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Abstract—Altered sensations, including pain, are well-
documented consequences associated with spinal cord injury
(SCI). Although loss of sensory and motor functions at and
below the level of injury is commonly thought to affect individ-
uals with SCI most significantly, secondary consequences that
include spasticity, bladder and bowel dysfunctions, infertility,
and pain rank among the most difficult conditions to deal with
following injury. Understanding the mechanisms responsible
for the condition of pain requires one to appreciate the patho-
logical, physiological, neurochemical, and molecular events
associated with injury of the spinal cord parenchyma. Over the
past 15 years, a systematic examination related to the patho-
physiology, clinical characteristics, and treatment of pain asso-
ciated with SCI has provided insights into the spinal and
supraspinal mechanisms associated with the development of at-
and below-level pain. In this review, experimental studies
focusing on the spinal and supraspinal mechanisms associated
with pain at and below level will be discussed.
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INTRODUCTION

Sensory abnormalities, including pain, associated with
spinal cord injury (SCI) are related to the nature of the
lesion, damaged neurological structures, and secondary
pathophysiological changes of surviving tissue [1-3].
Although complete loss of sensory and motor functions is
thought to most significantly affect individuals with spinal
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injury, secondary complications that include spasticity,
bladder and bowel dysfunctions, infertility, autonomic
dysfunction, and pain are among the most difficult conse-
guences to deal with following injury [4]. Over the past
15 years, a systematic examination related to the patho-
physiology, clinical characteristics, and treatment of differ-
ent pain conditions has provided insight into the potential
mechanisms contributing to the onset and maintenance of
above- and below-level pain associated with SCI [5]. The
development of experimental models to study spinal injury
combined with clinical studies has provided important
information related to spinal and supraspinal changes con-
tributing to the development of at- or below-level pain. At
the site of injury, multicomponent excitotoxic and inflam-
matory cascades affect the survivability and functional
state of spinal neurons. Changes in the excitability of neu-
rons secondary to the release of inflammatory mediators
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along with a decrease in local inhibitory influences and
changes in descending modulation provide a permissive
environment that leads to the development of spinal pain
generators that contribute to the mechanism of injury-
induced pain. In this review, | will discuss experimental
studies that focus on the spinal and supraspinal mecha-
nisms associated with at- and below-level neuropathic
pain. Pain of musculoskeletal, radicular, visceral, or psy-
chogenic origins all are significant in the clinical sequela
of spinal injury. These pain syndromes are discussed else-
where [6-11].

SCI PAIN: RESEARCH STRATEGIES AND
EXPERIMENTAL STUDIES

A cascade of cellular, biochemical, and molecular
responses to SCI is significant in producing functional
changes that contribute to the onset of abnormal sensations,
including pain, following spinal injury [2-3,12]. Consider-
ing the traumatic and/or ischemic insult associated with
injury to the spinal cord parenchyma, one is not surprised
that the pathological sequela of injury includes a wide spec-
trum of events that severely compromise the anatomical
and functional integrity of sensory, motor, and autonomic
pathways in the spinal cord. Another consideration is the
physical factors, including completeness and level of
injury, that correlate with pain onset. Unfortunately, few
consistent predictors have been identified [1,13], although
a positive relationship between the higher incidence of pain
in patients with thoracolumbar and incomplete lesions has
been described [14]. Several models, including mechanical
trauma, isolated lesions, complete transection, chemical
lesions, and ischemic injury, each with pathological com-
ponents found in the human condition, have been used
inthe study of SCI pain [15-18]. Many of the well-
documented changes associated with different SCI models
progress in a rostrocaudal direction and influence not only
spinal but also cortical and subcortical structures [2]. Given
the wide range of pathophysiological changes associated
with spinal injury, it is important to identify causal relation-
ships between specific changes and the onset of pain as
opposed to merely pointing out events occurring secondary
to the injury process. Establishing these causal relation-
ships is critical to identifying underlying mechanisms
responsible for pain development.

