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Abstract—The ease with which persons with upper-limb 
amputations can control their powered prostheses is largely 
determined by the efficacy of the user command interface. One 
needs to understand the abilities of the human operator regarding 
the different available options. Electromyography (EMG) is 
widely used to control powered upper-limb prostheses. It is an 
indirect estimator of muscle force and may be expected to limit 
the control capabilities of the prosthesis user. This study com-
pared EMG control with force control, an interface that is used 
in everyday interactions with the environment. We used both 
methods to perform a position-tracking task. Direct-position 
control of the wrist provided an upper bound for human-operator 
capabilities. The results demonstrated that an EMG control inter-
face is as effective as force control for the position-tracking task. 
We also examined the effects of gain and tracking frequency on 
EMG control to explore the limits of this control interface. We 
found that information transmission rates for myoelectric control 
were best at higher tracking frequencies than at the frequencies 
previously reported for position control. The results may be
useful for the design of prostheses and prosthetic controllers.

Key words: EMG velocity control, force control, human opera-
tor, human-operator bandwidth, information transmission rate, 
myoelectric control, position control, prosthesis control, track-
ing frequency, tracking task, velocity gain.

INTRODUCTION

To a person who has sustained an upper-limb ampu-
tation, the control interface between her- or himself and 
the prosthesis is critical to the success of the device. The 

capability of the interface to communicate intended 
movements to the prosthesis sets the upper limit for its 
performance. A wide variety of control systems for pow-
ered upper-limb prostheses is used today. Typically, the 
user generates the command signal with myoelectric con-
trol, the application of force, or a measurement of excur-
sion of the body. However, the relative extent to which 
these interfaces limit the prosthetic use is unknown. The 
goal of this study was to quantify the efficacy of two con-
trol interfaces that could be used to provide input to a 
powered prosthetic arm. Detailed descriptions of conven-
tional prosthesis control methods are given by Williams 
[1] and Muzumdar [2].

Electromyogram (EMG), or myoelectric, control is 
by far the most common user interface for powered pros-
theses and generally is used when possible. Among its 
many advantages are its relative ease of use, comfort, and 
promotion of muscle tone. The physical effort for operation
is low because the muscle activity needed is relatively 
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small [3]. For persons with transradial amputations, no 
harnessing is required, and control using residual wrist 
muscles is intuitive. EMG also provides access to the 
muscle activation process and can provide a large amount 
of information about the user’s intentions as he or she 
manipulates the muscles of the residual limb [4]. How-
ever, EMG is an indirect means to estimate the forces and 
positions generated by the motor system that people use 
to interact with their environments. It is a noisy signal 
and is far less directly related to the control of force or 
position, which is required during functional tasks. Further-
more, filtering properties of the limb tissue affect the sur-
face myoelectric signal, and movement of the skin 
beneath the electrode may cause a motion artifact that 
can be confused with the signal [2].

Powered prostheses controlled directly by force use 
the proximal motion of the shoulder of the residual limb 
instead of any remaining distal musculature. A force-
based interface is a natural means for a human to interact 
with the environment and provides more direct sensory 
information than EMG, potentially increasing control 
performance. Force transducers are often operated by 
persons with transhumeral amputations, capturing shoul-
der motion using a harness. This procedure requires mini-
mal body movement, because the tension is applied at the 
residual limb. For persons with shoulder disarticulation 
amputations, force-sensing resistor touch pads at the 
shoulder can measure force without the use of cables. 
Control schemes are discussed in detail by Williams [5]. 
Persons with transradial amputations rarely use force 
transducers to control a powered prosthesis, but all body-
powered systems use force directly.

To quantify the effectiveness of a prosthesis control 
interface, one must model the human-machine system in 
the context of how it affects user performance. As 
McRuer and Krendel noted, closed-loop transfer character-
istics of the human operator influence the response meas-
urements of interest [6]. These characteristics will vary 
according to the operator’s ability to adapt to the 
dynamic characteristics of the controlled elements, influ-
encing the stability and performance of the entire closed-
loop system. Because of these interactions, one cannot 
examine changes in the system characteristics due to 
independent changes in either the human operator or the 
controlled element. Other factors influencing the human 
operator’s transfer characteristics are physiological dif-
ferences, task experience, motivation, and the type of 
input driving the system. Because the sources of perform-
ance differences are difficult to separate, a quantification 

of the complete user-prosthetic system is usually most 
appropriate.

