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I am writing to express a concern that my colleagues from previous labo-
ratories at Northwestern University/Rehabilitation Institute of Chicago (RIC) 
and I have shared for a number of years related to multifunctional prosthesis 
control. Previous investigations have used a variety of analysis window 
attributes for their multifunctional prosthesis controllers [1–8]. Researchers 
have varied the length of the analysis window, the amount of overlap between 
consecutive windows, and the number of majority votes used in the postpro-
cessing of the classifier decisions. However, we believe that many researchers 
have made decisions about these attributes with little regard for the overall 
delay created in the real-time system. (Note that the term classifier typically 
refers to an element of the controller that uses the inputs provided to it, e.g., 
electromyographic [EMG] signals, force sensor data, and position sensor data 
to decide which joint(s) of the prosthesis should be actuated.) For example, 
Peleg et al. performed classification decisions on data up to 1.4 seconds after 
the onset of the contraction [9]. This classifier would require its user to wait on 
the order of seconds for Peleg et al.’s prosthesis to respond, which would 
likely be quite frustrating for the user. We are not suggesting that new algo-
rithms should not be explored simply because they may create substantial 
delays. However, we do believe that these delays should be considered and 
discussed in each article that is published on this topic. While a particular clas-
sifier may create a 1 percent increase in classification accuracy, if it cannot add 
this increase in accuracy in a reasonable amount of time, it may be a “non-
starter.” Continuing in this vein, we would like to discuss some findings that 
we believe will allow prosthesis controller designers to better understand how 
their controllers will behave in real time. (For the purpose of this editorial, fur-
ther use of “we” and “our” indicates my colleagues and me.)

This editorial focuses on analysis window issues from the perspective of 
EMG-based multifunctional prosthesis control. However, the work described 
can be extended to other forms of window-based biosignal classifiers, such as 
brain machine interfaces that use neural spike-counting algorithms for intracor-
tical data [10–12] or those that use electroencephalogram recordings [13–14].

BACKGROUND AND VARIABLE DEFINITION

Many readers may be familiar with multifunctional prosthesis classifi-
ers, but I would like to provide a brief introduction for those who are new to 
the area. Many multifunctional prosthesis controllers analyze EMG signals 
collected from the residual limb in an attempt to determine the intended 
xxi
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movement of the user. These controllers use EMG 
data to decide which degree of freedom will be 
actuated and then produce motor-drive signals for 
the corresponding joint of the prosthesis. Classifiers 
typically make these decisions by comparing data 
collected in real time to data collected during a 
training session. Generally, the movement of the 
prosthesis whose training data best match the cur-
rent real-time data sample is then selected as the 
output of the classifier. These class decisions can 
then be used for determining the “classification 
accuracy” of a classifier, which is defined as the 
percentage of the time that the output of the control-
ler matches the intended movement of the user. 
Huang et al. provide a detailed description of the 
various steps of the classification process [15].

Some previous work has shown that classifica-
tion accuracy increases when EMG feature extrac-
tion and pattern recognition are performed on larger 
data windows [1]. However, when more EMG data 
are collected for analysis, more time is required to 
collect and then process the larger data set. This col-
lection and processing time increases the delay 
between the user producing a command and the 
controller responding appropriately. If this delay
becomes excessive, it can make the prosthesis feel 
sluggish and unresponsive to the user. As such, a 
trade-off is made between the length of time needed 
to decipher the user’s intent accurately and the need 
for a quick and responsive device. I will focus the 
discussion on how several variables associated with 
the classification process affect the controller delay 
of a system. We define the controller delay as the 
amount of time from the user’s intended change in 
movement class (as reflected by a change in the 
EMG signal) until the classifier produces the cor-
rect output.

In pattern recognition-based controllers, the EMG 
data are frequently collected in “analysis windows” 
whose lengths are defined as Ta. Class decisions (i.e., 
decisions produced by the classifier indicating which 
prosthesis movement will be actuated) based on these 
collected data cannot be generated instantaneously 
because time is required to both record and process 
the EMG (e.g., extract signal features and/or perform 
pattern recognition). The processing time () is the 

time from the completion of data collection until a 
class decision is made. The length of the window 
being analyzed (Ta), as well as the number of chan-
nels and the number and type of features being 
extracted, will determine .

Overlapped Windows
Englehart and Hudgins explain that the process-

ing time () required to analyze the EMG can be 
much less then the length of the analysis window (Ta), 
causing the processor to lie idle a majority of the time 
[3]. Figure 1 shows an example of using disjoint win-
dows and visually demonstrates that class decisions 
(labeled as d1, d2, and d3 in Figures 1 and 2) can be 
produced relatively infrequently and that the proces-
sor is not being used to its full capacity.

