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Abstract—Recent findings on motor lateralization have
revealed consistent differences in the control strategies of the
dominant and nondominant hemisphere/limb systems that
could have implications for hemiplegic stroke patients. Studies
in stroke patients have demonstrated deficiencies in the
ipsilesional arm that reflect these distinctions; patients with
right-hemisphere damage tend to show deficits in positional
accuracy, and patients with left-hemisphere damage show
deficits in trajectory control. Such deficits have been shown to
impede functional performance; yet patients with severe
dominant-side hemiplegia must often use the nondominant arm
as the primary manipulator for activities of daily living.
Nevertheless, the nondominant arm may not spontaneously
become efficient as a dominant manipulator, as indicated by
the persistence of deficits in chronic stroke patients. More
research is necessary to determine whether motor therapy can
facilitate a more effective transition of this arm from a
nondominant to a dominant controller.
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INTRODUCTION

Recent studies examining the neural foundations of
motor lateralization are converging to provide a more
thorough understanding of the neural and behavioral
asymmetries that give rise to handedness. The dynamic
dominance hypothesis describes specialization for con-
trol of limb trajectory and steady-state position, two dis-
tinct but complementary functions [1]. This division of
labor is consistent with typical patterns of arm use during

bimanual tasks, such as cutting bread or hammering nails,
when the nondominant arm tends to stabilize an object
against loads imposed by the dominant arm. In fact, Hea-
ley et al. described similar distinctions in dominant and
nondominant arm use for a wide range of tasks across a
large number of subjects [2]. The dynamic dominance
model has recently been supported in studies of right-
handed stroke patients that reveal deficits in the ipsile-
sional arm, the quality of which tend to vary with the side
of the lesion [3–17]. The ipsilesional arm of these patients
tends to show deficits in trajectory control following left-
hemisphere damage and positional control following right-
hemisphere damage.

While earlier research emphasized the role of the con-
tralateral hemisphere in controlling limb movements,
more recent physiological and lesion studies have demon-
strated a significant role of the ipsilateral hemisphere. In
fact, both animal studies [18–20] and human studies [3–
17] have revealed that unilateral brain damage can pro-
duce significant ipsilesional motor deficits. Studies in
chronic stroke patients have reported performance defi-
ciencies on the Purdue Pegboard Test [21], the Jebsen-
Taylor Hand Function Test [22], as well as other tests that
simulate activities of daily living (ADL) [4,10,13–14]. In
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addition, significant ipsilesional deficits in movement
coordination and accuracy have been revealed with the
use of motion capture systems [3,10–12,15,17]. Some
studies that measured functional deficits have shown
symmetric patterns that do not vary with lesion side
[4,14,17]. However, Wetter et al. have recently shown that
while deficiencies in functional performance tests can be
similar for patients with right- and left-hemisphere dam-
age, this pattern can result from differences in the under-
lying dysfunction [14]. For example, performance on a
task, such as the simulated feeding task on the Jebsen-
Taylor Hand Function Test, might be impaired by deficits
in velocity control for left-hemisphere lesions and in
accuracy control for right-hemisphere lesions. So, while
the neural mechanisms underlying a particular dysfunc-
tion might be asymmetric, the scores on functional perfor-
mance evaluations might be similar for right- and left-
hemisphere lesions. Nevertheless, the occurrence of
ipsilesional motor deficits following unilateral brain dam-
age supports a role of both hemispheres in control of
unilateral arm movements and has implications for
functional performance.

Because ipsilesional deficits are usually mild com-
pared with the contralesional hemiplegia that is often
associated with stroke, these deficits traditionally have
not been addressed in clinical rehabilitation. In fact,
recent advances in therapeutic interventions for the con-
tralesional arm have been very promising. Both robot-
aided rehabilitation [23–26] and constraint-induced
movement therapy [27–30] have shown great promise for
advancing function of the contralesional limbs. Con-
straint-induced therapy (CIT) is based on the idea that
patients learn to “not use” the affected limb during the
first few months following a stroke. This pattern of non-
use becomes habitual and contributes to a debilitating
cycle of reduced use and function. CIT encourages the
use of the affected limb for certain periods of time and
for certain prescribed tasks and thus acts to reverse this
cycle. CIT has been shown to improve both the quality of
motor coordination as well as the functional use of the
affected limb [27–30]. However, studies of CIT have
tended to focus on patients who have significant active
movement of the wrist and fingers. While a large number
of rehabilitation patients may not qualify for CIT based
on this requirement [31], recent research has suggested
that more severely involved patients might show some
benefits from CIT [27]. Robot-aided rehabilitation is
another promising approach to remediation of the con-

tralesional limbs. This technique uses robotic manipu-
landa to assist patients with voluntary active movement
exercise and has been shown to produce substantial gains
in active range of motion and strength. However, whether
these improvements benefit functional living skills
remains controversial [23,26]. The effectiveness of these
developing techniques emphasizes the importance of
aggressive rehabilitation directed toward remediation of
motor function in the contralesional limb.

