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Abstract—One of the most difficult problems in experimental
and clinical neurology is how to facilitate recovery of the abil-
ity to walk voluntarily. Local spinal mechanisms, descending
input from the brain, and ascending sensory feedback to the
brain are required for non-treadmill, self-initiated stepping. In
evaluating the integrity of axons connecting the brain and spi-
na cord in neura injury models, the selection of behavioral
tests may be at least asimportant as the histological procedures,
if not more so. A comprehensive and clinically meaningful test
battery should include assessments of brain-dependent move-
ment capacity. Behavioral enrichment procedures that promi-
nently encourage self-initiation of stepping have been used to
facilitate plasticity and motor function after brain or spinal cord
injury. Progressive degeneration characteristic of parkinsonian
models can be slowed or halted altogether by forced exercise
and limb use. Behavioral interventions may work partly
because the animal adopts aternative behaviora strategies to
compensate for impaired performance. However, mounting
evidence suggests that motor rehabilitation can also promote
restoration of function or prevent slow degeneration of tissue
by engaging constitutively available mechanisms that protect,
repair, rewire, or reactivate cells.
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INTRODUCTION

Among central nervous system (CNS) injury models,
one of the most disabling impairments is the inability to
initiate weight-shifting steps. In spinal cord injury, as
well asin Parkinson's disease and stroke, walking volun-
tarily is regarded as a major treatment objective of clini-
cal and experimental physiotherapy, neurosurgery, and
neurology. Nonvoluntary, assisted treadmill stepping can
occur via reactive adjustments in the position of the
lower extremities to reestablish the center of gravity.
When the leg is moved passively backward by the
treadmill, the stepping movement to recover stability can

Abbreviations: BDNF = brain-derived neurotrophic factor,
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be essentially reflexive and does not necessarily require
higher motor control. In contrast, deliberate weight-
shifting steps over ground presumably involve substan-
tial supraspinal participation. For this reason, interven-
tions that might restore or improve connections between
the brain and spinal cord are regarded as highly valuable,
as are behavioral tests that can evaluate more specifically
the integrity of descending pathways associated with the
intention to walk.

ASSESSING BRAIN-DEPENDENT MOVEMENT
CAPACITY

When using rat models, one must recognize that they
are primarily “front-wheel drive” for most functions that
involve exploratory spontaneous locomotion. As shown
in the Figure (and in research movie clips at our web
site, www.schallertlab.org), when the forelimbs are lifted

off the ground by an experimenter, the rat failsto walk on
its isolated hindlimbs. The rat may initiate a step or two
with one hindlimb while pivoting on the other, or make a
few steps backward or sideways, but voluntary stepping
is extremely limited or lacking altogether. In contrast,
when the hindlimbs are lifted off the ground, the rat
readily initiates stepping movements with its forelimbs,
and can walk long distances in this “wheelbarrow” pos-
ture [1-5].

When one forelimb is severely impaired by cervical
spinal hemisection or severe nigrostriatal dopamine
depletion, and the nonimpaired forelimb is lifted off the
ground along with the hindlimbs, the rat either fails to
step with the impaired forelimb or takes fewer steps that
may be smaller in size. When both forelimbs of rats with
severe unilateral nigrostriatal injury are on the ground,
the impaired limb appears to step, alternating with the
nonimpaired forelimb. But the steps the rat takes with the
impaired forelimb appear to be catch-up (adjusting) steps
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“Front-wheel drive’: Two rats are placed with either their forelimbs or hindlimbs resting on the ground. Consistent forward stepping is initiated
when the forelimbs are on the ground but not when only the hindlimbs are on the ground. Time (s) of selected sequential frames from digital
movies is shown. Figure corresponds to full-motion video, “HL Akinetic,” available on www.schallertlab.org.
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taken in response to the shift in center of gravity caused
by the action of the nonimpaired forelimb. In contrast to
steps that are initiated spontaneously, catch-up steps do
not require an intact dopamine system, although dopa
mine modulates their speed and size. For thisreason, it is
difficult to detect impairment in the affected limb unless
that limb is examined in isolation [1].