To use the capabilities of the processor fully, 
Yamada et al. [16] and Englehart et al. [2–3] sug-
gested increasing the frequency of class decisions 
by “sliding” the window along at increments that are 
slightly larger than . In this way, as soon as a class 
decision is generated, the controller immediately 
begins processing the next class decision on a “new” 
window of data. Figure 2 (note the differences in 
lengths of time in the x-axes between Figure 1 and 
Figure 2) shows how the use of overlapped win-
dows increases the frequency of which class deci-
sions are made and nearly maximizes the use of the 
processor.

When the classifier uses overlapped windows, the 
amount of new data that will be added to each new 
analysis window (i.e., the amount of “shift”) will be 
defined as Tnew . Theoretically, minimum overlap can 
be achieved when Tnew =   ; however, in practice, 
Tnew will be slightly larger than .

Majority Voting
A technique that takes advantage of the 

increased frequency of class decisions afforded by 
overlapping windows is “majority voting.” Major-
ity voting is a postprocessing strategy that can 
increase the overall classifier accuracy [2,15,17]. 
For small analysis window lengths, it has been 
shown to be particularly effective at improving 
classifier robustness by smoothing out relatively 
noisy, but high density, streams of class decisions. 
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The current class decision along with the n – 1 previ-
ous class decisions (where n = number of majority 
votes) is analyzed, and the class that occurs most 
frequently in those n decisions is selected as the 
controller output.

I should point out that other groups are explor-
ing new and innovative ways of further postpro-
cessing the classifier outputs. For example, 
researchers at the Center for Bionic Medicine at 
RIC are currently working on “decision-based 
velocity ramps” that tie the speed of the selected 
movement to the number of consecutive decisions 
belonging to a particular movement class [18]. The 
velocity ramp causes the speed of any movement to 
start slowly and then increase to its maximum, but it 
also causes spurious misclassifications to create 

relatively small movements of the unintended 
degrees of freedom. This additional level of post-
processing would theoretically take longer to com-
plete a given predetermined set of movements if the 
user were to create perfectly repeatable patterns of 
EMG activity. However, in reality, no user can pro-
duce perfectly repeatable contractions with each 
movement. The RIC team showed that subjects 

Figure 1.
Example of disjoint windowing of single channel of electromyographic 
data (Ta = 256 ms,  = 64 ms). Each analysis window (Ta) takes finite 
time to process ( ) before a decision (d1, d2, and d3) can be produced. 
Note that time required to process each window () is much less than 
analysis window length and therefore processor is lying idle a majority 
of time. Figure is modified version. Source: Englehart K, Hudgins B. A 
robust, real-time control scheme for multifunction myoelectric control. 
IEEE Trans Biomed Eng. 2003;50(7):848–54. [PMID: 12848352]
DOI:10.1109/TBME.2003.813539

Figure 2.
Example of overlapped windowing of single channel of electromyo-
graphic data (Ta = 256 ms,  = Tnew = 64 ms). When overlapped win-
dows are used, analysis window slides along at relatively small 
increments, adding newly collected data and discarding oldest data. In 
this example, amount of new data in each window (Tnew) is exactly 
equal to amount of time required to process data from previous analysis 
window (). Setting amount of overlap equal to processing time allows 
controller to begin processing next class decision immediately when 
decision on previous window’s data has been completed. Overlapped 
windows increase frequency of class decisions, which makes postpro-
cessing technique of majority voting tractable. Figure is modified ver-
sion. Source: Englehart K, Hudgins B. A robust, real-time control 
scheme for multifunction myoelectric control. IEEE Trans Biomed Eng. 
2003;50(7):848–54. [PMID: 12848352]
DOI:10.1109/TBME.2003.813539

http://dx.doi.org/10.1109/TBME.2003.813539
http://dx.doi.org/10.1109/TBME.2003.813539
http://dx.doi.org/10.1109/TBME.2003.813539
http://dx.doi.org/10.1109/TBME.2003.813539
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completed tasks at higher rates with the velocity 
ramp postprocessing than without it because of the 
velocity ramps’ potential to limit the deleterious 
effects of misclassifications. While the team at RIC 
is making great strides to improve function in the 
clinical environment with other postprocessing 
techniques, I will be focusing on the “classic” 
approaches that have been used extensively in the 
literature.

Optimal Controller Delay
My colleagues and I performed a study that exam-

ined the effects of different controller delays on the 
performance of an externally powered prosthesis [19]. 
We defined the “optimal controller delay” as the 
maximum amount of time that could be used to col-
lect and analyze EMG signals (so as to increase the 
classification accuracy) without substantially degrad-
ing the performance of the prosthesis as measured 
using a functional task. Not surprisingly, we found an 
inverse relationship between performance on the Box 
and Block Test and the amount of delay that was 
present in the controller. While any delay in the con-
troller caused a decrease in performance, this 
decrease was not found to be statistically or clinically 
significant until at least 100 to 125 ms of delay was 
present for an above-average (90th percentile) user. 
Therefore, we proposed that the controller delay that 
allowed the most time for signal collection and analy-
sis (to maximize classification accuracy) without sig-
nificantly decreasing prosthesis performance was 
found to be approximately 100 ms.