Selecting effective behavioral measures used to assess
mechanical and thermal sensibilities following injury is

another challenge in the study of different injury-induced
pain conditions. Most behavioral measures used in the
study of SCI pain have historically relied on reflex-based
responses to peripheral stimuli. Nociceptive reflexes, like
tail-flick and hindpaw withdrawal, are regulated by seg-
mentally organized spinal mechanisms and are present in
spinalized animals. Lick and guard responses to nocicep-
tive input depend on spino-bulbo-spinal circuits and are
present in decerebrate animals [19]. The study of excit-
ability changes of spinal sensory and motor neurons at the
level of injury can therefore be evaluated with reflex-
based assessment strategies. Unfortunately, enhancement
of flexion/withdrawal reflexes (i.e., the spastic syndrome)
can be dissociated from the conditions of at- and below-
level pain in cases of subtotal SCI [20-21]. The challenge
of studying these types of pain, therefore, lies in using
appropriate behavioral measures that engage neural sub-
strates responsible for the pain condition being evaluated.
If one assumes that below-level pain depends on activa-
tion of cortical structures, then to study this type of pain
requires behavioral measures that rely on cortical activa-
tion. Behavioral outcomes fitting this criterion include
operant tasks that rely on cortical involvement for process-
ing sensory information, decisions based on environmen-
tal contingencies, and initiation of behavioral responses to
nociceptive stimuli [22]. A major misconception in the
study of below-level pain is the belief that sensory stimuli
delivered to dermatomes below the level of a lesion to
evoke reflexive responses qualify as an evaluation of
below-level pain. Acceptance of the differences and limi-
tations between responses obtained with operant- versus
reflex-based behavioral measures is a major challenge in
the study of SCI pain, especially studies related to the
evaluation of at- versus below-level pain [22].

In recent years, the systematic study of SCI pain has led
to significant advances in understanding specific changes
that contribute to developing and maintaining at- and
below-level pain. In the following sections, a brief review
of some of the more significant contributions is presented.

“CENTRAL INJURY CASCADE” OF SCI

An important factor in determining potential mecha-
nisms of pain following spinal injury relates to understand-
ing the cascade of pathological, biochemical, and
molecular events initiated by ischemic or traumatic insult
to the cord. Significant structural damage to the spinal cord
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parenchyma leads to the reorganization of spinal circuits
that integrate, locally process, and transmit sensory infor-
mation. Ischemic or traumatic insult also changes the
expression of chemical mediators that maintain homeo-
static balance between inhibitory and excitatory circuits.
Equally significant is the disruption of cellular events
affecting signaling, transduction, and survival pathways of
spinal neurons. Collectively, these events profoundly affect
the excitability and functional properties of spinal sensory
neurons and ultimately affect evoked and resting sensibili-
ties. Primary and secondary pathophysiological events
associated with injury are part of a central injury cascade
that initiates pain-related behaviors following injury [12].
Different components of this hypothetical cascade are
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shown in Figure 1 and include anatomical, neurochemical,
excitotoxic, and inflammatory events that have an interde-
pendent relationship and collectively create an environ-
ment responsible  for changing the functional
(physiological) state of spinal sensory neurons leading to
the expression of different clinical conditions (e.g., allo-
dynia, hyperalgesia, spontaneous pain). | should mention
that it is unlikely that events associated with the onset of
SCI pain occur in sequence. Since many contributing fac-
tors potentially influence the excitability of central neurons
and thus the onset of pain, they most likely do not occur in
a programmed sequential fashion. On the contrary, some
events associated with the central cascade are more likely
occurring simultaneously and the interaction and escalation
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Figure 1.