The system can be concisely represented with a lin-
ear model of the human operator, as previously used to 
study human-operator dynamics in manual control sys-
tems [6–11]. In this analysis, the closed-loop system is 
represented by a linear transfer function and a generator 
of random noise, or “remnant,” which represents all out-
put content that cannot be explained by a linear operation 
on the input. The linear closed-loop transfer function pro-
vides information about the system performance and may 
be used to compare multiple control interfaces, provided 
it reasonably describes the data and the remnant is small.

The objective of this study was to evaluate the use of 
EMG as a control interface, comparing it with force and 
position. The ability of the person with an amputation to 
control the prosthesis is a limiting factor for its perform-
ance. By comparing EMG , force, and position interfaces, 
we can examine the capabilities of these control para-
digms. We implemented the linear model of the human-
operator system to compare wrist control of position, 
force, and EMG during a one-dimensional (1-D) tracking 
task. While, in practice, force control is more commonly 
used at the shoulder, we selected the wrist to compare the 
interfaces as fairly as possible. Velocity was controlled in 
the EMG and force experiments, because control of the 
device velocity is commonly used in current powered 
prostheses [3]. This method of control gives the pros-
thetic user added flexibility; he or she controls both the 
motion of the device and the time to complete that 
motion. This study compared the control interfaces at 1 
Hz, a tracking frequency known to be optimal for the 
direct-position control, which served as a gold standard 
against which to compare the force and EMG interfaces. 
We evaluated performance in terms of tracking error, 
human-operator bandwidth, and information transmis-
sion rate. Furthermore, we examined the effects of gain 
and tracking frequency for the EMG interface. The quan-
tification of EMG-controlled tracking performance, in 
particular, may be useful in specifying limits for pros-
thetic design.

METHODS

Subjects
Eight able-bodied subjects (five male, three female), 

aged 22 to 30, participated in this study. While testing a 
wider range of ages may have been useful to reflect the 
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varied population with an upper-limb amputation more 
accurately, we considered that the effect of age would be 
minimal compared with the differences in musculature 
because of the damage amputation caused.

All subjects were right-arm dominant and had partici-
pated in preliminary experiments of the same nature. 
Hence, they were experienced with all three protocols 
before commencing the experiments. This experience 
was important to ensure that the results were not biased 
by the order in which the interfaces were tested, because 
strong learning effects were observed during the prelimi-
nary experiments.

Experimental Setup
We presented a 1-D tracking task to the subjects on a 

computer screen by means of a MATLAB (MathWorks 
Inc; Natick, Massachusetts) graphical user interface. A 
square target was displayed on the screen. We chose a 
preview system as the input display type in this study
(Figure 1). The target input and the system output were 
displayed independently to the operator; this paradigm 
has been shown to be more effective than compensatory 
displays, where only the difference between the two sig-
nals, or error term, is shown [7]. In addition, the target 
signal from the current time to a set time in the future was 
displayed. We selected this type of input because it more 
closely represents everyday prosthesis use. In most situ-
ations, a prosthesis user knows the desired path of the 
prosthesis for some time into the future.

We generated the target signal from white noise low-
pass-filtered by a fourth-order Butterworth filter. Low-pass-
filtered Gaussian white noise has been used previously in 
similar experiments [7–8,12], because the assumption of 
linearity of the human-operator system has been found to 
be fair for randomly appearing inputs [11]. We selected 
four different cutoff frequencies, including three practice 
frequencies (0.5, 0.7, and 0.9 Hz), which we used to 
establish a certain task performance level. We performed 
test trials using a target signal with a 1 Hz cutoff fre-
quency. The target moved vertically on the screen, and a 
preview of the oncoming second was visible to the sub-
ject at all times. The subjects controlled a cursor (dot). 
The aim of the task during the trial was to keep the cursor 
as close to the center of the target as possible.

User Control Interfaces
During the position control experiment, the angle of 

the wrist was mapped directly to the cursor position. In 
these experiments, the subject’s wrist joint was securely 

attached to a custom-made electrogoniometer, which was 
placed on the worktable and supported by padding at the 
forearm (Figure 2(a)). Deviations of ±30° in flexion and 
extension were mapped to the full range of cursor dis-
placements. This range of excursions was found to result 
in performance at least as good as larger and smaller 
ranges in a set of preliminary experiments. Cursor dis-
placements were updated every 50 ms and set propor-
tional to the average joint angles measured over the 
previous 100 ms. This choice of time window low-pass-
filtered the data with a cutoff frequency of approximately 
5 Hz, above the highest frequencies typically used in vol-
untary movement [13].