Our results support Smith et al.’s recently com-
pleted study that took the experiment a step further 
by examining the effects of window length on both 
classification accuracy and controller delay and then 
determining how these two factors combined to 
affect performance on virtual tasks [20]. Smith et al. 
concluded that, depending on the performance met-
ric, the optimal controller delay ranged from 88 to 
138 ms, which correlates well with our findings.

The results of our previous study and Smith et 
al.’s work imply that the ideal scenario would be 
setting the values of Ta, Tnew , n, and    to ensure that 
the longest amount of time from the intended 
change in class until the change in the output of the 

controller (i.e., the controller delay [D]) is approxi-
mately 100 ms. Next, I will discuss the approach 
that was developed to improve on current methods 
of defining how each parameter (Ta, Tnew , n, and ) 
will affect both the maximum delay and range of 
possible delays introduced by the controller.

WORST-CASE ANALYSES

In the case of commonly used windowing 
strategies, the amount of time between the user’s 
intended change in movement and the controller 
producing the correct output (i.e., the controller 
delay [D]) can vary substantially. First, I will exam-
ine the largest delays that would be expected for a 
controller using a given set of analysis window 
attributes. The following section will then discuss 
the best-case and average expected delays as well as 
the range of possible delay values.

Three assumptions were made for the equations I 
am presenting. The first was that the output of the 
classifier will belong to the class whose data fills a 
majority of the analysis window. The second was that 
the change in the EMG reflecting a change in the 
intended movement of the user (e.g., from Class 1 to 
Class 2) occurs instantaneously. In reality, a short tran-
sitory phase exists in which the EMG signals resem-
ble the steady state of neither Class 1 nor Class 2. 
However, I believe that the assumption of an instanta-
neous class change is reasonable as a first-order 
approximation and it was made to simplify the calcu-
lations and make the analysis more tractable. The 
equation validation experiment discussed later will 
demonstrate that accurate predictions of the controller 
delay are possible without considering the transition 
portion of the contraction. Finally, I am assuming that 
user intent for movement is represented by the onset 
of the EMG signal. While research has shown that 
EMG signals are created before movement of the limb 
[21], I believe that the EMG signal provides us an eas-
ily accessible signal that clearly indicates the timing 
of the user’s intended movements.

Note that these assumptions only provide a start-
ing point for determining how any particular attributes 
of a controller will affect the delay that is produced by 
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it. As I will discuss in detail later, several issues may 
affect the assumptions just listed. One example is 
related to thresholds for how well the output of a 
particular data window needs to match training data 
from a particular contraction class. Again, it should 
be stressed that researchers should consider how 
their specific controller will operate in real time.

Figures 3 to 6 that follow show an idealized, 
instantaneous change in the EMG signal produced 
during two different movements (Class 1 or 2). In 
these figures, the output class decision from the con-
troller is given in a large bold font to the right of the 
analysis and computation windows. Also, the tick 
marks on the bottom of Figures 3 to 6 represent the 
instances in which the controller produces a new 
class decision, i.e., these ticks indicate when the 
commands are sent to the motors and their fre-
quency represents what my colleagues and I refer to 
as the “update rate” of the system. Note that for this 
discussion, the data are assumed to be collected with 
a sampling period of Ts and, therefore, at a fre-
quency of 1/Ts Hz.

Disjoint Windows with No Majority Vote

First, consider the case in which only a single 
class decision is being used (no majority voting) 
and disjoint (nonoverlapped) windows of data are 
being examined. The worst case would occur if the 
intended change in class occurred just after halfway 
through the window (see the third analysis window 
of Figure 3). In this case, >50 percent of the data in 
this window belong to Class 1 and <50 percent of 
the data belong to Class 2. We would then assume 
that the output decision for that window would be 
Class 1. Therefore, the controller would not pro-
duce the correct class decision until the next full 
window of data was analyzed.

Based on these observations, the maximum time 
from the intended change in movement to the control-
ler producing the correct class decision (D) would be

Since the sampling period Ts is much smaller 
than the other elements of Equation 1 and can be

considered negligible, Equation 1 can reasonably 
be approximated by

The sampling period Ts is shown in Figure 3 to 
demonstrate that the class change occurs just after 
the midpoint of the analysis window; it will not be 
included in the final equations and is not included in 
Figures 4 to 6.

Disjoint Windows with Majority Vote

If majority voting were used on disjoint win-
dows of data, the time necessary for the classifier to 
produce a correct decision would increase. As 
stated before, majority voting stipulates that the 
class that occurs most frequently in the previous n
decisions will be the output of the classifier. Simply 
having the current class decision change to a new 
class would be insufficient to alter the overall out-
put of the controller because the controller requires 
a majority of decisions to belong to the new class.