Interactive components of the central injury cascade that contribute to development of pain following spinal injury. Evidence supporting involve-
ment of this cascade comes from results of clinical and preclinical experimental studies (see body text for details). Four major components of the
cascade (neurochemical, excitotoxicity, anatomical, and inflammation) are interactive and collectively result in creation of an environment within
the cord resulting in physiological changes in spinal and supraspinal neurons. End point of the cascade is onset of clinical and behavioral symp-
toms, e.g., allodynia, hyperalgesia, and pain. AAs = amino acids, cGMP = cyclic guanidine monophosphate, CGRP = calcium gene-related peptide,
COX-2 = cyclooxygenase-2, EAAs = excitatory amino acids, ERK = extracellular signal-regulated kinase, GABA = gamma-aminobutyric acid, IL-
1R = interleukin-1R, iINOS = inducible nitric oxide synthase, NF-«xB = nuclear factor kappa B, NO = nitric oxide, NOS = NO synthase, PKC = pro-
tein kinase C, PLA, = phospholipase A,, RF = receptive field, Sub P = substance P, TNF = tumor necrosis factor. Source: Reprinted by permission
from Elsevier Science Pub. Co. This figure was published in Pain: Handbook of Clinical Neurology, Vol 81. Yezierski R. Pain following spinal
cord injury: Central mechanisms. Amsterdam (the Netherlands): Elsevier Science Pub. Co; 2006.
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of events over time create an environment for changes to
occur in the functional properties of central neurons,
including enhanced responses to peripheral stimuli and/or
spontaneous discharges.

Changes in the level of neuronal excitability, dener-
vation supersensitivity, inactivation/activation of cell sig-
naling pathways, and glial-neuronal interactions are all
part of the injury cascade that ultimately contributes to
the onset of abnormal sensory processing. Since the
introduction of the central injury cascade and its role in
the initiation of SCI pain, significant progress has been
made in understanding many of the individual events
associated with each major component. The general con-
struct, however, of interactive injury processes working
in concert to produce a permissive environment for func-
tional changes in spinal neurons leading to abnormal
clinical/behavioral symptoms remains a viable working
model for the onset and maintenance of different injury-
induced pain conditions [3,23].

Critical events in the aftermath of SCI include the tran-
sient elevation in excitatory amino acids (EAASs) and the
production of potentially toxic mediators, e.g., cytokines,
reactive oxygen species. EAAs are well-documented to
have an important role in neuronal death associated with
stroke, hypoxia-ischemia, and traumatic brain injury [24].
Similarly, research supports injury-induced glutamate neu-
rotoxicity in the secondary pathology of ischemic and trau-
matic spinal injury [25-26]. Using an excitotoxic model of
SCI that simulates injury-induced elevations in EAAs,
Plunkett et al. found an upregulation of messenger ribonu-
cleic acids (MRNAs) for interleukin (IL)-18, cyclooxygen-
ase-2, nitric oxide synthase (NOS), and death-inducing
ligands CD-95 and tumor necrosis factor-a (TNF-a)-
related apoptosis-inducing ligand [27]. Upregulation of
MRNA for TNF-« and dynorphin along with the activation
of transcription factors nuclear factor-xB (NF-xB) and
ELK-1 has also been reported following SCI [28-30].
Activation of the NF-xB family of transcription factors is
significant given its involvement in the inducible regula-
tion of more than 150 genes involved in inflammatory,
proliferative, and cell death responses that regulate tran-
scription factors, inflammatory processes, cell survival,
and membrane excitability. Importantly, a number of the
secondary messengers, receptors, and ionic channels
upregulated in response to central nervous system (CNS)
injury are important in determining the functional state of
spinal sensory neurons. For example, upregulation of
sodium channels has been linked to the onset of changes in

neuronal excitability and the onset of abnormal sensations
following SCI [31].

Other pathological, biochemical, and molecular
changes associated with SCI include afferent sprouting in
distant segments [32], upregulation of vanilloid receptor
expression [33], changes in expression of metabotropic
glutamate receptors [34], activation of protein kinases and
transcription factors associated with the mitogen-acti-
vated protein kinase (MAPK)-signaling pathway [35],
increased NR1 serine phosphorylation of the N-methyl-
D-aspartate (NMDA) receptor [36], changes in galanin
immunoreactivity [37], and increased expression of c-fos
MRNA [30,38-39]. Although each of these events is con-
sidered part of the central injury cascade, causal relation-
ships with the expression of chronic pain behaviors have
not been established.