Activation of the subjects’ forearm muscles provided 
the input for the EMG-controlled task. Contractions were 

Figure 1.
Experimental task. (a) Subject could move dot vertically either up or 
down as computer advances box along with target signal. Preview of
1 s was displayed. Task goal was to keep dot in box. One of three 
control sources controlled motion of dot: electromyography, force, 
or position. (b) 25 s sample from example trial of 3 min. Dashed 
signal was subject’s attempt to follow target.
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isometric: the subjects gripped a metal rod using a palmar 
grasp while the forearm was fixed to the table in front of 
them (Figure 2(b)). We chose this paradigm to minimize 
proprioceptive feedback from the wrist joint, which 
would not be available to person with an amputation; per-

sons with amputations perform prosthesis control using 
isometric contractions. However, eliminating tactile feed-
back from the hand was impossible with able-bodied sub-
jects. The use of a task that required palmar grasp 
minimized this effect, relative to a task that involved the 
fingers more directly since the tactile acuity of the palm 
is less than that of the fingertips.

We collected EMG data from the wrist flexor and 
extensor muscles in the dominant forearm. To emulate a 
real prosthetic interface, we did not specifically target 
muscles. However, the electrodes were positioned such 
that the flexor carpi radialis and extensor carpi ulnaris 
contributed significantly to control. Two single differen-
tial-surface EMG sensors (Bagnoli DE-2.1, Delsys; Boston,
Massachusetts) were placed parallel to the muscle fibers. 
The signals were amplified with a two-channel Delsys 
Bagnoli-2 signal conditioning unit with a 20 to 450 Hz 
bandwidth and sent to a computer by way of a National 
Instruments card (PCI-6031E; Austin, Texas), which per-
formed the analog-to-digital conversion. After the sub-
ject’s forearm was secured in the experimental rig, the 
subject performed a 3 s isometric maximum voluntary 
contraction (MVC) for both flexion and extension. We 
used the MVC to normalize the magnitude of the EMG 
during proportional velocity control. The EMG signals 
were sampled at 1,000 Hz, and any linear trend was 
removed from each incoming 50 ms of data. The mean 
absolute value of a 100 ms window was calculated for 
each channel, and the windows were updated every 50 ms,
a rate more than adequate for EMG control [14].

During control, we set the flexor and extensor EMG 
channels to zero when they were below a threshold of 
2 percent of MVC to minimize the effects of spurious 
movement and measurement noise. We also normalized 
each channel by the EMG recorded during MVCs to pro-
vide a relative measure of muscle activation. To deter-
mine the velocity of the cursor, we then considered the 
larger of the two normalized channels active and multi-
plied it by a gain factor, G. Flexion moved the cursor 
down, and extension moved it up. If neither channel was 
above threshold, the velocity was set to zero.

In the force control system, we modulated the velocity
of the cursor by isometric flexion and extension forces at 
the wrist. A load cell at the hand was used; both the hand 
and wrist muscles likely contributed to the control. The 
subject’s hand was securely strapped to the sensor, and a 
padded brace restricted movement of the forearm and 
wrist so that contractions were isometric (Figure 2(c)). In 

Figure 2.
Experimental setup. (a) Position setup: arm was free to move and 
wrist angle was measured. (b) Electromyography (EMG): electrodes 
were placed on wrist flexor and extensor muscles. (c) Force: forces 
were measured at hand, and movement at wrist was restricted.
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contrast to the EMG setup, where prosthetic control was 
emulated as much as possible, the force setup represented 
the best-case scenario for the control scheme. Force con-
trol in powered upper-limb prostheses is most commonly 
performed at the shoulder, which (while more applicable 
for a wider range of amputees) is less effective than wrist 
control [15]. We decided, however, to compare EMG and 
force using the same neural command signal: that to the 
wrist flexor and extensor muscles.

We recorded forces for MVCs in both flexion and 
extension. As we just described for the EMG-controlled 
cursor, we used MVCs to scale the forces measured dur-
ing cursor control. The velocity of the force-controlled 
cursor was set proportional to the mean force recorded 
over the prior 100 ms. The velocity of the cursor was 
updated every 50 ms. Flexion forces moved the cursor 
down, and extension forces moved it up.