Consider the previous controller, but with a 3-vote 
majority voting scheme instead of the 1-vote 
approach. In Figure 4, the three votes considered in 
the majority-voting scheme are shown as the small 
numbers to the right of the analysis and computa-
tion windows. The current class decision is in bold 
and is the top number of the three stacked numbers. 
The previous two class decisions are the two 
smaller unbolded stacked numbers. Again, as in
Figure 3, the large bold number represents the clas-
sifier output, i.e., the winner of the majority vote. 
The fourth analysis window in Figure 4 shows that 
although the current class decision is Class 2, the 
two previous decisions belonged to Class 1, mean-
ing that Class 1 has the majority of the votes and 
therefore is the output of the controller.

When the classifier uses disjoint windows with 
an n-vote majority voting scheme, the maximum 
time from the intended change in class to the control-
ler correctly producing that class as an output (again, 
assuming that Ts is considered negligibly small) is
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Note that if n is set to 1 (i.e., only a single vote 
is used and thus no majority voting exists), then 
Equation 3 reduces to Equation 2.

Overlapped Windows with No Majority Vote

Overlapping the analysis windows reduces the 
maximum amount of time between an intended 
class change and the controller producing the cor-
rect output. Figure 3 shows that if the intended 
class change occurs just after the midpoint of the 
analysis window, the controller output will not be 
correct until after the next full window of data is 
analyzed. However, when overlapping windows are 
employed, the window slides in increments of Tnew . 
Therefore, if the class change occurs slightly after 
the midpoint of one analysis window, then after the 
analysis window has been shifted, a majority of the 
next window’s data will belong to the new class and 
the controller output will be changed. An example 

is shown in Figure 5. The bottom trace of Figure 5
also shows that the controller using overlapped 
windows can produce new outputs more fre-
quently; i.e., the “update rate” is increased.

When the classifier uses overlapped windows 
with no majority voting, the maximum time from 
the intended change in class to the controller pro-
ducing the correct output is

Overlapped Windows with Majority Vote

If majority voting is included in the overlapped 
window approach, then an additional amount of time 
will be required before the votes of the correct class 
can become a majority (Figure 6). In this case,

Figure 3.
Maximum controller delay (D), i.e., time from intended change in movement class (indicated by step change in electromyographic [EMG] signal) 
to controller producing correct output class, is shown for a system that employs disjoint windows with no majority voting. Output of controller is 
shown as large bold number to far right of each window and tick marks on bottom of figure indicate “update rate,” i.e., frequency with which new 
output is produced by controller. Example shown is “worst-case” scenario in which change in EMG occurs just after midpoint of analysis window. 
Since a majority of third analysis window is filled with data from Class 1, output of that window is assumed to belong to Class 1.
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The equations for worst-case delays for each of 
the controller types are summarized in Table 1.

BEST-CASE/AVERAGE ANALYSES AND 
DELAY RANGES

While it is beneficial to know the longest delays 
introduced by a controller, determining the range of 
delays that can be introduced is also worthwhile. 
Since the change in EMG has a uniform probability 
of occurring at any point within a particular analysis 
window, some variability will be found in the 
delays the user experiences and the average delay 
will simply be the mean of the best and worst cases. 
Ideally, the difference in delay between the best and 
worst cases would be very small. Small differences 
in the delay allow the users to get a consistent 
response from their devices. Research in virtual 
environments has shown that performance tends to 
degrade as the variability of the delay in the system 
increases [22–23].

For the worst-case (maximum delay) scenario, 
the change in class was assumed to have occurred 
just after halfway through the analysis window. For 
the best-case (minimum delay) scenarios, the class 
change was assumed to occur just before the mid-
point of the analysis window. In this case, just over 
half of the window would contain data from the new 
class, and therefore, the output of the controller can 
be assumed to belong to the new class. Again, this 
assumption only provides a first-order approximation 
and will be affected by several factors. The equations 
for the average and best-case delays were derived 
similarly to the equations for worst-case delays and 
are shown in Table 1.

Table 1 also summarizes the difference between 
the best- and worst-case delays using the derived 
equations and thus determines the possible range of 
delays the users could experience. Note that when an 
overlapping window approach is used, the range of 
delays is equal to the amount of window shift (Tnew), 
while a nonoverlapped approach has a possible delay 
range that is equal to the length of the analysis 

Figure 4.
Maximum controller delay (D) is shown for system that employs disjoint windows with 3-vote majority-voting scheme. Three votes are shown 
as small numbers to right of analysis and computation windows. Top number of these three is in bold and represents current class decision. Out-
put of controller (winner of majority vote) is shown as large number to far right of each window.
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window (Ta). The difference between Ta and Tnew is 
determined by the features that are being extracted 
for analysis, number of channels, pattern recognition 
algorithm, etc. From my experience, a general rule of
thumb is that, using modern microprocessors, Tnew
will be at least an order of magnitude less than Ta. 
Therefore, one can conclude that using an overlapped 
approach will have a smaller range of controller 
delays and will provide the user with a more consis-
tent response. Therefore, the more consistent
response of the overlapped windows should improve 
prosthesis performance when compared with the 
nonoverlapped approach for a given set of analysis 
window attributes.