Regardless of gains in motor performance with the
affected limb, many patients who suffer unilateral stroke
will show persistent contralesional deficits that limit the
function of this arm [31–34]. As a result, patients with
moderate-to-severe hemiplegia must often use the ipsile-
sional arm to perform tasks unilaterally that were previ-
ously performed bilaterally [35]. Such tasks might
include cutting food, using scissors, donning and doffing
clothing, and performing personal hygiene tasks, among
many others. Even though adapted equipment can help
with these tasks, completing such activities with dimin-
ished contralateral coordination is likely to be challeng-
ing. For patients with substantial dominant-arm
hemiplegia, performance of ADL relies largely on the
arm that has been functioning as a nondominant control-
ler throughout the individual’s life. However, the persis-
tence of ipsilesional deficits suggests that this arm does
not spontaneously develop the efficiency of a dominant
system simply through practice of ADL alone.

Deficits in the ipsilesional arm of stroke patients
appear to be quite persistent, identified up to 15 years
poststroke [3,10–12,15,17]. We now suggest that func-
tional performance of a nondominant ipsilesional arm
might be enhanced through therapy directed at retraining
arm dominance. Current findings in motor lateralization
research have provided substantial new insights into the
basic functions that might need to be improved for more
effective use of the nondominant limb as a dominant con-
troller. However, this idea must be addressed with cau-
tion because we do not yet know whether a nondominant
arm can be effectively retrained as a dominant controller.
This article primarily describes current findings in motor
lateralization that provide a basis for assessing the useful-
ness of dominance retraining strategies in patients with
dominant-arm hemiplegia.
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BIOLOGICAL FOUNDATIONS OF MOTOR
LATERALIZATION

Certain landmark studies have established that while
trunk and limb girdle muscles are controlled through
bilateral projections, control of arm musculature for
reach and prehension arises primarily from descending
projections originating in the contralateral cortex and
brain stem [36–44]. However, subsequent electrophysio-
logical and neural imaging studies have shown substan-
tial activation of the ipsilateral motor cortex during
unilateral hand and arm movements, indicating a role of
both hemispheres in controlling each limb [45–62]. Many
of these reports also indicate that the contributions of the
left and right hemispheres are not symmetric. Rather, the
hemisphere contralateral to the dominant arm tends to
reflect higher levels of activity than its nondominant
counterpart when unilateral movements of left and right
arms are compared [47,53,61]. Morphological asymme-
tries have also been identified in the motor cortex [63],
basal ganglia [64], and cerebellum [65]. In summary,
while the contralateral hemisphere is most active during
unilateral arm movements, the ipsilateral hemisphere is
also substantially active. The functional activation of this
hemisphere, however, is greater during nondominant than
dominant arm movements, a finding that corresponds to
anatomical asymmetries [45–62].

In light of substantial morphological and functional
asymmetries, many studies have supported the premise
that handedness is facilitated by genetic factors [66–69].
Annett’s right-shift theory suggests a specific genetic
determinant for only right-handedness [66]. Subjects
without this genotype are not biased toward right-hand-
edness, and thus most non-right-handers will not show
strong hand preference in either direction. In support of
this idea, Klar recently showed that right-handedness but
not left-handedness correlates with hair whorl orienta-
tion, a trait unaffected by the environment [67]. In addi-
tion, patterns of hair whorl orientation and handedness in
the offspring of monozygotic twins can be well predicted
with a single gene model [67]. Whereas the nature-nurture
debate regarding handedness remains controversial, sub-
stantial evidence now suggests that genetic factors contrib-
ute to the expression of handedness.