Protocols

Comparison of Control Interfaces
All subjects performed an experiment with each 

interface. Each interface was evaluated separately, and 
the order of the evaluated interfaces was randomized 
across subjects. To allow the subject to become familiar 
with the control interface, we held a training session at 
the beginning of each experiment. Subjects completed a 
sequence of trials with a gradual progression of increas-
ing target signal cutoff frequency within the range of 
optimal human-tracking bandwidths (0.5, 0.7, and 0.9 Hz);
the subject advanced to the next frequency when a nor-
malized root-mean-square tracking error of 30 percent or 
lower was achieved. The training trials were 30 s in dura-
tion, avoiding an excessively long protocol.

The selection of an optimal gain factor, G, is 
extremely important for subject performance in velocity 
control tasks [12]. Therefore, we performed an optimiza-
tion procedure before the test trials to ensure the appro-
priate choice. Generally, if the gain is too low, the 
subjects will struggle to keep up with the task signal, and 
fatigue might occur. However, if the gain is too high, 
control interfaces become too responsive and often unsta-
ble. We selected the gain using 30 s trials with continuous 
random signals with cutoff frequencies of 1 Hz; this was 
the same frequency used in the trials for comparing con-
trol interfaces, because the optimal gain depends on the 
frequency content of the task. We selected the gain that 
produced the lowest tracking error.

The subjects performed at least one 30 s trial at the 
selected gain immediately before testing to ensure that 
they were comfortable and familiar with the task. Other-
wise, we (the experimenters) ensured the subject was 
comfortable with the task. Trials continued at this setting 
until subjects reached a performance plateau. A plateau 
was recognized when the tracking error did not decrease 
by more than 5 percent in subsequent trials. This entire 
procedure took an average of 30 min. Once we finished 
the setup and tuning, each subject completed three 3 min 
evaluation trials that we used to compare the interfaces.

Electromyogram Controller Gain Variation
In many situations, EMG is the most practical choice 

of interface for a powered prosthesis, because of intuitive 
control and comfort, as just described. For this reason, 
we performed further experiments to examine the effect 
of changing the EMG controller gain, G, on tracking per-
formance. The human operator is remarkably able to 
adapt to many different systems, and we expected that the 
subjects’ performance would remain stable for a reason-
ably wide range of gain selections. However, because we 
selected the gain based solely on tracking error, its effect 
on human-operator bandwidth and information transmis-
sion rate was unknown. Because it ultimately limited the 
velocity at which the cursor could be manipulated, the 
bandwidth of the human-operator system could possibly 
be limited as well. This limitation would have resulted in 
an unfair disadvantage for the EMG and force control 
interfaces, because the position interface was not con-
strained in this way. We performed four experiments 
using the EMG interface. We also performed the training 
and gain selection processes exactly as just described. 
Once the optimal gain, G, had been selected, the 3 min 
trials commenced. Three full-length trials were per-
formed at each of four different gains: G , G × 1.1, G × 
1.2, and G × 1.4, in random order. Subjects rested liber-
ally, as needed.

Electromyogram Task Frequency Variation
The tracking cutoff frequency was a parameter that 

was certain to affect task performance, since higher band-
width signals are more difficult to track. Of particular 
interest was seeing the effect of this parameter on the 
information transmission rate of the EMG interface. The 
effect of the target signal cutoff frequency on the informa-
tion transmission rates of position control has been well 
documented, and the optimal range (0.5–1.0 Hz) for track-
ing is known [8,12]. However, an EMG velocity-based 
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control interface of the kind used in most current prosthe-
ses may provide different results. We performed four 
experiments with experienced subjects using the EMG 
interface. Three full-length trials were performed at six dif-
ferent tracking target cutoff frequencies, ranging from 0.3 
to 2.3 Hz. We selected a single gain, which was high 
enough that the trial at 2.3 Hz could be performed without 
fatiguing the subjects. We performed the first six trials 
sequentially in order of increasing frequency to allow 
gradual learning to take place. We performed the trials in 
the last two sets in a pseudorandom order; slow and fast 
trials were alternated in such a way that fatigue could be 
avoided. Subjects also rested liberally, as needed.