AN EXAMPLE

One may find that visualizing the differences
between the different classifiers through an example 
is easier. If we use the equations presented in Table 1

and assume that Ta = 150 ms, Tnew = 12 ms, = 10 ms, 
and n = 3, we can compare the expected delays from 
controllers using overlapped and nonoverlapped win-
dows as well as those using majority voting. Table 2
shows the worst-case, average, and best-case delays 
as well as the theoretical range of delays for the four 
windowing conditions.

These examples show that using the overlapped 
approach substantially decreases the maximum and 
average delays produced by the controller for a given 
set of analysis window attributes. They also show that 
majority voting increases this delay. However, the 
increase due to majority voting is much more pro-
nounced when disjoint windows are used than when 
overlapped windows are used. Additionally, while
increasing the number of votes increases the delay for 
a given analysis window length, it also increases the 
classification accuracy [2,16,18], which improves the 
robustness of the system, and reduces the effect of 
spurious incorrect classification decisions.

Figure 5.
Maximum controller delay (D) is shown for system that employs overlapped windows with no majority voting. Output of controller is shown as 
large number to far right of each window. Note that frequency of decisions indicated by tick marks on bottom of figure is increased when com-
pared with Figures 3 and 4.
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Therefore, my colleagues and I recommend 
overlapped windows because they reduce the 
maximum controller delay, reduce range of 
delays experienced by the user, and limit the 

increase in the controller delay introduced by 
majority voting. Therefore, in the examples that 
follow, the overlapped window strategy will be 
implemented.

Figure 6.
Maximum controller delay (D) is shown for system that employs overlapped windows with 3-vote majority-voting scheme. Three votes are 
shown as small numbers to right of analysis and computation windows. Top number of these three is shown in bold and represents current class 
decision. Output of controller (winner of majority vote) is shown as large number to far right of each window.

Table 1.
Worse-case, average, and best-case delay equations with delay ranges.

Classifier Type Worst-Case Delay Average Delay Best-Case Delay
Difference 

Between Best 
& Worst Cases

No Overlap, No 
Majority Voting

No Overlap, with 
Majority Voting

Overlap, No
Majority Voting

Overlap, With
Majority Voting

Note: Equations to estimate worst-case, average, and best-case controller delay as well as difference between best- and worst-case controller delays. General rule of 
thumb is that Tnew is approximately an order of magnitude less than Ta, meaning that users should experience more consistent delay with overlapped windows.
D = maximum delay between users intended movement and controller producing correct output class, n = number of majority votes, Ta = analysis window 
length,  = processing time, Tnew = amount of window overlap.
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PRACTICAL IMPLEMENTATION

As mentioned previously, some window attributes 
are related. The amount of window shift (Tnew) is 
related to the processing time (), which is based on 
the analysis window length (Ta) as well as the proces-
sor, memory, type of EMG features, algorithms used 
to extract EMG features/perform pattern recognition, 
and number of EMG channels. Therefore, the two 
variables under the designer’s direct control for a 
given feature set are the analysis window length (Ta) 
and number of majority votes (n). Once the Tnew and 
 are approximated for each analysis window length 
and feature set, the previously discussed equations 
can be used to calculate the number of majority votes 
that can be used to produce the desired controller 
delay (D). Both Ta and n can be varied to arrive at a 
number of combinations of analysis window lengths 
and majority votes that will produce the desired con-
troller delay. The controller designer should deter-
mine if any relative advantages exist when using a 
large window with a small number of votes or a small 
window with a large number of votes. However, pre-
vious work has indicated that no substantial differ-
ence exists between these two approaches with regard 
to classification accuracy [3,24]. This issue is dis-
cussed in more detail later.

COMPARISON TO PREVIOUS WORK

Englehart and Hudgins were one of a few 
groups who have examined the effect of analysis 
window attributes on real-time prosthesis control 
and used this analysis in their controller designs [3]. 
We greatly respect the decades of work that the 
group at the University of New Brunswick per-
formed in this area, and they should be commended 
for their awareness of the importance of this issue 
and their investigation into it. In a previous article 
[3], they proposed that the response time of a sys-
tem using majority voting would be

(For clarity, variable names have been converted to 
those used in this guest editorial.)

Comparing the previously reported approach 
(Equation 6) with the calculations performed using 
the methods described in this editorial (Equation 5) 
shows that the two methods give different estimates 
for the number of allowable votes (n) for a given 
combination of Ta, , and D. Note that for the data 
presented in Figures 7–8, the idealized case will be 
examined, in which the amount of overlap is 
exactly equal to the processing time (i.e., Tnew = ).

