Control of Powered Upper-Limb Prostheses
Single-Topic Issue

CONTENTS

iii Masthead
vii Thank you to Dr. Dudley S. Childress
ix Guest Editorial:
Progress on stabilizing and controlling powered upper-limb prostheses
T. Walley Williams III, MA
xxi Guest Editorial:
Determining delay created by multifunctional prosthesis controllers
Todd R. Farrell, PhD
xxxix Letters to the Editor:
Stewart M. Coulter, PhD
xli JRRD at a Glance

Scientific/Technical Articles

609 Two-degree-of-freedom powered prosthetic wrist
Peter J. Kyberd, PhD; Edward D. Lemaire, PhD; Erik Scheme, MSc; Catherine MacPhail, BSc;
Louis Goudreau, BASc, PEng; Greg Bush, BA, CP(c); Marcus Brookeshaw, BSc

619 Target Achievement Control Test: Evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb prostheses
Ann M. Simon, PhD; Levi J. Hargrove, PhD; Blair A. Lock, MS; Todd A. Kuiken, MD, PhD

629 Comparison of electromyography and force as interfaces for prosthetic control
Elaine A. Corbett, MS; Eric J. Perreault, PhD; Todd A. Kuiken, MD, PhD

643 Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use
Erik Scheme, MSc, PEng; Kevin Englehart, PhD, PEng

661 Use of two-axis joystick for control of externally powered shoulder disarticulation prostheses
Robert D. Lipschutz, BSME, CP; Blair Lock, MS; Jonathon Sensinger, PhD; Aimee E. Schultz, MS;
Todd A. Kuiken, MD, PhD

669 Evaluation of shoulder complex motion-based input strategies for endpoint prosthetic-limb control using dual-task paradigm
Yves Losier, MScEE, PhD, PEng; Kevin Englehart, MScEE, PhD, PEng; Bernard Hudgins, MScEE,
PhD, PEng
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>679</td>
<td>Prosthetic sockets stabilized by alternating areas of tissue compression and release</td>
<td>Randall D. Alley, CP, LP; T. Walley Williams III, MA; Matthew J. Albuquerque, CPO; David E. Altobelli, MD</td>
</tr>
<tr>
<td>697</td>
<td>Development and testing of new upper-limb prosthetic devices: Research designs for usability testing</td>
<td>Linda Resnik, PT, PhD, OCS</td>
</tr>
<tr>
<td>707</td>
<td>Using virtual reality environment to facilitate training with advanced upper-limb prosthesis</td>
<td>Linda Resnik, PT, PhD, OCS; Katherine Etter, MS; Shana Lieberman Klinger, MA; Charles Kambe, BS</td>
</tr>
<tr>
<td>719</td>
<td>Myoelectric forearm prostheses: State of the art from a user-centered perspective</td>
<td>Bart Peerdeman, MSc; Daphne Boere, MSc; Heidi Witteveen, MSc; Rianne Huis in 't Veld, PhD; Hermie Hermens, PhD; Stefano Stramigioli, PhD; Hans Rietman, MD, PhD; Peter Veltink, PhD; Sarthak Misra, PhD</td>
</tr>
<tr>
<td>739</td>
<td>Electromyogram-based neural network control of transhumeral prostheses</td>
<td>Christopher L. Pulliam, MS; Joris M. Lambrecht, MS; Robert F. Kirsch, PhD</td>
</tr>
</tbody>
</table>