MECHANISMS OF SCI PAIN

Over the past 15 years, several mechanisms have been
proposed to explain the condition of pain following SClI,
including (1) loss of spinal inhibitory mechanisms [17,40],
(2) presence of pattern generators within the injured cord
[40-42] and supraspinal relay nuclei [43], (3) synaptic
plasticity [2], (4) spinal and supraspinal microglia activa-
tion [44], and (5) changes in cell-signaling pathways at
spinal and supraspinal sites [35,45]. In spite of evidence
that cellular or axonal loss following injury predisposes
individuals to at- or below-level pain, separating these
regionally distinct categories of pain is important (from the
standpoint of therapeutic strategies) and considering each
as separate, although potentially related conditions. For
example, the expression of pain after SCI follows a pro-
gressive sequence from at- to below-level pain, suggesting
the existence of interactive mechanisms for these two pain
conditions [46]. The temporal profile of different pain con-
ditions raises the possibility that abnormal neural activity
(spinal and supraspinal) associated with at-level pain may
be a predisposing condition in below-level pain develop-
ment. This relationship might be an important factor in the
design of preventive and/or therapeutic strategies.

DYNAMIC PROGRESSION OF CENTRAL
INJURY CASCADE

The dynamic longitudinal progression of tissue damage
should be considered in the pathological changes associated
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with spinal injury. The functional and behavioral signifi-
cance of this progression is evidenced by the use of neuro-
protective agents shown to limit the spread of injury as well
as the expression of different pain-related behaviors [47].
These results led to the proposal of a “spatial threshold” in
which a critical distance of tissue damage must occur for
pain behaviors to develop (Figure 2). This concept evolved
from a series of studies in which an approximately 5 mm
distance in the dorsal horn gray matter was required for the
expression of a spontaneous pain-like behavior (i.e., exces-
sive grooming) [47-49]. From this follows a critical deter-
minant that expression of pain following SCI may include
both specific injury-induced anatomical and functional
events along with the progressive longitudinal spread of
pathophysiological changes within the cord [2,48]. Identi-
fying the mechanisms responsible for the dynamic spread
of injury may therefore help researchers develop neuropro-
tective interventions to use as preventive strategies for dif-
ferent pain conditions.

The spatial threshold hypothesis was tested by Yu et al.
using selective neuroprotective agents following SCI [47],

Figure 2.

Progression of events associated with central injury cascade from epi-
center (EPI) of ischemic, traumatic, or excitotoxic insult in spinal cord
leads to conditions responsible for expression of abnormal sensations,
including pain. Ultimate extent of injury and/or area of cord influenced
by different components of injury cascade expands to include 2° and
3° areas of injury. Amount of cord damage will continue to expand
until it exceeds a spatial threshold required for onset of pain behavior.
Source: Reprinted by permission from Elsevier Science Pub. Co. This
figure was published in Progress in brain research: Nervous system
plasticity and chronic pain, Vol 129. Yezierski R. Pain following spi-
nal cord injury: Pathophysiology and central mechanisms. Amster-
dam (the Netherlands): Elsevier Science Pub. Co; 2006.

YEZIERSKI. Spinal cord injury pain

including agmatine (NMDA antagonist and NOS inhibi-
tor), IL-10, and cyclosporine A (immunosuppressant). The
results of this study showed a delayed onset of spontaneous
pain behavior and reduced neuronal loss in the spinal cord
of animals treated with neuroprotective agents compared
with those treated with saline [47]. Treatment of pain after
onset with these same compounds compared with treatment
of saline significantly reduced pain behaviors and neuronal
loss. These results showed for the first time that administra-
tion of neuroprotective agents significantly affected injury-
induced spontaneous pain behaviors. Collectively, these
results support the conclusions that (1) the expression of
pain behaviors depends on a critical distance of neuronal
injury along the longitudinal axis of the cord [2,47] and that
(2) neuroprotective strategies targeting selected compo-
nents of the central injury cascade may prevent the progres-
sion of pathological conditions that express pain following
SCI [2]. Further support for these conclusions is the result
of transplant studies in which adrenal chromaffin cells were
used to prevent and/or reverse the expression of injury-
induced pain behaviors [50-52]. Adrenal chromaffin cells
are known to produce several neuroactive substances,
including those with neuroprotective properties [53]. The
possibility that neuroprotective strategies could conceiv-
ably worsen pain by providing an environment for the sur-
vival of dysfunctional nociceptive pathways should be
considered a caveat of using this strategy of intervention.