LATERALIZATION OF MOTOR CONTROL
PROCESSES

Although asymmetries in neural structure and func-
tion verify the biological foundations of handedness, the
neural processes mediated by these asymmetries remain
incompletely understood. The largest body of research in
this area has quantified reaction time, movement time,
and final position accuracy during rapid reaching move-
ments to differentiate “closed-loop” from “open-loop”
mechanisms of control. Closed-loop mechanisms are, by
definition, mediated by sensory feedback during the
course of movement, whereas open-loop mechanisms are
unaffected by feedback. This distinction was inspired by
Woodworth [70] and experimentally operationalized by
Fitts and Radford [71–73]. Attempts to differentiate the
role of sensory feedback on dominant and nondominant
arm movements have been largely equivocal. Flowers
[74] and others [75–80] have suggested that manual
asymmetries emerge from differences in the use of visual
feedback that arise when the precision requirements of
aiming tasks become high as reflected by the task’s index
of difficulty [81]. However, studies that failed to find
interlimb differences in accuracy by manipulating visual
feedback conditions brought this hypothesis into question
[75,82–84]. Demonstrating that dominant-arm advan-
tages do not depend on visual feedback conditions, Car-
son et al. suggested that such advantages result from
more effective somatosensory-based error corrections
[85]. However, we recently showed that it is the nondom-
inant arm that shows substantial advantages in compen-
sating for unexpected loads using somatosensory
information [86–87]. In that study, subjects made rapid
elbow extension movements toward a single target. On
some trials, a 1 kg mass was attached to an arm splint.
Both arms showed compensatory muscle activity in
response to the load in the first 100 ms of movement,
reflecting the latencies of short-loop somatosensory feed-
back circuits. Interestingly, nondominant responses were
more effective at reducing error than dominant responses,
indicating a nondominant-arm advantage for somatsen-
sory-based error corrections [86–87].

In contrast to feedback mechanisms, some studies
have proposed a dominant-arm or -hemisphere advantage
for movement planning, initiation, or sequencing [88–
91]. However, studies demonstrating nondominant-arm
advantages for reaction time [92–93] have proposed a
nondominant specialization for movement preparation.
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Taken together, this body of research has been largely
unsuccessful in resolving the processes that underlie
motor lateralization. This leaves open the question of
how else one might understand the neural basis of
handedness [83,94].

DYNAMIC DOMINANCE

We have recently provided substantial evidence that
each hemisphere or limb system is specialized for distinct
but complementary functions: the dominant system for
controlling limb trajectory and the nondominant system
for controlling stable limb posture [1,94]. We termed this
hypothesis “dynamic dominance” because of evidence
that dominant-arm trajectory control entails more effi-
cient and accurate coordination of muscle actions with
the complex biomechanical interactions that arise
between the moving segments of the limb. Prominent
among these are interaction torques, produced when the
end of one segment pushes on the end of the other seg-
ment through the joint connecting the two. For example,
one can hold the right upper arm with the left hand and
move the arm back and forth. If one relaxes the muscles
about the right elbow, the forearm will “flop” back and
forth. The torque that produces this motion is referred to
as an interaction torque. For any given segment, motion
of attached segments will impose interaction torques that
vary with the velocities and accelerations of those seg-
ments and that also vary with the instantaneous configu-
ration of the limb. During limb movements, these
interactions produce large torques that often exceed the
amplitude of muscle actions on the segments [95–98].
The nervous system must account for these interactions
to coordinate the segments of the arm during movements
such as reaching.

Dominant Specialization for Control of Intersegmental 
Dynamics

To test whether the dominant and nondominant limbs
coordinate the motion of multiple segments differently, we
designed a reaching task that would elicit progressively
greater interaction torques at the elbow joint [99–100].
The general experimental setup for these experiments is
shown in Figure 1(a). The subject’s arm was supported on
a frictionless air-sled support while he or she viewed a
virtual-reality environment projected above the arm. After
aligning the hand within a start circle, the subject made

rapid reaching movements to projected target positions.
All three targets required the same elbow excursion (20°),
but different shoulder excursions (target 1, 5°; target 2,
10°; and target 3, 15°). As shown in the sample trajectories
of Figure 1(b), final position accuracies were similar for
both arms, yet slightly more accurate for the nondominant
arm. However, the hand trajectories and respective joint
coordination patterns were systematically different. Domi-
nant-hand paths showed slight curvatures for all target
directions, while those of the nondominant arm showed
oppositely directed curvatures that increased in magnitude

Figure 1.
(a) Experimental setup. Side view (left), top view (right). Subjects sit
facing a table, with arm supported on an air-sled. Targets and cursor
representing finger position is projected onto a back-projection screen
placed above eye level. A mirror, placed under this, reflects projection
and provides a virtual task plane that appears to be at level of hand.
Flock of birds, 6 degree of freedom sensors are attached to each limb
segment. (b) Hand paths for nondominant (left arm: gray) and domi-
nant (right arm: black) movements. Paths are presented in a right-hand
coordinate system, such that dominant arm movements are presented
in actual coordinates, whereas for nondominant arm, x-axis has been
reversed. (c) Elbow joint torques for dominant and nondominant arm
movements, depicted as dashed lines in Figure 1(b) (right side).



