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Abstract—This article compares some physiological methods
commonly used to measure the functional capability of the
motor system in humans and animals after spinal cord injury.
Some of the differences between animal and human experi-
mentation are considered first. Then we discuss how to meas-
ure the effectiveness of conduction through the motor system.
We describe ways to assess the integration of different inputs
at the spinal cord and to measure the responsiveness of the neu-
romuscular system. We conclude that comparisons across spe-
cies are invaluable to understand the control of movement,
both before and after injury.
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INTRODUCTION

The neural responses to spinal cord injury (SCI)
depend on the nature of the injury. A thorough under-
standing of the mechanisms that contribute to these
responses, either in the short- or long-term, has important
implications for neurological recovery, the optimal care
and management of the injured person, and the design
and implementation of therapeutic strategies that aim to
promote repair and functional recovery. Our knowledge,
furthermore, rests on the availability of clearly defined

and reproducible methods to assess the neurological
response to injury. In this article, our aim is to compare
some of the physiological methods commonly used to
measure function of the motor system in humans and ani-
mals after SCI. However, recovery of function, whether it
occurs spontaneously or as a result of an intervention, is
best understood when it is evaluated with a principled
approach that includes different assessments (e.g., physi-
ological, anatomical, behavioral) of both motor and sen-
sory function. In this regard, other recent reviews provide
important information on the motor neurobiology of the
spinal cord, ways to restore motor function after injury,
and behavioral assessments of functional recovery fol-
lowing SCI [1–5].

Abbreviations: EMG = electromyogram, MEP = motor-
evoked potential, SCI = spinal cord injury.
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DIFFERENCES BETWEEN SPECIES, THE 
NATURE OF INJURY, AND EXPERIMENTAL 
CONDITIONS ALL INFLUENCE COMPARISONS 
BETWEEN ANIMAL AND HUMAN DATA

When comparing methods to evaluate motor function
in humans and animals with SCI, one must consider
many factors. First, the function of descending tracts in
motor control may differ across species. For example, the
corticospinal tract is fundamental for the production of
fine voluntary movements in humans, but less so in rats, a
species commonly used to model SCI. Second, there is
always the question of whether an animal model ade-
quately mimics the human injury. Assuming that it does,
there is greater flexibility to test the mechanisms that
underlie the control of movement in animals than in
humans, in part because the physiological observations
made in animals are commonly interpreted in view of
subsequent, direct anatomical investigations of the nature
of the central lesion and its consequences (e.g., on muscle
properties). However, in some situations the reverse is
also true. The study of voluntary motor control is easier in
human studies, because one can simply ask the person to
perform a given movement, a task that is more proble-
matic when dealing with animals. In addition, compari-
sons between human and animal data must be interpreted
in relation to the experimental conditions under which
they were obtained. For example, individuals with SCI
usually take various medications, and many animal
experiments are conducted under anesthesia. The effects
of these substances on motor function are poorly under-
stood.

HOW CAN THE EFFECTIVENESS OF
CONDUCTION THROUGH MOTOR SYSTEMS 
BE MEASURED?

Voluntary Contractions
In a clinical setting, manual examination is a com-

mon way to assess whether a particular muscle remains
under some voluntary control after injury to the human
spinal cord. Muscles are typically scored on a six-point
ordinal scale (0: complete muscle paralysis; 1: trace mus-
cle contraction; 2: movement of the muscle through its
range without gravity; 3: movement of the muscle
through its range against gravity; 4: movement of the
muscle through its range against gravity and resistance;

5: normal muscle function) [6]. Clinicians often express
these scores as measures of muscle strength, but maxi-
mum voluntary force-generating capacity can differ
widely, both within and across muscles of different peo-
ple [7,8]. While comparisons between muscle scores and
isometric force are positively related after chronic SCI,
muscles with quite different force-generating capacities
can be assigned the same score [9–11]. Thus, the sensi-
tivity of this scoring method as an outcome measure in a
clinical trial needs to be questioned. Equally important,
considerable care must be exercised when performing
force evaluations. The limb must be restrained ade-
quately so that the force primarily arises from the test
muscle or muscle group. Simultaneous measures of elec-
tromyographic activity from various muscles are also
advisable, since these can provide insight into the source
of the generated forces; for example, by detecting the
presence of cross-talk or coactivation of synergists and
antagonists [12,13]. Comparisons between the maximal
voluntary forces produced by contractions of muscles
influenced by SCI with those produced by uninjured sub-
jects can provide an overall estimate of injury severity.
However, these force measures do not distinguish
whether any weakness results from disruption of
descending inputs to spinal motoneurons, as opposed to
muscle denervation from motoneuron death and/or ven-
tral root damage.