When placed on a moving treadmill, an intact animal
can take stepswith its hindlimbsthat adjust for the shiftin
center of gravity regardless of whether it is aso allowed
to use its forelimbs. It is possible, though, that these
movements primarily reflect the function of local spinal
circuitry with an unknown level of modulation by anterior
CNS structures. Moreover, forelimb stepping appears to
potentiate hindlimb stepping. After an injury that impairs
hindlimb capacity, forelimb behavior may influence
recovery and maintenance of hindlimb function.

It should be noted that the hindlimbs do have a well
defined role in movement initiation during some behav-
iors. When a rat swims toward a visible escape platform
in awell learned location, the forelimbs are immobile in
a forward-pointing posture that provides lift while the
hindlimbs paddle [6-9]. Jumping to targets, pushing
upward during rearing, and backing out of a tunnel also
depend on the hindlimbs to initiate the movement most
effectively [10,11]. Models of CNS injury associated
with compromised hindlimb function might be improved
by examining these behaviors, in part because they may
be modulated by inhibitory or excitatory input from the
brain.

Since active movement initiation of the forelimbs
may be linked to brain control over spinal cord processes,

Table 1.
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it isimportant to include behavioral tests that specifically
examine this possible link and test each forelimb in isola-
tion. In addition to the isolated forelimb stepping test
described above, and a similar test of forelimb weight-
shift initiation during rearing and spontaneous lateral
exploration of vertical surfaces [2-6], other tests may be
useful as well [6,12—17]. One example is the vibrissae-
evoked placing test battery. In this series of tests, the rat
is held aloft by the experimenter such that neither the
forelimbs nor hindlimbs touch any surface. The experi-
menter brings the vibrissae on one side into contact with
the edge of a table (see SchallertLab.org); the sensory
input to the vibrissae signals the presence of a stable sur-
face, and the animal immediately places a forelimb onto
the table [15,18]. The forelimb not being tested is
restrained by the experimenter. Deficits in forelimb plac-
ing on this test are present following unilateral cervical
spina injury, nigrostriatal terminal loss, unilateral trau-
matic brain injury, and focal ischemia. These deficits do
not recover after complete cervical spinal cord injury or
severe dopamine depletion leading to forelimb akinesia.
Table 1 depicts the forelimb placing deficit in the 6-
hydroxydopamine (6-OHDA) hemi-parkinsonian model.
Note that the deficit develops over the first week after
exposure to the neurotoxin, which suggests that thereisa
workably long window of opportunity for neuroprotec-
tion by behavioral or cellular interventions [19].

Another battery that assesses brain-dependent move-
ment capacity is the adhesive removal test, in which
small pieces of sticky tape are placed on the rat’s fore- or
hind feet, and the animal is timed while it contacts and

Successful placing: Time course of vibrissae-evoked contralateral forelimb placing deficits in rats with severe dopamine depletion caused by 6-
OHDA infusion into the nigrostriatal dopamine pathway (medial forebrain bundle, a parkinsonian model). Constraining the nonimpaired forelimb
with a cast during days 1-7, the period of ongoing degeneration, forced overuse of the impaired forelimb and spared the ability to place.

Percentage of Successful Placing

Mode Pre Day 2 Day 4 Day 6 Day 8 Day 10 Day 12 Day 14

Sham 100 100 100 100 100 100 100 100

6-OHDA 100 92 25 17 10 15 8 0
No cast

6-OHDA 100 92 100 95 100 87 100 92
Cast, days 1-7

Note: Data are percentages of successful placing of the affected forelimb onto atable top in response to vibrissae contact with the table edge [4,5].
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removes these with its teeth. This likely requires ade-
quate brain-spinal connectedness [12-15,20]. Following
thoracic-level spinal damage, one can place the tape on
the hind feet and observe the ability of the animal to
respond by contacting the tape with the mouth, which
should reguire sensorimotor processes involving both the
brain and spinal cord. Simple paw-shaking or achangein
the position of the limb during locomotion are two initial
reactions to a piece of tape adhered to a paw [12], and
may remain even after complete spinal transection [21].
This suggests that, in contrast to the more complex
response of contacting the stimulus with the mouth, these
simpler behavioral reactions may require little or no
modulation by the brain.

