
Appendix. Longitudinal Analysis and Self-Registration (LASR) Algorithm  

STEP 1: PERFORM SEGMENTATION ON IMAGES TO SEPARATE PIXELS IN 

BACKGROUND FROM SITTING CONTACT AREA 

Although there are many segmentation algorithms for radiologic images, methods vary widely 

depending on the specific applications, imaging modality, and other factors. From the statistical 

point of views, all segmentation methods can be considered as classification techniques especially 

established for image analyses. Thresholding is a simple yet often effective means for obtaining 

segmentation in images where different structures have contrasting intensities or other 

quantifiable features [1-3]. In the current application, the pixel values of the pressure maps 

represent the applied pressure. It is reasonable to assume that an optimal threshold pressure will 

separate background noise from true contact area. 

Segmentation minimizes both possible effects of the noise from background on the midline 

estimation (described below) and the boundary effect from smoothing described in Step 4 

(Appendix Figure 1). Since intensity values at background pixels are much lower than those at 

sitting regions, the threshold segmentation method described below is optimal from the statistical 

point of view [4] and confirmed by Appendix Table 1 below. Specifically, each data frame is 

partitioned into two distinct parts by classifying those less than a threshold T to the background 

and those greater than T to the sitting contact area. The value of T is estimated by first modeling 

the distribution of all pixels as a finite mixture of normal distributions of the form:  
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where if  are normal densities, αi‘s are nonnegative mixing parameters that sum to ∑αi=1, and k  

will be determined by a model selection procedure such as Akaike information criterion (AIC) or 

Bayesian information criterion (BIC) [5], and then computing the optimal threshold value T by a 

data-driven EM algorithm [6]that minimizes the expected misclassification rate (EMR) defined in 

[4]. The EMR is given by 
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This EMR is the summation of the probability that a pixel value from the background (modeled 

by 1f ) is misclassified to the sitting contact area plus the probability that a pixel value from a 

sitting contact area (modeled by 2 2 ( ) ... ( )k kf x f xα α+ + , proportionally) is misclassified into the 

background area, thus T is the value that minimizes EMR(T).All unknown parameters in the 

component densities if   and mixing parameters 1α ,…, kα are estimated automatically by the 

EM algorithm. Note that in most cases a mixture of two or three normal distributions fits the 

density of pixels in a sitting region well (i.e. 3k =  or 4) .However, our estimate of T is relatively 

robust no matter whether we fit a 3- or 4- component normal mixture to the data. Appendix 

Table 2 shows the true background and signal distributions as well as true k  and T  in the first 

three columns. The remaining columns in Appendix Table 2 contain the average values and the 

standard deviations of the threshold value T  estimated by our EM algorithm when k  is specified 

either as 2, 3, or 4 based on the AIC for the same data sets from 100 simulation experiments, each 

with a sample size of 500. It is clear from this table that even when the estimate k̂  is different 

from the true k , the estimated thresholds for correctly identified k  (the boldfaced value), and 

incorrectly identified k  are all very close to the true threshold. Hence our segmentation 

procedure is effective and robust against the variation in the estimate of k . 

Appendix Table 1 further confirms the robustness of the threshold segmentation procedure for 

our problem by computing the exact threshold for signal distributions of various components. The 

first 5 rows show that the threshold changes minimally as long as the background distribution is 

the same and far away from the signal distribution. The number of components in the signal 

distribution has minimal effect on the threshold value. The last 5 rows show examples chosen to 

mimic the current study data. Other authors have started with one normal density for the signal 

region and then suggested "bias corrections" if there were more components in the signal region 



[7]. Our method directly computes k by AIC or BIC and then computes the optimal T once for all, 

thus facilitating rapid data processing. 

STEP 2: SPATIAL AND TEMPORAL REGISTRATION 

Step 2.1 (Spatial Registration) 

All images are spatially registered using our newly developed self-registration scheme [4, 8] as 

follows:  

(a) Zero all pixel values in the background region. 