Figure 7 compares the two methods when the 
number of majority votes that could be used if the 
acceptable delay limit was 128 ms is estimated with 
the use of the processing time data from Englehart 
and Hudgins [3]. One can observe that these two 
methods differ substantially, especially when the 
analysis window lengths increase. For example, with 
a 256 ms analysis window, an acceptable delay of 
128 ms, and a processing time of 16 ms, the previ-
ously published work [3] would contend that 17 
votes could be used, while the analysis presented in 
this editorial would determine that a 128 ms delay 
with an analysis window of that size could not be 
guaranteed. If the equations derived here are applied 
to the prior work’s 17-vote estimate, the resulting 
predicted delay is 288 ms, which is more than double 
the desired delay.

The difference in the two methods results from 
the previously published work assuming that the 

Table 2.
Predicted best-case, average, and worst-case delays as well as delay 
range for four investigated classifiers. Overlapped approach is shown 
to substantially reduce maximum and average delays produced by con-
troller and reduce increase in delay created by majority voting.

Classifier Type
Worst-Case 

Delay
Average 
Delay

Best-Case 
Delay

Delay 
Range

No Overlap, No 
Majority Voting

235 160 85 150

No Overlap, with 
Majority Voting

385 310 235 150

Overlap, No
Majority Voting

97 91 85 12

Overlap, with 
Majority Voting

109 103 97 12

Note: Representative values Ta = 150 ms, Tnew = 12 ms,  = 10 ms, and n = 3 
votes (when applicable) were chosen for each analysis window attribute. 
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instant the EMG changed from Class 1 to Class 2, 
the classifier was producing a correct decision [3]. 
This editorial postulates that class changes cannot be 
detected instantaneously. A vast majority of the dif-
ferences between the two methods results from 
accounting for the time required to fill at least half of 
the analysis window with data from the correct class 
(noted by Chu et al. [25]). This time to fill the analy-
sis window is why the differences in the two methods 
increase with increasing analysis window length. 
Other differences between the two methods include 
the time needed to allow processing of the first analy-
sis window that produced a correct class decision and 
time for an additional vote that may be required if the 
change in class occurs one sample after halfway 
through the analysis window. Accounting for these 
three factors should allow one to estimate more pre-
cisely the number of majority votes required to 
achieve a desired controller delay.

EQUATION VALIDATION

After deriving the equations and comparing 
them to a previous work, my colleagues from my 
previous laboratory and I collected data from a sub-
ject to try to verify that our approach was realistic. 
We certainly realize that “one subject does not a 
study make,” but we believe the results provide 
compelling support for the derived equations.

A linear discriminant analysis (LDA) classifier 
with overlapping windows performed pattern recog-
nition on the root-mean-square amplitude of a single 
EMG channel. This feature was chosen to keep the 
classification process as simple as possible and avoid 
potential confounding effects from the classifier. A 
subject was instructed to produce a series of 4-sec-
ond-long contractions that alternated between two 
contraction classes. The subject produced constant 
extension of all four fingers for the duration of the 
trial and alternated between combining finger exten-
sion with either wrist relaxation or wrist extension. 

Figure 7.
Comparison of estimates of maximum number of majority votes that will 
create maximum controller delay of 128 ms for analysis windows of dif-
ferent lengths. Equations derived in this editorial give much more con-
servative estimates (*) than previously published work (), especially 
for larger analysis windows. (Source: Englehart K, Hudgins B. A robust, 
real-time control scheme for multifunction myoelectric control. IEEE 
Trans Biomed Eng. 2003;50(7):848–54. [PMID:12848352].) A large 
majority of differences between two methods are result of accounting for 
time required to fill at least half of analysis window with data from cor-
rect class.

Figure 8.
Average time from transition between contraction classes and classi-
fier producing correct output. Experimental data from 10 class transi-
tions is shown () as well as predicted delays using both methods 
described in this editorial () and by previous researchers (). (Error 
bars indicate standard deviations.) Equations described in this edito-
rial provide better estimates of average controller delay, especially 
with larger analysis windows.

http://dx.doi.org/10.1109/TBME.2003.813539
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These two movement classes were chosen because 
they occupy relatively similar portions of the feature 
space and therefore reduce the possibility of the fea-
ture set variances confounding the results. Two trials 
consisting of 10 repetitions each of the wrist exten-
sion movements were collected. The first set of 10 
contractions was used to train the classifier, and the 
second set was used to test the classifier. Then we 
repeated the procedure by switching the training and 
testing data sets to cross-validate the results. The 
changes in contraction classes were determined 
through a visual examination of the raw EMG signal.

The EMG data were used to calculate the time 
from the change in the contraction class to the classi-
fier producing the wrist extension class output for 
five different analysis window length and majority 
vote combinations (Figure 8). The combinations of 
analysis window lengths and majority votes were 
chosen with use of the previously derived equations, 
and each of these combinations was chosen to keep 
the controller delay below the 100 ms value (i.e., 
worst case is 100 ms) that Farrell and Weir [19] and 
Smith et al. [20] determined. Analysis window 
lengths of 160, 120, 80, 40, and 20 ms were investi-
gated along with their corresponding window shifts/
processing times and number of majority votes. Fig-
ure 8 also contains the estimated controller delays 
determined by the equation described in this editorial 
(Equation 5) as well as estimates using the previ-
ously published method (Equation 6).