315

SAINBURG and DUFF. Motor lateralization in stroke rehabilitation
across directions (note that the hand paths of Figure 1(b)
are presented in a right-hand coordinate system for both
arms). Analysis of limb-segment torques revealed sub-
stantial differences in coordination such that dominant-
arm trajectories reflected more efficient strategy. This
coordination is illustrated in Figure 1(c), which shows the
dominant- and nondominant- arm elbow torques that cor-
respond to the dashed trials for target 1 in Figure 1(b).
Because the dominant arm employed greater shoulder
motion (not shown), the elbow interaction torque was
larger, such that smaller muscle torque (dashed line) was
required to produce movements of the same speed and
accuracy as those of the nondominant arm. Thus, the
dominant-arm system consistently took advantage of
intersegmental interactions to make movements that were
more torque-efficient [1,94,97,100–101]. In fact, when the
mean-squared muscle-torque at both joints for nondomi-
nant- and dominant-arm movements that were matched for
speed and displacement, dominant-arm movements con-
sistently required less than half the torque than that of non-
dominant movements. This emphasizes the fact that the
coordination differences between the limbs are not simply
a result of strength differences. In our tasks, nondominant-
arm movements demonstrate greater torque production,
but less efficient movements. These findings have been
corroborated by electromyographic (EMG) recordings,
which revealed corresponding differences in normalized
EMG activities between the limbs [99].

Because the dynamic dominance hypothesis pro-
poses dominant system specialization for control of limb
dynamics, it also predicts that features of control that do
not stress intersegmental dynamics should not elicit
asymmetries in performance. In a direct test of this pre-
diction, we compared adaptation to an eccentrically posi-
tioned inertial load, which produced novel interaction
torques, with adaptation to a rotated visual display
(visual-motor rotation) that did not alter task dynamics
[1]. As predicted by our hypothesis, the dominant arm
showed more complete adaptation to the inertial load,
whereas both limbs showed similar visual-motor adapta-
tion. This confirmed that the advantages of the dominant
system are specific to controlling limb dynamics.

Interlimb Differences in Control of Movement Extent
Reaching movements require both a trajectory phase,

for accelerating the limb toward the target, and a postural
phase, in which the limb decelerates and stops on or near
the target. Because neural imaging studies have indicated

that both the ipsilateral and contralateral cortices are acti-
vated during unimanual tasks, we expect that both sys-
tems may be used differentially in each phase of the task.

Because of the predominant activation of its con-
tralateral cortex, one might expect that each arm would
show a behavioral bias in the function for which its con-
tralateral cortex appears specialized. We recently tested
this hypothesis using a single-joint reaching task, which
required rapid movements toward a range of targets.
Figure 2 shows the (a) hand paths, (b) velocities, and
(c) accelerations of the hand for a long and short target.
Whereas both arms showed similar velocities and accura-
cies, our results indicated that the two limbs controlled
movements through qualitatively different mechanisms
[102]. For both arms, peak movement velocity scaled
with movement distance, a phenomenon well described
by previous literature [103–108]. Thus, the longer move-
ment in Figure 2(a) had a peak velocity of about 1 m/s,
whereas the shorter movement’s peak velocity was about
0.4 m/s. However, the mechanisms employed by each
limb to achieve this scaling were quite different. As can
be seen by the acceleration plots of Figure 2(c) for the

Figure 2.
Single-joint distance control task: (a) hand paths, (b) tangential veloc-
ity, and (c) tangential acceleration profiles. Data shown are ensemble
averages of all trials for single subject and represent all subjects’ per-
formance. As described in text, experiment included four targets, but
shortest and longest are shown here for demonstration.
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dominant arm, the initial amplitude of joint acceleration
scaled with peak velocity, a predictive mechanism
referred to as “pulse-height control” [103–116]. In con-
trast, the nondominant arm initiated each movement with
a stereotypical acceleration amplitude, regardless of
intended movement distance. Instead of varying accelera-
tion with intended movement velocity, the nondominant
system varied the duration of acceleration to accomplish
the scaling of velocity with distance. This “pulse-width”
mechanism has been associated with somatosensory-
based modification mechanisms. In this case, such feed-
back apparently adjusted the duration of joint torque in
accord with the intended final position [103,109–
114,116].