This issue is crucial, for example, when there is no
voluntary contraction (manual muscle score of 0). A zero
score does not reveal the caudal extent of the damage or
the cause of the muscle paralysis, yet the nature of the
injury will strongly influence what interventions are nec-
essary and their potential benefit. For example, after a
cervical injury, motor deficits in arm muscles are likely to
involve a combination of upper and lower motoneuron
damage, whereas deficits to lumbar spinal segments of
the same cord are likely to involve only destruction of the
descending inputs to lumbar motoneurons. Supramaximal
electrical stimulation of the appropriate peripheral nerve,
coupled with records of evoked electromyogram (EMG)
and muscle force, could be used to show disruption of
descending inputs to the spinal cord, whereas an absence
of any evoked EMG and force would show complete
muscle denervation [14]. Evoked EMG and force of
small magnitude, compared to data recorded from intact
subjects, may indicate some combination of upper and
lower motoneuron damage. Coupling these score and
force assessments with imaging of the spinal cord [15]
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would be particularly useful in resolving the extent and
nature of the damage.

When assessing voluntary muscle function, it is
equally important to encourage patients to make their best
efforts during every evaluation. This is particularly criti-
cal for interpreting motor recovery that occurs over time
or after intervention, if spurious conclusions are to be
avoided. The ability of SCI subjects to maximally activate
their muscles by voluntary effort can be assessed by com-
paring the maximum voluntary force to that elicited by
cortical stimulation [16]. If voluntary drive is maximal,
no additional force should be evoked in the test muscle or
muscle group in response to magnetic stimulation of the
appropriate motor cortical area. Any disparity between
voluntary and evoked forces, a common feature after cer-
vical SCI, must reflect a lack of voluntary drive and/or
possible deficits in sensorimotor integration [16,17]. It is
not possible to test central motor drive with peripheral
nerve stimulation (below-lesion stimulation), as is cus-
tomary in control subjects [18–20], since this stimulation
maximally excites not only motoneurons that remain
intact centrally, but also those that have been denervated
from higher brain centers. The force evoked by peripheral
nerve stimulation does provide an estimate of muscle
atrophy, however (assuming that any denervated muscle
has been reinnervated from intact axons), if the SCI data
are compared to the intrinsic strength of muscles of unin-
jured control subjects. Different rehabilitation strategies
will be required, depending on the reason for the atrophy.
Atrophy from alterations in use should be amenable to
physical therapy, whereas recovery from denervation-
induced atrophy will require muscle reinnervation.

The difficulties associated with assessment of volun-
tary contractions in humans are compounded further
when studying animal models of SCI. In animal studies,
it is crucial to know whether the initiated movement
requires input from centers above the lesion, not just the
reflex activation of spinal circuitry below the lesion [21].
The same issue must be considered with regard to sus-
taining the behavior, especially in tasks such as locomo-
tion, which can be maintained entirely by a spinal
locomotor generator. In contrast, movements such as tar-
get reaching require integration in descending motor
pathways, even though spinal neurons are required to
mediate the movement [22,23]. To distinguish between
nonspecific facilitation of reflexes and intrinsic spinal
networks (functional compensation or adaptation) versus
central nervous system regeneration, it is important to

demonstrate functional connectivity (spared or reestab-
lished) across the lesion before conclusions are drawn
about what structures underlie movement initiation or
patterning.

Evoked Contractions
Measurement of responses evoked by stimuli that are

delivered above a lesion offers an alternative strategy to
examine conduction through central motor pathways. In
both humans and animals, motor-evoked potentials
(MEPs) can be examined from surface or intramuscular
EMG recordings. In animals, recordings can also be
made from a peripheral nerve, the surface of the spinal
cord, and/or from individual neurons using intracellular
or extracellular methods.

A distinct advantage in animal studies is the opportu-
nity to assess function in a number of different pathways
following SCI. Pathways that have been studied include
the corticospinal [24,25], rubrospinal [26,27], vestibu-
lospinal [28], reticulospinal [29–31], and propriospinal
tracts [32]. In contrast, relatively fewer pathways can be
selectively activated in humans. The easiest pathway to
stimulate in humans is the corticospinal tract, through
magnetic stimulation of the motor cortex [33–35].