In addition to the behavioral tests mentioned above,
tests that involve auditory or visual cues that the animal
must recognize and respond to specifically with alearned
hindlimb movement would require brain control over the
spinal cord and might be useful for examining treatments
of thoracic-level damage.

Thus, the battery of functional outcome tests used to
evaluate the potential clinical benefit of a treatment must
be sensitive to the injury acutely and chronicaly, and
al so assess exactly the qualitative effects of the treatment
on motor or sensory function. This assessment should
include whether the treatment might reasonably be
expected to improve the brain’s command over spinal
neurons associated with behavior.

Progress in understanding recovery from CNS injury
should accelerate with advances in methods of behavior
analysis. However, researchers and practitioners should
exercise caution when interpreting the data in animal
studies. Treatment-related enhanced recovery of sen-
sorimotor behavior might be based on processes other
than CNS repair per se, even when the improvement is
correlated with measured changes in neural physiology
and anatomy. Extrapolating the clinical significance of
observations showing even large treatment-related
changes in motor function in animal models without
addressing the potential pitfals is not a trivial matter.
Intervention strategies may wind up in clinical trials and
ultimately fail to yield beneficial effects in people. The
anima model might then be viewed as being too distant
from humans in physiology and anatomy when, instead, a
more careful analysis of the intervention would not nec-
essarily have led to predicted efficacy [22,23].

MULTIPLE INTERACTIVE PROCESSES
CONTRIBUTE TO RESTORATION OF
FUNCTION

CNS injury is followed by severa broad categories
of complex processes that might be promoted or miti-
gated by promising treatments, thereby mediating
improved outcome. These processes overlap temporaly
and interact with each other [18,24-28]. Most research
programs target brain repair mechanisms or neuroprotec-
tion, but restoration of function can depend almost totally
on other mechanisms. Disentangling these processes and
deciding which ones, if any, are linked to the treatment
strategy is a formidable task that is rarely approached or
even addressed by experimenters. It is important, how-
ever, to understand the possible contributions to
improved function.

For example, a behavioral or biological treatment
may increase motor performance in an animal model by
enhancing motivational, attentional, or motor learning
processes. Drugs such as catecholamine agonists are rec-
ognized for their ability in the intact animal to improve
these processes [29], perhaps by making the task more
salient [30]. Amphetamine and other catecholamine ago-
nists, for example, have been used to facilitate perform-
ance in stroke and other models [31-36]. Moreover, after
injury, brain regions needed for adequate motor learning
may be functionally suppressed, either transiently or
chronically. Some drug interventions may work by
resolving neural shock to nearby or remote sites, rather
than facilitating regeneration, repairing damaged axons,
or preventing secondary degeneration.

With drug treatment, the animal with thoracic-level
spina injury may learn more quickly how to orient the
forequarters such that the hindlimbs are better positioned
to step in coordination with the forelimbs, as guided by
vibrissae. Or, the functional depression of rostral sensory
and motor areas in the spinal cord, and of the brain input
interface within these regions, might be alleviated more
rapidly with pharmacotherapy. Since the forequarters are
involved in modulating hindlimb walking, this could per-
mit more practice for hindlimb stepping in the home
cage, thus improving overall performance. Additionally,
the increased locomotor experience may activate use-
dependent endogenous trophic factor expression, neu-
ronal growth, or structural changes. These might be
erroneously attributed to the original biological treat-
ment, which in fact may not have instigated the key
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phase of the performance change specifically. One
potential consequence of not knowing this at the preclini-
ca level might be that when the treatment eventually
comes to the clinic, no benefit is detectable, depending
on how outcome is measured and how much rehabilita-
tive effort has already been devoted to maximizing resid-
ua function. If, in the animal model, forequarter function
is involved preclinically in a treatment’'s effect, it is
unclear how this would translate to upright walking in
people. In other words, it is again important to make the
distinction between behavioral compensation and true
recovery, and also to determine how the details of com-
pensation might transdate from research animals used in
preclinical studiesto humans, who are also known to use
compensatory strategies following damage [31].