One should note that sex, strain, and gonadal hor-
mones also exert significant influences on the onset and
progression of spontaneous pain behaviors following SCI
[48]. For example, the development of pain-like behaviors
following excitotoxic spinal injury in male rats of three
different strains and ovariectomized female rats is related
to the rostrocaudal spread of a specific pattern of neuronal
loss in the dorsal horn [48]. Animals treated with estradiol
develop severe pain behaviors, whereas those treated with
progesterone have delayed onset and attenuated severity
and progression of these behaviors [48]. The fact that sex,
strain, and hormonal effects influence the temporal profile
of pain behaviors and, more importantly, the longitudinal
spread of neuronal damage following injury suggests an
additional level of complexity regarding endogenous
neuroprotective and neurodegenerative mechanisms in the
CNS. Consistent with these observations are other reports
describing age, sex, and strain factors contributing to dif-
ferences in prevalence and severity of pain following SCI
[13,54-55]. Unraveling the key components of the com-
plex variables associated with SCI may help researchers
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develop novel strategies for controlling spinal injury and
its clinical consequences.

EMERGENCE OF SPINAL AND SUPRASPINAL
PAIN GENERATORS

The initial onset of at-level changes in sensitivity to
mechanical and thermal stimuli is believed to reflect, in
part, a loss of inhibitory tone within the injured cord
[17,56-57]. Loss of inhibition enhances recruitment of
surrounding neurons and increases the spread of abnor-
mal at-level sensations, including pain. Coincident with
reduced local inhibition is the emergence of a pain-
generating mechanism. Evidence supporting this concept
led to the proposal that not all postinjury pains are due to
noxious input; some may be due to changes in firing pat-
terns, including burst activity and long afterdischarges, of
neuronal pools adjacent to an injury site [40]. Evidence
consistent with a pain-generating mechanism following
injury include (1) the existence of hyperactivity in the
spinal cord and thalamus of patients with SCI [43,58-59],
(2) effectiveness of local anesthetics in alleviating pain
when delivered to the injured cord [41,60], and (3) sensi-
tization and prolonged afterdischarges of spinal sensory
neurons following SCI [25,31,42,61-62]. The involve-
ment of this neuronal pain-generating mechanism as a
component of the spinal and supraspinal mechanisms of
SCI pain is also supported by results of pharmacological
studies [63-64]. For example, lidocaine and ketamine,
two drugs that reduce membrane excitability and
glutamate receptor activation, effectively attenuate SCI
pain [65-66]. Efforts to increase inhibition with either
baclofen or propofol are also effective [32,67]. The anti-
convulsant lamotrigine that blocks sodium channels
involved in hyperexcitability is also suggested to be
effective in patients with SCI with spontaneous and
evoked pain [68] as is the anticonvulsant pregabalin [69].

Importantly, discovering the involvement of spinal
lamina | neurons in the pain-generating mechanism was a
major step in understanding the mechanism of SCI pain.
Evidence for this finding comes from clinical observa-
tions showing focal hyperactivity in the superficial dorsal
horn of the injured cord [58]. Microcoagulation of these
hyperactive areas significantly decreased pain [58,70].
Additional support for the involvement of this region in
generating pain was evidence that eliminating neurokinin-
1 (NK-1) receptor-expressing neurons in the superficial
dorsal horn prevents and/or reverses spontaneous pain

behavior after excitotoxic spinal injury [71]. This study
provided the first evidence suggesting NK-1 receptor-
expressing neurons are a critical component of the spinal
mechanism responsible for developing injury-induced at-
level pain.