(b) Estimate the “random landmarks”: an end point and a midline (the human midline between 

two legs) by a regression analysis applied to “apparent middle points” equivalent to the mid-point 

of each column of an image. 

(c) Transform the raw image into one that is centered at the midline and has the end point at the 

same place of the image. This step is done automatically for all images in a dataset (movie) so 

that all registered images are automatically standardized for future direct comparisons. 

Step 2.2 (Temporal Registration) 

If the two movies for comparison are both dynamic, the algorithm then also temporally registers 

the spatially registered movies. The temporal registration is based on a fast algorithm that aligns 

images at the same time point (i.e. a particular frame in one movie with another frame in another 

movie) by maximizing the correlation of intensities, i.e. pressure values, between images from 

two candidate movies so that the intensities are compared under the same conditions, i.e., they are 

compared pixel by pixel when both pixels are from the same location and are subject to the same 

dynamic stimulation. Specifically, we first throw away a few unstable images from both movies, 

let  n be the remaining number of frames from each movie, and then align the first frame in movie 

one with jth frame of movie two, where j is the value that maximizes 1( ) ( , )i i ji
n j cor A B−

+− ∑ , 

and ,i iA B indicate the intensity values of the  i th image frame from two movies. Thus the left 



side stimulated image in one movie is compared with the left-side stimulated image in another 

movie. See movies at stat.case.edu/lasr/. 

STEP 3: CREATE DIFFERENCE MAPS/MOVIES 

Difference images and movies are created by taking differences pixel-by-pixel (and frame-by-

frame) between two movies that are potentially clinically interesting. In the current study all 

difference images and movies were created between the first dataset collected at baseline 

assessment and the last dataset of the final assessment in the available time series. 

STEP 4: COMPUTE FILTERED MAPS/MOVIES  

A nonparametric filtering procedure is important because we do not have a-priori knowledge of 

the shape of the differences between pairs of movies to postulate a parametric model. A local-

polynomial smoothing technique is used that keeps the local distribution structure while filtering 

out noise. We first padded an image at a small neighborhood of a sitting region (segmented out by 

Step 1) with the pixel value at the edge of the sitting region and then used smoothing to filter the 

image on this extended region (the sitting region plus the neighborhood) and finally “cut back" 

the image to the sitting region to avoid the boundary effect which can occur with any 

nonparametric smoothing procedure. This padding idea is similar in spirit to that used in 

Charnigo et al [9] for their semi-local denoising paradigm [9]. 

Step 5: CREATE T IMAGE/MAPS AND MOVIES  

T images are obtained by computing a test statistic at each pixel in the spirit of a two-sample 

paired t-test but differs from the t-test in the following way; our test statistic at each pixel x is Tx 

= Dx/Sx, where Dx is the pixel value of a filtered difference image, i.e. a weighted average of the 

difference values in a neighborhood of x from a difference image obtained in Step 4 (versus a 

simple average of an independent and identically distributed sample drawn at the same location x, 

in a two-sample t-test scenario), and Sx is an appropriately estimated standard deviation of Dx. We 

then computed the individual significance, or P value, of each pixel difference. 

 



Step 6: COMPUTE AND CREATE FALSE DISCOVERY RATE-CONTROLLED P 

MAPS/MOVIES  

Each of the individual P values from Step 5 allows us to decide if two images are significantly 

different at that pixel. However, there are many pixels in an image that are examined 

simultaneously, called multiple comparisons in statistics. We must therefore use an effective 

procedure to control a global error rate for this multiple testing problem, as mentioned above. The 

false discovery rate (FDR) is the expected value of “the percentage of false discoveries among all 

claimed discoveries” [10]. Here the discoveries are all the pixels at which there are significant 

differences/changes. The threshold for controlling such a FDR at 0.05 is often smaller than a 

simple 0.05 cut-off value used for a single test (here a single pixel) unless the number of pixels is 

one. A basic 0.05 FDR-controlled threshold is that defined by Benjamini and Hochberg [10]. 