Analysis
We evaluated task performance using three different 

measures. Accuracy of the task performance was meas-
ured with the normalized mean square error between the 
target signal and the path followed by the cursor. This 
measure of tracking error is independent of any assump-
tions about the human-operator system. We calculated 
the bandwidths and the information transmission rates of 
the human-machine systems using techniques developed 
for the study of manual control tasks [6–9,16]. The 
human-operator bandwidth is the highest frequency at 
which the user can track the target while capturing at 
least 70 percent of the proportion of input signal compo-
nents that were captured at the lowest frequencies with 
the specific human-operator-controller system. Information
transmission rate allows us to examine the capabilities of 
humans in the context of the machines they operate by 
modeling the human as a noisy information channel. 
Elkind and Sprague first used the information transmis-
sion rate to quantify continuous tracking performance 
[8]. The quasilinear model of the human operator is 
equivalent to that of an information channel with additive 
noise, as described by Shannon [17]. For a tracking task, 
the objective of reproducing a signal from the input to the 
output is analogous to transmitting information across a 
channel while minimizing error. Doubler and Childress 
first applied this analysis to upper-limb prostheses 
[12,15]. They based the analysis on the premise that the 
ability of the user to communicate motor intent to his or 
her prosthesis is a large component of its effectiveness. 
Both of these analyses (human-operator bandwidth and 
information transmission rate) assume the quasilinear 
model of the human-machine system.

We calculated the power spectral densities of the 
input and output signals using Welch’s averaged peri-

odogram method [18]. From these spectra, we calculated 
the transfer and coherence functions [19]. For each sub-
ject, the three transfer functions for a control interface’s 
test trials were computed and averaged, after which the 
bandwidth was calculated as the frequency at which the 
transfer function dropped to –3 dB from its maximum 
value. We calculated the maximum value by taking the 
mean value of the transfer function for all frequencies up 
to half of the cutoff frequency of the target signal for the 
particular trial. We selected this method because, for the 
control experiments with high cutoff frequencies, the 
transfer functions were sometimes noisy and the band-
widths were difficult to estimate. By observing this pro-
cedure, we confirmed that it produced reasonable 
estimates for trials of all cutoff frequencies tested. We 
calculated the information transmission rate of the 
human-machine system for each 3 min trial by integrat-
ing Shannon’s channel capacity over the frequency spec-
trum [8,12].

RESULTS

Comparison of Control Interfaces
During test trials for each interface, subjects tracked 

the target signals with varying degrees of accuracy (Fig-
ure 3). Power spectra and transfer and coherence func-
tions are shown in Figure 4. For each interface, subjects 
performed three 3 min trials at a tracking cutoff frequency 
of 1 Hz. We used the results of these trials to compare the 
tracking performance of the three control interfaces. We 
performed a three-way analysis of variance (ANOVA) for 
each performance measure, treating subject as a random 
factor. The two fixed factors were the type of interface 
(position, force, EMG) and the order in which these inter-
faces were presented. We found that the order in which we 
tested the interfaces was not significant for any of the 
quantified outcome measures (all p > 0.18), indicating that 
the combination of previous task experience and a thor-
ough training protocol was effective. This factor was then 
removed from the analysis, and two-way ANOVAs were 
performed. We then used a Tukey test for post hoc com-
parisons. In all statistical comparisons, we used  = 0.05 
to test for significance.

Information transmission rate, tracking error, and 
human-operator bandwidth were significantly affected by 
the choice of interface. The information transmission rate 
(Figure 5(a)) of the position control was superior to the 
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EMG (p = 0.008) and force interfaces (p < 0.001), with 
no statistically significant difference between the latter 
two (p = 0.67). The tracking error (Figure 5(b)) for the 
position interface was lower than that for the EMG (p =
0.04) and force (p < 0.001) interfaces, and the tracking 
error for the EMG was lower than that for the force inter-
face (p = 0.03). The mean bandwidth (Figure 5(c)) for 
the position interface was significantly higher than that 
for the EMG (p = 0.003) and force interfaces (p = 0.046). 
The latter two interfaces were not statistically different
(p = 0.5).

Electromyogram Controller Gain Variation
Increasing the EMG controller gain significantly 

affected the task performance for two of the three out-
come measures (Figure 6). We performed a two-way 
analysis of covariance (ANCOVA) for each outcome 
measure, treating the subject as a random factor and gain 
as a fixed continuous variable. The gain did not signifi-
cantly affect the information transmission rate (p = 0.27). 
A significant positive effect was found on both the track-
ing error (p = 0.003) and the human-operator bandwidth 
(p = 0.01).

Figure 3.
Sample tracking trials for each interface. One subject, 30 s samples 
from 3 min trials with target cutoff frequency of 1 Hz. Both target signal 
and output are shown. (a) Position: tracking error = 23.8%, information 
transmission rate = 4.23 b/s; (b) electromyography (EMG): tracking 
error = 32.7%, information transmission rate = 3.13 b/s; (c) force: track-
ing error = 35.4%, information transmission rate = 3.3 b/s.