Figure 8 shows that, for this specific example, 
methods described here () more accurately pre-
dicted the experimentally observed average prosthesis 
controller delay (). These equations predicted the 
controller delay more accurately than the previously 
published method (), especially for larger analysis 
window lengths. The wide standard deviations (error 
bars) shown in Figure 8 indicate that a substantial 
amount of variability was found across the 10 contrac-
tions. Our analysis did predict some variability in the 
controller delay; however, these predicted values were 
much lower than the observed data.

The increased variability in the delay was likely 
primarily due to the variability in the author’s esti-
mate of the timing of the class change. The variability 
in the class change estimate likely resulted from the 

transitory portions between the contraction classes not 
being nearly as consistent as the idealized step change 
between the EMG classes used to derive the equations. 
Even if the transition between classes had been 
included in the equations derived in this editorial, the 
estimate of the time of the change in class would have 
been a rigid one (e.g., the transition occurs halfway 
between the two steady state contraction classes) that 
could not have accounted for the fact that real EMG 
data are stochastic and their variability is difficult to 
model reliably. Also, the increase in variability could 
be a result of the real data being much less separated in 
the feature space than the theoretical data that were 
used to derive the equations. However, the equa-
tions appear to accurately predict the experimen-
tally observed average controller delay.

EFFECT OF WINDOW SIZE ON 
CLASSIFICATION ACCURACY

The equations derived here were shown to accu-
rately predict the classifier delay that will be intro-
duced into the system. However, a more important 
topic may be whether these combinations of analysis 
window lengths and majority votes produce different 
classification accuracies.

The effect of analysis window length on classifica-
tion accuracy was found to depend not only on analy-
sis window length but also on other variables as well. 
Previous research conducted by Farrell [24] and Far-
rell and Weir [26] has shown that the best combination 
of window length and number of votes can depend on 
the type of features extracted from the EMG signal. 
The impetus for this prior work was to examine the 
effect of electrode targeting and implantation on clas-
sification accuracy. Classification accuracies were cal-
culated for several different types of classifiers as 
subjects produced 12 different hand and wrist move-
ments. These classifiers included those that used 
EMG data from different types of electrodes, analysis 
window/majority vote combinations, feature sets, pat-
tern recognition mechanisms, and training data sets. 
Farrell [24] and Farrell and Weir [26] provide details 
of the methodology of these experiments.
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As part of this previous analysis, we calculated 
classification accuracies with the use of an LDA clas-
sifier using EMG data from each of four electrode 
conditions for the five analysis window/majority vote 
conditions shown in Figure 8. Since each of the four 
electrode conditions had similar trends, the average 
classification accuracies for the different window 
sizes using (1) only EMG amplitude metrics and (2) 
EMG amplitude measures combined with autoregres-
sive and time-domain features are shown in Figure 9.

Results showed that higher classification accura-
cies were obtained with the longer analysis windows/
smaller number of majority votes when additional 
EMG features were combined with amplitude meas-
ures (right side of Figure 9). This trend makes intu-
itive sense because the autoregressive models 
become more robust when they are created on a 
larger number of EMG samples. A repeated meas-
ures analysis of variance (ANOVA) conducted on the 
data shown on the right side of Figure 9 found that 
the 160 ms analysis window condition was statisti-
cally superior to all the other conditions. (Even 
though the standard error bars are relatively large, 
repeated measures ANOVAs can find small but con-
sistent differences between conditions.)

Alternately, when the amplitude measurements 
were not complimented by autoregressive and time- 
domain features, higher accuracies tended to be seen 
with smaller analysis windows (20 and 40 ms) and 
larger numbers of votes. For example, a repeated 
measures ANOVA conducted on the data shown on 
the left side of Figure 9 indicated that the 40 ms analy-
sis window length was statistically superior to the 80, 
120, and 160 ms windows but statistically equivalent 
to the 20 ms window.

I must stress that while the differences between 
the analysis window lengths are statistically signifi-
cant, the change in accuracy is quite small. While a 
1 percent change in accuracy may be statistically 
significant, whether this difference will have a nota-
ble effect on the user’s clinical performance is 
unclear. Previous studies have shown that prosthe-
sis performance is more than just a function of clas-
sification accuracy [27–29]. Therefore, based upon 
these data sets, my colleagues and I believe that the 
analysis window length/majority vote combination 

may ultimately have a relatively small effect on 
how the prosthesis performs during actual use.