BEHAVIORAL MODULATION OF NEURAL
REPAIR MECHANISM S

Idedlly, atreatment would fix the damage rather than
simply facilitate motor learning. Repairing the damage
might include replacing tissue that is lost, repairing tissue
that remains but is partially damaged, reconnecting sev-
ered connections, or enhancing endogenous mechanisms
that are involved in regeneration or cell replacement
[27,37,38]. Moreover, the injury may create fertile condi-
tions for motor enrichment to activate plasticity mecha
nisms such as neural or astrocytic growth factor
expression, axonal sprouting, synapse remodeling, recep-
tor density changes, neura-glia interactions, and cell
mitotic activity, differentiation, and migration [18,24,28,
39-45].

Acute damage to the CNSin ratsis often followed by
slow degeneration of adjacent and remote tissue that can
last for weeks or even months. The degeneration in focal
cortical injury models can be exaggerated by behavioral
manipulations started early after the injury, but regardless
of the extent of the additional tissue loss, it is virtually
undetectable for over a month [46]. Behaviorally, long-
term degeneration and brain plasticity mechanisms may
counteract each other, obscuring detection of both. The
timing and intensity of motor enrichment manipulations
appear to be critical factors. To our knowledge, there
have been no studies of the effects of delayed motor ther-
apy on the long-term slow degeneration of cells that
occurs following ischemic or traumatic brain injury, or
on the delayed degeneration that occurs when tissue is

SCHALLERT and WOODLEE. Brain-dependent movements

spared by brief cooling of the brain or by N-methyl-D-
asgpartate (NMDA) antagonists. It is reasonable to expect
that secondary degeneration of neurons might be attenu-
ated by intense behavioral demand if the early vulnerable
period is avoided. Indeed, a recent report of rats sustain-
ing striatal hemorrhage indicated that a daily regimen of
exercise, aternating with intermittent immobilization of
the nonimpaired forelimb beginning 8 days after the ini-
tial insult, rescued neurons from delayed chronic degen-
eration [47]. It isvery difficult to know, without unbiased
stereological analysis of many regions of the brain at
multiple time points, whether a motor treatment is opti-
mally beneficial. Even when outcome is improved, the
functional measures may not target precisely brain tissue
that might have been damaged by early behavioral
manipulations.

It is therefore important to be particularly cautious
about rehabilitation treatments that show beneficia or
nondetrimental effects that are not verified by careful his-
tological analysis. The logic behind the assumption that
improved functional outcome from a trestment means that
the treatment is not accompanied by undetectable tissue
damage is faulty. An increase in the size of the primary
injury does not necessarily lead to a worse outcome in
many behavioral tests for which performance improves
with repeated testing and practice. In fact, when behav-
ioral rehabilitation is given to a group of rats with large
lesions but not to a group with smaller lesions, the group
with the larger lesions can perform better than the less
injured, nonrehabilitated group on many types of motor
tasks.

BEHAVIORAL REVERSAL OF PROGRESSIVE
PARKINSONIAN DEGENERATION

Exercise and related motor-enrichment procedures
have been shown to reduce degenerative events or pro-
mote sprouting of remaining terminals in slow degenera-
tion models of Parkinson’s disease [3,5,24]. To force use
of the impaired forelimb, the rats were fitted with plaster
of paris“vest” caststhat encased the upper torso and non-
impaired forelimb during the first week after exposure to
the dopamine-cell neurotoxin. This manipulation resulted
in protection against vibrissae-evoked placing deficits
(Table 1), akinesia (Table 2) and other sensorimotor def-
icits. Dopamine content in the striactum was also pre-
served (Table 3), aong with other markers of the
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Table 2.