Figure 4.
Frequency domain analyses of tracking performance. Data are from 
same subject shown in Figure 3, except that all three trials are used in 
these calculations. Power spectra were calculated with frequency res-
olution of 0.08 Hz. From top: Power spectral densities (PSD) of tar-
gets (x) and outputs (y), followed by transfer (Hxy) and coherence 
functions, all as function of frequency (f). Bandwidths of 1.50, 0.80, 
and 1.25 are marked by corresponding vertical lines for position, elec-
tromyography (EMG), and force, respectively.
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Electromyogram Task Frequency Variation
For EMG control, all three of the performance meas-

ures depended highly on the bandwidth of the target signal 
presented (Figure 7). The human-operator bandwidth at 
0.3 Hz is not shown, since for three of the four subjects, 
the frequency content of these data was too low for esti-
mating the human-operator bandwidth (Figure 7(c)). For 
the tracking error and human-operator bandwidth, we per-
formed two-way ANCOVAs, treating the subject as a ran-
dom factor and target signal cutoff frequency as a fixed 
continuous variable. A significant positive effect was 
found on the tracking error (p < 0.001) and a negative 

effect on the human-operator bandwidth (p = 0.03). We 
assessed the effect on information transmission rate using 
a two-way ANOVA, treating the subject as a random fac-
tor and target signal cutoff frequency as a fixed factor. The 
highest information transmission rates occurred at 1.1 and 
1.5 Hz, which were both statistically significantly different
from those at 0.3 and 2.3 Hz, the cutoff frequencies that 
produced the lowest information transmission rates (p < 
0.05). No other statistical differences were found between 

Figure 5.
Control interface comparison (eight subjects). Group mean and 
standard errors of (a) information transmission rate, (b) tracking error, 
and (c) human-operator bandwidth for each interface. Stars indicate 
statistically significant differences. Target signal cutoff frequency was 
1 Hz. EMG = electromyography.

Figure 6. 
Effect of gain on electromyogram interface (four subjects). Group 
mean and standard errors of (a) information transmission rate; 
(b) tracking error; and (c) human-operator bandwidth, all versus % of 
selected gain.
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cutoff frequencies (all p > 0.08). Both the information 
transmission rate (Figure 7(a)) and the human-operator 
bandwidth (Figure 7(c)) were highest at the target signal 
bandwidths of 1.1 and 1.5 Hz. Below the optimal range, 
the information content of the target signal was low, and 
above it, the tracking error was so high that the perform-
ance deteriorated (Figure 7(b)). The maximum informa-
tion transmission rates (3.9 ± 0.6 b/s) were close to those 
found for position control (4.0 ± 0.7 b/s) in the original 
experiment when the target signal bandwidth was 1 Hz, 
which has been shown to be optimal for position control 
[8,11,16].

DISCUSSION

As prosthetics research progresses, devices are being 
developed with increasing degrees of freedom (DOFs). 
To identify clearly the differences between them, we 
need to explore the limits of the available control inter-
faces, whether due to physical constraints or to the men-
tal burden involved in their use. This study demonstrated 
that EMG performs at least as well as a force control 
interface at 1 Hz tracking. The limits of the EMG control 
interface were explored for tracking frequency; the opti-
mal range of frequencies found was higher than that 
reported for position control [8,11,16]. Evidently, EMG, 
despite being a noisy signal, provides a control interface 
for prostheses that does not limit information transmis-
sion from the user any more than force control, which is a 
natural means to interact with the environment. The capa-
bility of the EMG interface to transfer information at 
high frequencies should be considered in the future 
design of prosthetic limbs.

Comparison of Control Interfaces
This study extracted the neural command signal at 

three different stages of processing by the human-operator 
system (Figure 8). The limb mechanics subsystem is 
effectively bypassed when EMG or force is used as the 
control signal. For the point of extraction and subsequent 
processing of the neural command signal, the force and 
EMG control interfaces are similar in nature. Both signals 
are related to muscle force and are used to control the 
velocity of the cursor. As just discussed, their performance
is not as good as that of the position control. However,

Figure 7.
Effect of target bandwidth on electromyogram control interface (four 
subjects). Group mean and standard errors of (a) information trans-
mission rate; (b) tracking error; and (c) human-operator bandwidth, 
all versus target cutoff frequency. Stars indicate statistically signifi-
cant differences.