Appendix Figure 2 illustrates how a level-α  FDR-controlled threshold is computed: (1) sort all 

individual p-values computed at each pixel based on an approximate t-distribution, in an 

ascending order, so they are now (1) (2) ( )... mp p p≤ ≤ ≤ , where m is the number of pixels; (2) 

plot them against 1:m; (3) find the largest index value i  in 1:m at which these sorted p-values 

does not cross the straight line ( )iy m= α , call this index value k; and (4) the level-α  FDR-

controlled threshold is then ( )kp , which can be written mathematically as 

                                               ( ) ( ) ( )max{ :1 , }k i i
ip p i m p
m
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Zhang’s work [11] contains an improvement to the above threshold definition. Then all the pixels 

with individual p-values less than this ( )kp  (often much smaller than α ) are deemed active or 

significant. In building our FDR-controlled P maps or movies if a P value p at a pixel x is less 

than the critical value p(k), we change the pixel value to 1 − p. If p is greater than the FDR cut-off 

value, the pixel value is set to zero. The resulting FDR-controlled P maps or movies show areas 

with significantly decreased interface pressures, implying improved tissue health. 



Appendix Figure 1.  

Effects of segmentation on boundary properties. After segmentation image shows location of 

midline, defined as the midline between legs, and endpoint, defined as intersection of midline and 

posterior margin of region of interest. 
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Appendix Table 1.  

Robustness of Methods. N(a,b) denotes the normal distribution with mean a and variance b. 

 

Appendix Table 2.  

Simulation for robustness of expectation maximization (EM) segmentation method. N(a,b) 

denotes the normal distribution with mean a and variance b. 

SD= standard deviation. 
 

Background 
distribution 

Signal distribution True threshold True 
Value k 

0.2*N(0,1) 0.8*N(5,1) 2.22 2 
0.2*N(0,1) 0.4*N(5,1)+0.4*N(8,1) 2.36 3 
0.2*N(0,1) 0.4*N(5,1)+0.4*N(10,1) 2.36 3 
0.2*N(0,1) 0.3*N(5,1)+0.3*N(7,0.5)+0.2*N(11,0.5) 2.41 4 
0.2*N(0,1) 0.3*N(5,1)+0.2*N(8,0.5)+0.3*N(10,0.5) 2.41 4 
0.4*N(0,2) 0.6*N(10,1) 6.45 2 
0.4*N(0,2) 0.3*N(10,1)+0.3*N(12,1) 6.58 3 
0.4*N(0,2) 0.4*N(10,1)+0.2*N(12,1) 6.53 3 
0.4*N(0,2) 0.3*N(10,1)+0.2*N(12,1)+0.1*(14,1) 6.58 4 
0.4*N(0,2) 0.3*N(10,1)+0.2*N(11,1)+0.1*(15,2) 6.58 4 

EM estimate for threshold 

(Mean±SD) 
Background 

distribution 

Signal distribution True 

threshold

True k

ˆ 3k =  ˆ 2k =  ˆ 4k =  

0.3*N(0,1) 0.3*N(5,1)+0.4*N(10,0.5) 2.50 3 2.51±0.08 2.49±0.07 2.55±0.07 

0.5*N(0,0.5) 0.3*N(5,1)+0.2*N(10,0.5) 1.78 3 1.79±0.06 1.81±0.05 1.83±0.05 

0.5*N(0,1) 0.5*N(10,1) 5.00 2 5.03±0.07 4.98±0.07 5.05±0.06 

0.5*N(0,2) 0.5*N(10,1) 6.53 2 6.55±0.06 6.54±0.08 6.55±0.06 

0.3*N(0,1) 0.3*N(10,1)+0.4*N(12,1)+0.2*(14,2) 4.80 4 4.82±0.05 4.79±0.07 4.84±0.06 

0.5*N(0,2) 0.2*N(10,1)+0.2*N(12,1)+0.1*(14,2) 6.69 4 6.71±0.06 6.66±0.07 6.70±0.07 



Appendix Figure 2.  

Principle of false discovery rate. 
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