These data demonstrate that different feature sets 
play a role in which analysis window length/majority 
vote combination produces the highest classification 
accuracy. Additionally, different classifiers (i.e., classi-
fiers other than the LDA used in these examples) could 
possibly produce different optimal window lengths. 
These observations indicate that the appropriate 

Figure 9.
Classification accuracies for each analysis window length/majority 
vote combination used to calculate data shown in Figure 8 for aver-
age of 4 different electrode conditions as users performed 12 different 
movement classes. Left cluster of plots shows accuracies when classi-
fier uses only electromyographic (EMG) amplitude metrics, while 
right shows accuracies resulting from amplitude measures along with 
time-domain and autoregressive signal features. (Source: Park KS. 
Effects of network characteristics and information sharing on human 
performance in COVE [master’s thesis]. [Chicago (IL)]: University 
of Illinois at Chicago; 1997.) Note that when additional signal fea-
tures are used, longer windows produce higher classification accu-
racy, while smaller windows perform better when only EMG 
amplitude metrics are used. Note: Nonzero y-axis is shown for clarity, 
and error bars show standard error. RMS = root-mean-square.
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combinations of analysis window length/number of 
majority votes for a given desired delay can be deter-
mined with the equations in this editorial, but the com-
bination of window length and majority votes that 
produces the highest classification accuracy should be 
determined empirically for each classifier.

DISCUSSION

The findings presented in this editorial demon-
strated that the delays present in a multifunctional 
prosthesis controller depend on a number of vari-
ables. The findings also demonstrated that it is essen-
tial to consider the length of the time required to fill 
the analysis window in addition to the other window 
parameters for one to accurately estimate the control-
ler delay.

Two potential limitations of the presented equa-
tions result from assumptions made to make the deri-
vation of the equations more tractable: (1) the 
transition between the contraction classes was instan-
taneous and (2) half of the analysis window needed 
to be filled with data from the new contraction class 
before the output of that window could be recognized 
as belonging to the new class. Obviously, an instanta-
neous change in contraction class does not occur, but 
the validation experiment showed this to be a reason-
able first-order approximation that produced accurate 
estimates of the controller delay.

Additionally, while the assumption appears rea-
sonable, it may not be true that half of the analysis 
window needs to be filled with data from the new 
contraction class before that window is recognized by 
the classifier as belonging to the new class. The LDA 
classifier that was used in the validation experiments 
was trained on strictly steady state data, and no thresh-
old was set for “how well” the output of a particular 
data window needed to match the training data from a 
particular contraction class. That is, there is no “default 
to off” for ambiguous classifications; the output of the 
classifier was simply the class which best matched the 
current window. In this case, to assume that half of the 
window needs to be filled with data from the new class 
makes sense, but this may not hold for other classifiers.

For example, if classifiers are heavily biased
toward the “off” class to attempt to avoid unintentional 

movements of the prosthesis, more than half of the 
analysis window may need to be filled with data from 
the new class so that the classifier is “sure” that a par-
ticular window of data belongs to a contraction class. 
Alternately, the off-class data may possibly be clus-
tered tightly around the origin of the feature space. 
Therefore, any small deviation from the origin may 
cause a particular window to be recognized as belong-
ing to a contraction class. This scenario may require 
less than half of the analysis window to be filled with 
data from the new class because filling only a small 
percentage of the window with nonrest data may cause 
the features to deviate from the origin of the feature 
space enough to be recognized as belonging to a con-
traction class. Both of these scenarios seem possible, 
which indicates that the controller delay may be 
affected by different characteristics of the classifier in 
addition to the analysis window attributes.

Equations that robustly and accurately relate
analysis window attributes to the induced controller 
delay would be useful for the designers of prosthesis 
controllers. While my colleagues and I believe that 
the equations presented in this editorial predict these 
delays better than previously published predictors of 
controller delay, it is only a first step. We believe that 
further study of the relationships between different 
control strategies and the delays imparted to real-time 
systems is essential.

CONCLUSIONS

Many researchers have made decisions about 
analysis window attributes with little regard for the 
overall delay created in the real-time system, and 
these delays should be considered and discussed in 
each article that is published on this topic. In this 
vein, this editorial provides quantitative assessment 
of the effect of various analysis window attributes on 
the range of delays that can be produced between the 
intended change in movement class and the control-
ler’s associated output decision for one type of 
controller. Equations were derived for systems that 
used overlapped versus nonoverlapped windows as 
well as those that did or did not implement majority 
voting. My colleagues and I recommend using an 
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overlapped window approach because it produces a 
more consistent controller delay and decreases the 
maximum delay produced by the controller. Addi-
tionally, majority voting was shown to increase the 
controller delay; however, since majority voting can 
increase classification accuracy, it may be worth the 
cost of the increased delay.

A preliminary validation was performed so that 
the derived equations could be verified to more 
accurately estimate the controller delay than previ-
ous efforts. The delay from a class change to the 
classifier output decision was shown not to be 
instantaneous. The delay is not simply a function of 
how fast the controller produces a new output but 
instead is a function of the length of the analysis 
window, the signal processing time, and the number 
of majority votes used.
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