Self-initiated stepping is impaired in the forelimb contralateral to nigrostriatal dopamine depletion, an asymmetry that is ameliorated by
constraining the nonimpaired forelimb during the first 7 days after neurotoxin exposure. Lower score means less impairment in the “bad”

forelimb (i.e., the limb corresponding to striatal degeneration).

I mpairment Scores

M ode€l

Day 14 Day 21 Day 28
Sham 0£0.1 53+12 31+11
6-OHDA, no cast 63.0+ 7.2* 64.1+ 1.4* 63.9 + 4.6*
6-OHDA, cast, days 1-7 71+32 14+38 9.6+2.1
6-OHDA, cast, days 7-13 51.3+3.7" 724+51" 796+ 83"
6-OHDA, cast, days 3-9 101+ 4.7 20.0+13.6" 41.6+12.1*

" Statiti caly significant difference from baseline measurements.

Note: Each limb was tested separately, in isolation from the other forelimb and hindlimbs. Data are mean + standard error of the mean steps per minute made with
the nonimpaired forelimb minus steps per minute made with the impaired (parkinsonian) forelimb when the animal is supported solely on that limb [4,5].

Table 3.
Dopamine levels in the striatum are spared by early (days 1-7), but
not by late (days 7-13), forced use of the impaired forelimb.

M odel Dopamine Levels (%)
Sham 103 +11
6-OHDA, no cast 30+ 8
6-OHDA, cast, days 1-7 81+9
6-OHDA, cast, days 7-13 23+13"
6-OHDA, cast, days 3-9 62+ 17

*Significantly less than sham group.
Note: Data are percentages of striatal dopamine remaining relative to intact
hemisphere [4,5].

integrity of striatal dopamine terminals [5]. Waiting until
the second week to impose forelimb use was not effec-
tive. Treadmill exercise during the first week after
neurotoxin exposure (which has also been studied in the
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine  (MPTP)
mouse model) also had beneficial behavioral and neuro-
chemical effects[3]. If thetoxin levels are too high, how-
ever, which causes degeneration to occur to rapidly,
forced forelimb use is ineffective. Motor enrichment
methods may work in the partial-injury Parkinson model
because glial-derived neurotrophic factor (GDNF), fibro-
blast growth factor 2 (FGF-2), brain-derived neuro-
trophic factor (BDNF), and other trophic factors are
upregulated by motor enrichment [48-53] and have time
to work. The implications for people with Parkinson's
disease are that early, presymptom detection using more
sensitive behavioral and neuroimaging techniques will be
required to identify candidates for exercise intervention.

Symptoms of Parkinson's disease usually present unilat-
erally before progressing to both sides of the body. The
side of the body that does not show obvious symptoms
likely reflects alower subclinical level of degeneration in
the corresponding hemisphere, which may make dopa-
mine cells there more salvageable with behavior-based
treatments.

CONCLUSIONS

It is a time to be both optimistic and cautious about
research in CNS injury. Considerable progress has been
made in the development of neurological tests and in
understanding how motor experience promotes neural
events linked to restoration or maintenance of function in
models of stroke, parkinsonism, traumatic brain damage,
and spina cord injury [28,31,53-58; and see other papers
in this issue]. The extent to which training, together with
interventions that promote CNS repair or prevent delayed
degeneration of neurons, might enhance brain-dependent
behaviors should be carefully investigated preclinically.
Behavioral tests and histological methods aimed at evalu-
ating the connections between the brain and spina cord
should be included in this research, as well as measures of
voluntary initiation of overground or vertical/lateral fore-
limb stepping and other movements associated with cen-
tral control of spinal neurons[18,19,39,57,69]. In addition,
standard tests for spinal cord function and techniques that
target the hindlimbs [66-68] should continue to be used
and improved. The possibility that an intervention
improves performance mainly by facilitating the learning
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of compensatory motor tricks should not be dismissed
[18,39,57,69]. To transfer promising biological treatment
strategies to the level of the clinical trial more success-
fully, behavior-brain interactions must be taken into
account, and the influence of physical rehabilitation, or its
absence, should be explored more thoroughly [70].
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