Although significant clinical and preclinical evidence
supports the involvement of an abnormal pain generator in
SCI pain, support also exists for a role of supraspinal struc-
tures, e.g., diencephalon, in this mechanism. The contribu-
tion of dysfunctional input from the injured cord along
with effects of deafferentation (secondary to the death of
spinal projection neurons), sprouting of undamaged fibers,
and/or the functional unmasking of nonfunctional local
connections could help develop focal generators and/or
amplifiers of abnormal discharges in supraspinal structures
[3,43,72]. Thus, SCI pain may be expressed when portions
of supraspinal targets are deprived of spinal input from at
or below the level of injury. Instead, these targets are acti-
vated by abnormal (spontaneous or evoked) activity origi-
nating from spinal regions above the injury level [3].

Another potential contribution to the pain-generating
mechanism is the role of descending bulbospinal
monoaminergic pathways. Through a mechanism of
descending facilitation, these pathways have been shown
to be involved in initiating and maintaining neuropathic
pain [73-74]. A role in pain development following SCI
is suggested by studies showing anatomical and func-
tional changes in serotonergic (5-hydroxytryptamine [5-
HT]) pathways following SCI [75-77]. Further support
for these changes come from studies showing facilitation
of at-level pain by the 5-HT3 receptor [78] and attenua-
tion of injury-induced pain behaviors and excitability of
dorsal horn neurons with spinal transplantation of 5-HT
precursor cells [79-80].

ALTERNATIVE SENSORY PATHWAYS IN THE
INJURED SPINAL CORD

Although researchers generally agree that interruption
of the spinothalamic tract contributes to SCI pain and spe-
cifically to below-level pain, interruption of other pathways
and/or abnormal activity in alternative sensory systems
may also participate in the expression of below-level pain
[72,81]. Below-level pain, for example, may involve
lesions of the dorsal columns, because pain associated with
syringomyelia is reported to be more prevalent when a
central cavity expands to involve dorsal pathways [82].
Similarly, animal models have shown that interruption of
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the dorsal or dorsolateral columns increases the incidence
of overgrooming/autotomy after peripheral nerve injury
and that allodynia/hyperalgesia is frequently observed in
response to stimulation caudal and ipsilateral to dorsolat-
eral column lesions in monkeys [83]. These results suggest
that damage to dorsal spinal pathways may be important in
producing SCI below-level neuropathic pain.

Although reduced temperature and pain sensations
have been used to support the involvement of damaged
spinothalamic connections in developing central pain,
recent evidence showed that neuronal hyperexcitability is
also important in developing below-level pain. Further-
more, loss of spinothalamic function did not appear to pre-
dict this type of pain [84]. This work complements
previous magnetic resonance imaging findings showing
that patients with below-level pain have larger gray matter
lesions than patients without pain [63]. Additional evidence
supporting this conclusion comes from studies showing
that anterolateral cord lesions result in evoked pain caudal
to spinal injury only when gray matter is involved [20] and
spontaneous pain behavior can be elicited with spinal
lesions restricted to the gray matter [18]. Below-level pain
may therefore be expressed when portions of sensory-
processing targets are deprived of input from classic pain
pathway(s) and are indirectly activated by other sources of
alternative input from a dysfunctional neuronal core (i.e.,
pain-generating mechanism) rostral to the injury site [3].

SIGNALING PATHWAYS AND SYNAPTIC
PLASTICITY

Another potential mechanism contributing to chronic
pain following spinal injury is synaptic plasticity in the
brain and spinal cord. An important discovery in the
mechanism of acute pain is found in the construct of cen-
tral sensitization and together with long-term changes in
spinal connectivity represents a potential mechanism for
persistent pain [85-86]. The changes associated with cen-
tral sensitization are believed to contribute to alterations
in excitability of spinal neurons and ultimately to the
development of spinal, and possibly supraspinal, pain
generators/amplifiers.