Thus, the dominant system appears to plan different
velocities prior to movement onset, and the nondominant
system uses online sensory feedback to adjust movement
speed once the movement is already under way. This lat-
ter strategy may reflect a system that is more responsive
to imposed forces such as those that might occur when
stabilizing objects against loads imposed by dominant-
arm actions.

Nondominant Specialization for Control of Limb 
Position

Because few functional advantages in nondominant-
limb performance have previously been identified, the non-
dominant system has traditionally been viewed as a naïve,
unpracticed analog of the dominant-hemisphere or -limb
system. In contrast to this view, recent findings from our
laboratory have revealed substantial nondominant-limb
advantages in positional accuracy [1,99–100], as well
as in somatosensory-based load compensation responses
[86–87]. Our findings suggest that the nondominant system
is specialized for achieving and maintaining a stable limb
position. This ability to stabilize is important not only for
stopping at the end of a reaching movement but also for
holding an object that is acted on by the dominant arm. For
example, when slicing a loaf of bread, the dominant arm
tends to control the knife that produces shearing forces on
the bread. The nondominant arm impedes these forces to
hold the bread still. Maintaining a stable posture in the face
of varying forces requires active motor output that is spe-
cifically adapted to the imposed loads. Our dynamic domi-
nance hypothesis suggests that the impedance control
functions of the nondominant limb represent specialized
processes. This idea is consistent with anthropological data
that indicates that the specialized use of the “nondominant”

arm for stabilizing objects evolved to support tool-making
functions in early homonids [101,117].

After patients sustain a stroke that results in moderate-
to-severe hemiparesis of the dominant arm, the ipsilesional
nondominant arm most likely will need to assume the
function of a dominant controller in carrying out many
ADL tasks. That is, this limb will serve as the lead manipu-
lator in bilateral tasks and, in many cases, as the sole
manipulator during unimanual tasks [31–35]. However,
evidence for ipsilesional coordination deficits in unilateral
stroke suggests that a patient’s transition from nondomi-
nant to dominant controller does not occur spontaneously
and might benefit from therapeutic intervention.

EFFECT OF MOTOR LATERALIZATION IN UNI-
LATERAL STROKE: IPSILESIONAL DEFICITS

This research has direct and important implications
for understanding the motor deficits resulting from uni-
lateral stroke. Specifically, damage to the left or right
hemisphere results in distinct deficits that depend on the
side of the lesion. Most interesting is the prediction that
damage to either the dominant or nondominant hemi-
sphere should produce deficits in control of the ipsile-
sional limb. Studies in animals [18–20] as well as in
patients with unilateral brain damage [3–17] have pro-
vided strong support to this idea. Haaland et al. have used
perceptual motor tasks, which require rapid reciprocal
tapping between two targets that vary in size and/or target
distance, to examine movement deficits in the ipsile-
sional arm of stroke patients [5–9,118–119]. These
experiments have employed horizontal movement in the
ipsilesional hemispace with the ipsilesional arm (e.g., right
hemispace and arm for patients with right-hemisphere
damage) to rule out the confounding effects of motor
weakness, visual field cuts, and visual neglect. Lesions in
the dominant hemisphere (hemisphere contralateral to the
dominant arm) produced deficits in the initial ballistic
component of reaching but not in the secondary slower
component [5–9,118–119]. Patients with nondominant-
hemisphere lesions showed no deficits in this task. How-
ever, in other studies with greater precision requirements,
patients with nondominant lesions showed deficits in
final position accuracy [5–9,15,118–119]. These results
support the idea that the dominant hemisphere is special-
ized for controlling the initial trajectory phase of motion,
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whereas the nondominant hemisphere is more important
in decelerating toward a stable posture.