In general, the size of the MEP gives an estimate of
the degree of preservation of the pathway stimulated
[36,37,27] and an evaluation of spinal cord function after
injury [38–40,16]. However, the size of the MEP is influ-
enced by a number of factors, both practical and biologi-
cal. For example, animal studies have shown that
cortically evoked MEPs are often contaminated by
responses produced by the concurrent activation of
extrapyramidal pathways [27]. Thus the analysis of
evoked responses following injury must take into account
the possibility that other pathways are activated either
directly via the spread of stimulation or indirectly via
afferent projections to other target neurons [41]. Second,
these stimuli sometimes elicit responses that are not
apparent from clinical or behavioral assessments of
motor function [42,27], possibly because the behavior-
ally generated impulses are too weak or less synchro-
nized than the evoked responses. Alternatively, the
pathways that mediate the evoked responses may differ
from the pathways responsible for the behavior but colo-
calize to the site of the lesion [27]. Thus, an absence of
transcortically evoked MEPs and loss of locomotor func-
tion may simply be coincidental, because the lesion
encompasses all the responsible pathways [43]. Lastly, it
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is important to consider that the size of the MEP can vary
substantially between subjects, depending on a number of
experimental factors, such as the proximity of the stimu-
lating electrodes to the targeted nucleus, the stimulus
intensity, and the interpolar distance of the recording
electrode (number of depolarized neurons between the
recording electrode) [27].

The stimulus intensity needed to evoke an MEP pro-
vides some indication of the excitability of the descend-
ing tracts. The latency and the duration of the MEP give
an indication of the fastest and slowest conducting motor
axons, provided that one also verifies that conduction
along peripheral axons is unimpaired. The latency of the
response to stimulation, which typically slows after
injury [26,16], probably reflects slowing through the
injury site, since similar conduction delays are reported
irrespective of the level of the injury [38]. Changes in
latency could reflect a number of different pathophysio-
logical consequences of injury. For example, selective
destruction of large-diameter fibers following injury [44]
could result in an apparent slowing of the response to
stimulation. Changes in the path that the signals take
(e.g., disynaptic versus monosynaptic connections) may
also delay the response [45]. In addition, demyelination
or incomplete remyelination of central pathways will
result in the slowing or failure of conduction along sur-
viving axons, resulting in diminished and temporally dis-
persed responses [46]. The duration of an MEP may also
depend on the extent to which it was polysynaptically
mediated and/or may include a repetitive component
(afterdischarge). In animals, slowing of conduction
through central pathways can be studied readily in single
fibers. In humans, the relative importance of these factors
in conduction slowing can be examined by assessing
changes in the firing patterns of different single motor
units during voluntary contractions in response to stimu-
lation of the motor cortex [35]. The practical conse-
quences of any slowing of conduction through central
pathways could be a failure to initiate, coordinate, and/or
maintain a certain movement. This is particularly evident
for the initiation of locomotion in decerebrate animals
with stimulation of the midbrain locomotor region, where
the parameters of stimulation determine whether locomo-
tion will be generated, as well as the frequency and
amplitude of the response [47].

HOW CAN INTEGRATION OF DIFFERENT 
INPUT SYSTEMS AT THE SPINAL CORD LEVEL 
BE EXAMINED?

Integration of many descending, intraspinal, and
afferent inputs has to occur at the spinal level for smooth,
refined control of skeletal muscles [48]. With SCI, the
descending and ascending communication between the
brain and spinal cord is disrupted, denervating spinal
neurons to various extents. However, with time the spinal
cord adapts: vacated synapses may be replaced, existing
synapses may be strengthened or unmasked, and the
excitability of neurons (interneurons or motoneurons)
may change because of modifications in their intrinsic
membrane properties [49]. All these changes may alter
the balance between spinal excitation and inhibition, as is
evident after human SCI by a loss of voluntary control of
skeletal muscles, ongoing spontaneous motor unit activ-
ity at rest, the appearance of spasticity (including changes
in muscle tone and reflex strength, involuntary muscle
contractions, or spasms), and the ability to evoke novel
reflexes [50–56].

At the level of the spinal cord, the physiological
responses to voluntary inputs or stimulation depend on
descending modulatory influences and the excitability of
spinal neurons, both of which are state-dependent [57–
59]. For example, inputs from cortical centers can reset
the locomotor rhythm and influence posture [60,61].
Similarly, it is well known that behavior such as locomo-
tion results in the widespread modification of transmis-
sion in reflex pathways [62]. Excitation of Ib afferents
with peripheral stimulation results in inhibition of exten-
sor motoneurons at rest, but during locomotion the same
stimulation results in excitation [63,64,58]. The emer-
gence of these new excitatory reflex pathways during
locomotion likely involves suppression of the interneu-
ronal pathways that operate at rest, augmentation of
afferent influences on central pattern generator interneu-
rons, reductions in presynaptic transmission from
afferents, and changes in the membrane currents of moto-
neurons and their firing properties [62,65].