Events involved in producing long-term synaptic
changes following injury include (1) phosphorylation of
regulatory proteins, (2) positive and negative regulation
of gene transcription, (3) injury-induced synthesis of pro-
teins, (4) strengthening and weakening of synaptic con-
nections, and (5) death or rescuing of neurons. The

YEZIERSKI. Spinal cord injury pain

contribution of this hypothetical cascade of biochemical
and molecular events to the progression of Alzheimer’s,
Parkinson’s, and cerebrovascular diseases has received
much attention in recent years [87—-88]. Studies focusing
on mechanisms responsible for injury-induced changes
similar to those just described may provide new opportu-
nities for therapeutic approaches for managing SCI pain.

Efforts to understand the molecular events associated
with spinal injury include a study where components of
the MAPK-signaling pathway were evaluated [35]. Fol-
lowing excitotoxic spinal injury, this study showed
(1) increased phosphorylation of extracellular signal-
regulated kinase (ERK) 1/2, (2) increased activation of
NF-xB and phosphorylation of ELK-1, and (3) increased
gene expression for the NK-1 receptor and NR1 and NR-
2A subunits of the NMDA receptor [35]. Blockade of the
MAPK cascade with the MEK inhibitor PD98059 inhib-
ited phosphorylation of ELK-1, activation of NF-«B, and
gene expression of NR1, NR-2A, and NK-1R; and pre-
vented the development of spontaneous pain behavior.
Injury-induced elevations in spinal levels of EAAs thus
lead to activation of the ERK—ELK-1 and NF-xB sig-
naling cascade and the transcriptional regulation of
receptors important to chronic pain development. Block-
ade of this intracellular cascade prevents the onset of
injury-induced spontaneous pain behavior [35].

The results just described support the conclusion that
many of the same molecular changes described as activity-
dependent following peripheral nerve and tissue injury are
also associated with central injury. The expression of these
molecular changes suggests that the mechanism responsi-
ble for the increased excitability of neurons following spi-
nal injury may be similar to the well-documented activity-
dependent mechanism induced by damage to peripheral
tissue, a mechanism resulting in activating kinase cascades
and ultimately long-term changes in synaptic efficacy and
neuronal excitability.

A significant contribution to initiating synaptic plastic-
ity has been attributed to the involvement of glial elements
and specifically activation of microglia [89]. In spite of the
growing evidence that microglial inhibition reduces pain,
prostaglandin E-2 has only recently been shown to be
involved in the microglia-to-neuron signaling mechanism
to induce dorsal horn sensory neurons to undergo changes
in excitability [90]. Furthermore, microglia have also been
shown to be activated by CCL21 (chemokine [cc-motif]
ligand 21) after SCI [91]. Inhibition of microglial activa-
tion after spinal injury reduces pain-related behaviors
[44,91], and treatment with minocycline or the Mac-1-SAP
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immunotoxin reverses morphological changes in microglia
and attenuates functional and behavioral consequences of
SCI. Therefore, microglia could possibly evolve as a sig-
nificant therapeutic target in preventing and treating pain
associated with spinal injury.

SUPRASPINAL CHANGES ASSOCIATED WITH SCI

In addition to the well-documented spinal mecha-
nisms of SCI pain, remote effects of injury include
increased blood flow in forebrain structures [92], cortical
expression of cholecystokinin (CCK) and opioid peptides
[93-95], changes in the functional properties of thalamic
neurons [31,42,59,96-97], and neuronal death in the cor-
tex [98]. The involvement of these changes in SCI pain
development, although not proven, is highly probable. In
the study by Morrow et al. [92], significant increases in
regional cerebral blood flow were found in the arcuate
nucleus, hind limb region of S1 cortex, parietal cortex
and thalamic posterior, and ventral posterior medial and
lateral nuclei. Changes in somatosensory structures
involved in pain processing complement clinical obser-
vations showing similar changes in thalamic blood flow
following SCI [99], alterations in the chemical profile of
ventral posterior lateral (VPL) thalamus in patients with
SCI pain [100], and reports of hyperactive foci of tha-
lamic activity in patients with SCI induced spontaneous
burning pain [43]. Consistent with these clinical reports
are descriptions of VPL neurons showing increased spon-
taneous activity, enlarged receptive fields, enhanced
evoked activity, and the emergence of abnormal burst fir-
ing after experimental spinal injury [31].