Figure 8.
Decomposition of neural command signal processed by human opera-
tor. EMG = electromyography.
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they are generally more practical for use with prostheses, 
requiring less excursion of the residual limb.

Intuitively, the use of joint kinematics for position 
control results in better tracking accuracy and informa-
tion transmission than the velocity-based methods of 
EMG and force sensing. Muscle spindles provide propri-
oceptive feedback from the forearm and wrist joint, 
enabling precise control of wrist position. As position is 
controlled, the one-to-one relationship between the 
physical controlling process and the cursor position on 
the screen further simplifies the subject’s mental process-
ing task. Generally, researchers believe that, despite the 
constraints of the neuromuscular system, central delays 
rather than input/output information transmission delays 
limit the bandwidth of a human operator [20]. However, 
Mesplay and Childress found that the highest information 
transmission rates were obtained by the joints with the 
lowest moments of inertia [21]. This finding suggests 
that the constraints of the neuromuscular system may 
also affect performance. Research has found that wrist 
goniometer control is superior to the use of more proxi-
mal joints [12], and thus its selection for an upper bound 
for human-operator capabilities is appropriate. The infor-
mation transmission rates found for the position control 
interface in this study are similar to those rates found pre-
viously for 1-D pursuit position tracking at 1 Hz (4–5 b/s) 
[8,12].

We expected that the differences in how the command 
signal is obtained and the nature of proprioceptive feed-
back that EMG and force control interfaces provide 
would be reflected in their respective performances. For 
both paradigms, force feedback was available from the 
flexor and extensor muscles and tendons. For the force 
sensor, the amount of force applied could be directly 
sensed by way of mechanoreceptors in the skin of the 
hand. In contrast, EMG is only a by-product of muscle 
force. A relationship still existed between the EMG signal 
production and hand-skin force perception, but it was per-
haps less direct than for the force interface. The position-
ing of the electrodes on the skin affects the relative 
influence of specific muscles on the control signal. One 
may have also expected that the user would find master-
ing complete control of the cursor more challenging, 
because the EMG signal is stochastic and is much noisier 
than the force signal.

Despite the many potential problems of EMG 
velocity control, subjects were just as effective with 
EMG as they were with force velocity control. The track-

ing error was actually slightly lower for the EMG inter-
face. Evidently, the filtering and integration of the noisy 
EMG signal were effective in producing a well-behaved 
velocity at the output.

The efficacy of EMG as a control interface is a 
much-debated topic in the prosthetics field. As just dis-
cussed, the muscle activation properties on which the sig-
nal depends are stochastic in nature. In addition, the 
EMG-force relationship is not stationary because of 
issues such as fatigue. Nonetheless, the argument for the 
use of EMG as a prosthesis control interface is supported 
by the fact that EMG does not limit the operator’s ability 
to transmit user intent any more than force.

Effect of Gain: Speed/Accuracy Trade-Off
We performed further experiments using the EMG 

control interface to examine whether the gain selection in 
our experiments affected the results in any way. Since the 
human-operator bandwidth calculated for the velocity 
control systems had been found to be significantly lower 
than the bandwidth for the position control, we were 
interested in whether they had been limited by the choice 
of gain. Increasing the gain of the EMG-based controller 
did increase human-operator bandwidth. In fact, the 
human-operator bandwidth at the highest gain was closer 
to that bandwidth computed for the position control than 
to the bandwidth computed for the EMG in the original 
experiments. However, the tracking error also increased 
with gain. These results demonstrate a trade-off between 
speed and accuracy in human tracking, which many 
researchers have described [22–23].

The information transmission rates, however, were 
not affected by the choice of controller gain. This insensi-
tivity to controller tuning demonstrates that the informa-
tion transmission rate is a more comprehensive per- 
formance measure than tracking error or human-operator 
bandwidth. It incorporates both the accuracy of the sys-
tem and the speed at which it can operate. The use of low 
gains will result in slow and accurate movements of a 
prosthesis. Increasing the gain will increase speed at the 
expense of accuracy. One could find an optimal balance 
of these two factors as appropriate for the task by ensur-
ing that the information transmission rate remains high 
while the speed and accuracy are balanced. The insensi-
tivity of information transmission rate over a wide range 
of tracking frequencies also suggests that it may be useful 
as a tool in assessing the trade-off between speed and 
accuracy for a particular task.
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Effect of Target Signal Cutoff Frequency
Many researchers have shown that the information 

transmission rate of the human operator is maximal in 
one DOF for target signal bandwidths between 0.5 and 
1.0 Hz [8,11,16]. Chan and Childress developed a funda-
mental relationship to show that the variance of the 
human-machine noise is proportional to the mean-square 
velocity of its output [22,24]. They found that this rela-
tionship could be used to predict information transmis-
sion rates and that a maximum rate exists at which 
humans could respond. This maximum sets the process-
ing limit of human-machine control. Information trans-
mission rates increase with target bandwidth until this 
maximum rate is achieved, after which they decrease as 
the bandwidth of the target is increased.

