be written as

where the subscript s denotes the derivative. In equation (2),
the first term accounts for stretching of the snake and will
have a large value where there is a gap in the curve. The
second-order term accounts for bending and will be large in
a region of high curvature. Thus, the values of α and β

locally control the stretching and bending of the snake at
that point along the contour.

Amini et al. proposed a dynamic programming algo-
rithm to discretize the variational problem given by equa-
tion (1) [10]. Using the finite difference method, one can
approximate the two derivatives in equation (2) as

and

The total snake energy is given by

where the summation is done over all the points. The
implementation by Bregler and Slaney of this algorithm
in MATLAB (MathWorks, Inc., Natick, Massachusetts)
provided the starting point for the present study [11].

METHODOLOGY AND RESULTS

Application of the method is illustrated as follows.
The residual limb of a unilateral, lower-limb, male ampu-
tee aged 55 was imaged with the use of a General Electric
CT scanner (Genesis Hispeed RP). The subject was dia-
betic and underwent a limb amputation 2 years prior
because of an industrial injury. The residual limb was
positioned within a patellar-tendon-bearing socket during
CT scanning. Scanner settings were 120 kV, 120 mA, with
a slice thickness of 3 mm and a slice spacing of 3 mm.

Each image slice was processed first with the adjust-
ment of the upper and lower bounds of the grayscale
image so that the air and some soft tissue could be
masked, while retaining good contrast at the boundary
between bone and soft tissue. This procedure helped to
highlight the features of interest.
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Next, snake parameter settings were set so that the
contribution of the three energy terms (stretching, bend-
ing, and image) were within the same order of magni-
tude. The two principal parameters are (1) α—controls
the energy contribution by the gap between adjacent
boundary points and (2) β—controls the energy contri-
bution caused by the bending of the curve. In a closed
contour, increasing α has the effect of pushing points
toward equal spacing along the contour. In this applica-
tion, α is set to zero so that snake points are not penal-
ized for moving toward strong edges or for clustering.

Additional settings affect the resolution of the con-
tour: ∆x and ∆y − the maximum number of pixels moved in
the x and y directions, respectively, which determines the
size of the neighborhood for the minimum energy search,
and εx and εy − the pixel resolution in the x and y direc-
tions, respectively. For the algorithm to run, each snake
point is moved in the neighborhood ,
and the total minimum energy given by equation (5) is cal-
culated at the end of every iteration. The iterations are
continued until a global minimum in total energy is
reached.

For each slice, the determined contour depends on an
appropriate initial guess. To overcome initial guess prob-
lems in slices below the most proximal slice, the final
snake boundary from the previous slice is used as the ini-
tial boundary guess for the next distal slice. Because the
bones tend to reduce in size from proximal to distal, the
initial guess contour is usually larger than the actual bone
boundary. During iterations of the algorithm, the snake is
pushed toward the actual boundary.

A potential limitation specific to this prosthetics
application is that because equations (1) to (5) apply to
open snakes (i.e., the first point and the last point of the
snake are not constrained to overlap), unfolding can
occur. This unfolding is due to contributions from the α
and β terms in equation (2) trying to open up and shorten
the boundary to reduce the bending and stretching ener-
gies. Figure 1(a) and (b) is a CT slice illustrating this dif-
ficulty. Note that in equations (3) and (4), the bending
and stretching energies are not completely defined at the
ends of the contour. Equations (3) and (4) are therefore
modified to ensure continuity of the internal energy of
the snake over a closed contour, by defining

Figure 1(c) shows the new image after implementing
this change. When the feature energy is uniform, such a
closed snake will converge to a circle with a radius where
the bending energy exactly matches the stretching
energy.

Another challenge in application to prosthetics is that
in local regions of high image gradient values and/or high
snake curvature, the snake points tend to move closer
together, thereby decreasing the total snake energy. Rather
than being a disadvantage, this is an advantage in the
present application, since the initial guess moves away
from points where the edge is weak as well as provides
better contour definition in high curvature areas. How-
ever, since the final solution for one image is used as the
initial guess for the next image in the series, this clustering
tends to accumulate over several slices. For this limitation
to be avoided, a cubic spline is fitted to each solution and
then the curve is resampled to generate equally spaced
points for the next guess. Resampling also permits the
number of snake points to be reduced as the total contour
length decreases toward the distal images. The result of
cubic spline fitting and resampling of Figure 1(c) is
shown in Figure 1(d).

A further complication in application to prosthetics
is that in regions of high curvature where the bending
energy dominates over the feature energy, the snake
tends to cut off contour sections of large curvature
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Figure 1.
Contour opening and point clustering. (a) and (b) Contour of tibia
opening and (b) a magnification of (a). (c) Closing of contour with
use of techniques described to ensure continuity. (d) Result of cubic
spline fitting and resampling to eliminate point clustering.
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(Figure 2(a)). To overcome this challenge, we adjusted
the local values of β(s) so that local bending energy
was constant at all points on the initial guess for an
edge contour for a given slice. This ensured that, in the
absence of other forces, the snake tends toward the
shape of the current guess rather than toward a circle.
The local values of β were determined so that the glo-
bal β (total bending energy divided by total feature
energy) retained the desired value—0.26 in the present
case. This provided good overall results (Figure 2(b)),
ensuring that the bending energy exerts a uniform
push-pull on the snake, irrespective of the magnitude
of the feature energy and the local curvature.

Once all images are processed, points on the contours
establish the bone surface. Results for the tibia of a trans-
tibial amputee are shown in Figure 3.

DISCUSSION

The methods that we presented using active contour
modeling help to overcome challenges in extracting tibia
and fibula bone shapes from CT image data of transtibial
amputee subjects. Difficulties with threshold level varia-
bility from slice to slice are overcome, as are challenges
in defining the bone and/or soft-tissue boundary in
regions where the cortical bone is very thin or absent.
Means for establishing initial guess contours, ensuring
continuity, overcoming point clustering problems, and
handling high-curvature regions in the images facilitate
effective performance of the algorithm for use specifi-
cally for prosthetic FE modeling efforts.  
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