In addition to these studies, Brewer and colleagues
clarified changes in peptidergic transmitter systems at
spinal and supraspinal levels following excitotoxic SCI
[38,93-95]. Many of these changes mimic what is seen in
conditions of neuropathic pain following peripheral
nerve injury. Opioid precursors preproenkephalin (PPE)
and preprodynorphin (PPD) increased expression in cor-
tical regions associated with nociceptive function: PPE in
the anterior cingulate cortex (ACC) and PPD in the pari-
etal cortex. These increases occurred bilaterally follow-
ing injury, and expression of PPE in the ACC and PPD in
the contralateral parietal cortex were significantly higher
in animals that developed spontaneous pain behaviors
versus those that did not. Receptors for opioid peptides
were also differentially expressed in these two groups of
animals (pain vs nonpain), with expression levels being

affected throughout the medial pain system (i.e., ACC,
medial thalamus, periaqueductal gray and rostroventral
medulla). In addition to direct effects on opioid peptides
and receptors, excitotoxic injury affects the expression of
CCK, an endogenous antagonist to opioid analgesia, and
several isoforms of protein kinase C, an important
enzyme in the phosphorylation of opioid receptors that
renders receptors unavailable for binding [101]. These
effects of injury were seen throughout the medial pain
system and were pronounced in animals with post-SCI
pain. Together, these changes create a dysfunctional sys-
tem within the endogenous pain control system. The
importance of these findings is that following SCI, sig-
nificant changes occur at supraspinal sites involved in
pain processing, including changes in several compo-
nents of the normal pain-modulation system (ligands,
receptors, and second messenger for opioids).

FUTURE DIRECTIONS AND CONCLUSIONS

Clinical and experimental studies need to identify
critical events responsible for the onset of mechanisms of
SCI pain. Studies must continue to focus on details of dif-
ferent secondary events associated with the injury pro-
cess in which dysfunctional spinal and supraspinal
neurons emerge. These studies are essential to the design
of more effective treatment strategies. Progress in under-
standing central pain after SCI will require clinically rele-
vant experimental models and behavioral assessment
strategies. A single mechanism solely responsible for the
onset of central pain following SCI is unlikely. Depend-
ing on the nature of injury and the progression of patho-
logical, molecular, and biochemical changes along the
rostrocaudal axis of the cord, each of the mechanisms that
I have discussed in this review most likely contributes to
the onset of SCI pain (Figure 3). Continued basic and
clinical research of different aspects of at- and below-
level pain should help healthcare professionals better
understand spinal and supraspinal mechanisms that cause
these conditions.
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Figure 3.

Summary of different injury-induced changes associated with devel-
opment of at- and below-level pain. *Spinal generators of abnormal
activity evolve because of the collective impact of anatomical, neuro-
chemical, inflammatory, and excitotoxic changes (i.e., central injury
cascade) leading to increased excitability of spinal sensory neurons.
Changes contributing to development of a *spinal generator include
loss of intrinsic inhibitory mechanisms, longitudinal progression of
events associated with spinal injury cascade, injury-induced activa-
tion of cell signaling pathways, increased expression of sodium chan-
nels, and activation of microglia and astrocytes. Development of
generator/amplifier mechanism at *supraspinal levels emerge as
result of deafferentation of input from spinal segments below injury
level. Functional impact of this and other injury-induced changes at
supraspinal levels (e.g., sprouting, unmasking of connections) results
in activation of supraspinal regions by input from noninjured seg-
ments of cord and referral of pain sensations to dermatomes below
injury level. Source: Reprinted by permission from Elsevier Science
Pub. Co. This figure was published in Pain: Handbook of Clinical
Neurology, Vol 81. Yezierski R. Pain following spinal cord injury:
Central mechanisms. Amsterdam (the Netherlands): Elsevier Science
Pub. Co; 2006. SCI = spinal cord injury.
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