Of great interest was the range of tracking frequen-
cies for which the EMG control interface is effective. The 
bandwidth of the signal presented to the user dramati-
cally affected the human-operator system response. The 
mean human-operator bandwidths calculated at all possi-
ble tracking frequencies increased as the cutoff frequency 
was increased from 0.7 to 1.5 Hz and decreased as it was 
increased further. This decrease in human-operator band-
width with increasing target signal bandwidth is some-
what counterintuitive. One might expect a faster target to 
induce a faster response. However, as the signals became 
more difficult to track, the response was so poor (error 
too high) at all frequencies that the human-operator band-
width became difficult to estimate. 

As would naturally be expected, tracking error 
increased as the movements became faster. Once again, 
the trade-off between speed and accuracy is evident from 
these results. Information transmission rates were consis-
tently good across a wide range of target frequencies; 
they were highest at 1.1 and 1.5 Hz. This range is higher 
than the reported range of optimal bandwidths in position 
control (0.5–1.0 Hz). Interestingly, the information trans-
mission rates of the EMG interface at these higher fre-
quencies were comparable to the position control system 
in the original experiments, which were performed at the 
optimal frequency for position control, according to the 
literature. The high rate of information transmission 
found in this study at high frequencies may be relevant 
for the design of future devices. However, the appropriate 
balance between speed and accuracy must be selected 
based on both the user of the prosthesis and the task. Tay-
lor et al. stressed the need to balance a high information 
transmission rate with the “cost” of an error [25]. Specifi-

cally, if a large number of errors need to be corrected, the 
overall information transmission rate will be reduced sig-
nificantly. The cost of an error depends on the function 
being performed. This trade-off must be considered, and 
therefore, the average user is unlikely to use the maximal 
measured information transmission rates most of the 
time.

The relative importance of speed and accuracy is 
highly task-dependent. At peak rates of information trans-
mission from the experiment summarized in Figure 7, the 
tracking error appears to be quite high (36%–58%). We 
should note, however, that a high tracking error, as 
defined in this study, does not indicate a complete failure 
in tracking. A 100 percent tracking error corresponds to 
an error between the target and output equal in magnitude 
to the target itself. High errors may not be a huge prob-
lem for tasks in which the workspace is large and preci-
sion is not vital, such as during rapid movements. As in 
natural control, one could increase precision near the tar-
get by decreasing terminal velocity [26].

When extending to two-dimensional and three-
dimensional tasks more relevant to everyday life, we would
expect to see further trade-offs between DOFs, move-
ment frequency, and accuracy. The addition of further 
DOFs would naturally increase the overall information 
transmission rates, though not necessarily linearly. The 
exact increase that could be expected depends on a num-
ber of factors, including the independence with which the 
individual DOFs could be controlled and the maximum 
limit for human-information transmission.

CONCLUSIONS

For this high-speed tracking task, the use of EMG to 
sense the user command signal does not limit the infor-
mation transmission capabilities or bandwidth of the 
human operator more than the use of force does. This 
result is promising for upper-limb prostheses, because the 
human sets the performance limits for control. As would 
be intuitively expected, position control provided an 
upper bound for human-operator capabilities. It was more 
effective and produced higher operator bandwidths, 
lower information transmission rates, and a lower track-
ing error.

Tracking error and human-operator bandwidth were 
sensitive to changes in the controller gain, whereas infor-
mation transmission rate was not. We found that, for this 
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paradigm, the frequency range for optimal information 
transmission is higher for an EMG velocity control inter-
face than the previously reported optimal frequency 
range for the position-tracking task. Information trans-
mission rates are consistent for a wide range of target fre-
quencies. This frequency response of the EMG control 
interface may be useful when one is specifying limits for 
prosthetic design, because the information transmission 
rate provides a tool for balancing the trade-off between 
speed and accuracy that must be considered in prosthetic 
control.
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