In terms of interneuron function, either at rest or dur-
ing behavior, assessments can be made in animals by
measuring states of excitation and inhibition in interneu-
rons, motoneurons, or muscles. In humans, interneuron
function is surmised from measures of motoneuron activ-
ity in muscles. If possible, it is important to distinguish
whether the change in interneuron activation is a result of
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presynaptic or postsynaptic mechanisms [66]. Reflex
activity may be evoked by stimulation of peripheral
afferents or descending pathways and modulated by con-
ditioning stimuli. For example, in humans and animals,
different interneurons could be engaged by head tilt,
incline plane walking, or startle to monitor possible
changes in vestibulospinal or reticulospinal pathways
[67–70]. The importance of afferents could be examined
by assessing reflex modulation during locomotion
[21,62,71]. These data may indicate the magnitude of
damage or preservation, as well as adaptive changes.
Thus, data interpretation requires careful comparisons of
the responses of the uninjured system to those of the
injured spinal cord [72].

Changes in neuron excitability may also underlie
poor coordination of movements after SCI. In animals it
is possible to record intracellularly to measure intrinsic
properties of motoneurons, such as the rheobase current
to evoke action potentials or the input resistance of the
cell. These parameters have been used to show either no
change or an increase in the voltage threshold of different
motoneurons after injury [73–75]. Other studies have
shown that the membrane properties of motoneurons are
altered after chronic cord section, with sustained depolar-
ization occurring in response to current injection, behav-
ior that can be altered immediately after cord section by
descending modulatory influences [76,77]. This sus-
tained firing is consistent with the exaggerated reflexes
and sustained motor unit activity seen in rats and humans
with spasticity following SCI [78–81]. Alternative mech-
anisms underlying this excessive muscle activity may
include reduced inhibition or altered fusimotor control.

In humans, changes in the excitability of motoneu-
rons are usually examined by monitoring F-waves (the
antidromic response to peripheral nerve stimulation
sometimes elicits a second, smaller orthodromic EMG
potential, termed an F-wave) [82]. A higher incidence of
F-waves and F-waves of greater magnitude relative to the
maximal motor response from a muscle are considered to
be a reflection of greater motoneuron excitability [83–85].
Although F-wave studies at the single motor unit or mus-
cle fiber level [86–89] are more difficult to perform, these
data can be used to estimate the conduction velocity of the
proximal segment of the peripheral axon, a particularly
useful feature when ventral root damage is suspected.

HOW CAN THE RESPONSIVENESS OF THE 
NEUROMUSCULAR SYSTEM BE MEASURED?

Following SCI, muscle weakness and fatigue are
common, factors that will influence motor performance.
While measurements of whole muscle performance can
provide valuable insight into why a particular outcome
measure does or does not change, as described earlier,
more detailed understanding will come from analysis at
the single motor unit level. The major drawback with
motor unit stimulation and/or recording techniques is that
they are much more challenging technically, and the data
analyses are time consuming. Furthermore, it is often
only possible to record data during weak contractions
because the simultaneous activation of many motor units
makes it difficult to distinguish the activity of a single
motor unit as force increases.

In terms of force production, it is important to deter-
mine the order in which motor units are recruited, the
range of whole muscle force over which recruitment
occurs, the rates at which the motor units fire, and the
variability in the motor unit firing pattern. Before SCI,
the contribution of these factors to force generation dif-
fers between muscles, across force levels, with different
inputs, and as muscles fatigue [90–94]. Following SCI,
other factors such as adaptation and muscle reinnervation
may become important [95,96,81].

With respect to motor unit properties, measurements
can be made during different conditions. In animal stud-
ies, measurement of motor unit contractile properties has
relied on selective stimulation of the motor unit, either via
the motoneuron or a ventral root filament, or from within
the axon. Apart from activation of the test unit, measure-
ment of parameters such as peak force, contraction, and
half relaxation times, as well as fatigability, are per-
formed in an otherwise relaxed muscle. Human motor
unit contractile properties can also be examined under
similar conditions by employing intraneural stimulation
of motor axons [97], intramuscular microstimulation
[98], or percutaneous nerve stimulation [99,100]. Thus,
direct comparisons between human and animal data can
be made. For measurement of motor unit twitch proper-
ties during voluntary contractions, it is possible to use the
method of spike-triggered averaging [101,102] to exam-
ine issues such as muscle disuse and reinnervation after
SCI [95]. However, the twitch force data obtained depend
on the motor unit being activated at a low rate (<12 Hz) to
avoid twitch fusion. Thus, the method of spike-triggered
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averaging may prove problematic in cases where volun-
tary motor control is deficient (e.g., high motor unit firing
rates would result in complete twitch fusion). In contrast,
spike-triggered averaging may be useful for those mus-
cles innervated by a peripheral nerve that is not readily
accessible for stimulation.

CONCLUSIONS

The different physiological responses that are typi-
cally seen at rest or during movement emphasize the
importance of examining function in different contexts
after SCI. These physiological assessments are essential
to determine whether regenerated axons are functional
and whether behavioral improvements arise from central
axon regeneration, plasticity, or both of these possibili-
ties. Furthermore, considerable insight into movement
and the consequences of SCI can be obtained by compar-
ing data across species using different techniques.
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