Consistent with the those findings, Winstein and Pohl
showed that nondominant lesions produced slowing of
the deceleration phase of rapid aiming movements and
dominant lesions produced slowing of the initial acceler-
ation phase of motion [15]. In a more recent study, Haa-
land et al. directly tested the idea that dominant
hemisphere lesions produce trajectory deficits and non-
dominant lesions produce deficits in the final position of
targeted reaching movements [10]. In that study, right-
handed patients with left-hemisphere lesions showed dis-
tinct deficits in movement speed, whereas patients with
right-hemisphere lesions showed substantial final posi-
tion errors when compared with age-matched control
subjects. These authors concluded that their findings are
most consistent with our dynamic dominance model of
motor lateralization. Such ipsilesional deficits have been
associated with substantially impaired performance on
functional assessments, including simulated ADL [4,13–
14], and also have been shown to produce deficits in
interjoint coordination [17].

CONCLUSIONS: IMPLICATIONS OF MOTOR 
LATERALIZATION FOR STROKE
REHABILITATION

When stroke patients have moderate-to-severe hemi-
plegia, the contralesional arm will not likely be used
spontaneously as the lead arm in bimanual activities,
such as unscrewing a jar lid, fastening buttons, or slicing
food, or as the dominant controller in unilateral activities,
such as transporting a cup of coffee to the mouth. In fact,
longitudinal studies have estimated that a minority of
hemiplegic stroke patients will demonstrate full func-
tional recovery in the contralesional limbs [31–35]. Boni-
fer et al. reported that even after engaging in a CIT trial
that improved active movement, the contralesional arm
of moderately impaired patients continued to be used to
assist with bimanual activities, rather than as the lead
controller in unimanual and bimanual tasks [27–28].
Vega-Gonzalez and Granat continuously monitored
spontaneous use of both arms in chronic stroke patients
and reported that hemiplegic patients used the ipsile-
sional limb three to six times more frequently than its
hemiparetic counterpart [33]. In some of these patients,
reliance on the ipsilesional limb might plausibly be due

to learned nonuse. However, in many cases such reliance
is due to persistent contralesional motor deficits [31].
Thus, for many hemiplegic patients, functional recovery
relies heavily on ipsilesional limb function. This reliance
is why occupational therapy has so often employed
“compensatory” training in the ipsilesional limb to regain
independence in ADL [35].

We now propose that the requirement to switch the
function of the previously nondominant limb to a domi-
nant controller might be impeded by ipsilesional motor
deficits and might be enhanced through remedial therapy.
We stress that the degree to which hand dominance can
be “retrained” in such patients is currently unknown.
Therefore, experimentally examining whether such train-
ing could improve ipslesional function appears necessary.
With training, subjects could likely gain greater “domi-
nant” functionality from the ipsilesional limb, regardless
of whether it was the preferred limb prior to the stroke.
While it is common for therapists to train ADL through
repetition until the patient becomes somewhat indepen-
dent in these tasks, the persistence of ipsilesional deficits
supports the idea that such compensatory training does
not lead to generalized improvements in motor proficiency.

We now suggest that using techniques such as engag-
ing in supervised activities that require dominant control
functions (making rapid targeted movements, tracing
paths that elicit large intersegmental forces) and adapting
to novel dynamic conditions might facilitate more effi-
cient coordination in the “nondominant” ipsilesional arm
of chronic hemiplegic patients. Such training could take
advantage of recent technological advances, such as
robot-assisted therapy [23–26]. Currently, this technique
employs robotic manipulanda to provide active assis-
tance to reaching movements of the contralesional limb.
Robot-assisted interventions could plausibly be expanded
to challenge the trajectory control functions of the ipsile-
sional nondominant limb. Patients could be required to
make rapid targeted movements against varied loads to
train control of intersegmental coordination. Predictable
but varied loads could be imposed to train the ability to
specify a range of joint torques during movements. In a
similar way, robotic devices could be employed to chal-
lenge and train the stability functions of the contrale-
sional limb while it is positioned in a variety of
workspace locations.

We must stress that these therapeutic interventions
are purely hypothetical. More research is necessary to
determine the degree to which ipsilesional deficits limit
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functional performance in patients with dominant-arm
hemiplegia and whether therapy can enhance coordina-
tion in this arm. While a number of studies to date have
indicated a correlation between functional performance
and ipsilesional deficits [4,13–14], whether these effects
are most severe for patients with dominant arm hemiple-
gia is not yet known. Most importantly, whether domi-
nance can be effectively retrained in such patients
remains untested. Based on the research presented in
this article, we hypothesize that patients with persistent
dominant-arm hemiplegia could benefit from dominance
retraining strategies directed at developing more efficient
coordination in the ipsilesional arm.
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