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Abstract—This article describes the design and evaluation of
two comprehensive strategies for endpoint-based control of
multiarticulated powered upper-limb prostheses. One method
uses residual shoulder motion position; the other solely uses
myoelectric signal pattern classification. Both approaches are
calibrated for individual users through a short training proto-
col. The control systems were assessed both quantitatively and
qualitatively with use of a functional usability protocol based
on a dual-task paradigm. The results revealed that the residual
motion-based strategy outperformed the myoelectric signal-
based scheme, while neither strategy appeared to significantly
increase the mental burden demanded of the users.
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INTRODUCTION

Significant research has occurred in the past several
decades to achieve suitable solutions for the control of
prosthetic upper limbs [1]. Although the development of
advanced and sophisticated strategies has progressed
steadily for more distal amputation cases, very limited
improvements have occurred for more proximal amputa-
tion levels. This is due, in part, to the fact that the major-
ity of cases are below-elbow amputations while higher-
level amputations, such as shoulder disarticulation, are
less common [2]. The functional requirement of the pros-
thesis increases with the level of amputation, which leads
to a paradox for the control strategy because the number
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of available input sources decreases. As a result, the need
for a robust and intuitive strategy is most critical for
high-level amputation cases in order to regain some
acceptable level of function with the artificial limb.
Under ideal conditions, a synergistic relationship
could be developed between the neural activity of the per-
son with an amputation and the associated missing degrees
of freedom (DOFs). Invasive approaches, such as cortical
[3] or peripheral nerve [4] interfaces, show promise but are
years away from practical application. However, noninva-
sive alternatives have existed for several decades. These
alternatives include monitoring of either the movement of
a residual limb (or of another part of the body) or the elec-
trical activity accompanying voluntary contraction of one
or multiple muscles. A mode switch is often required to
select amongst the requisite DOFs if the number of control
sources is less than the number of DOFs to be controlled.
The most common form of input source and control
scheme for high-level upper-limb amputation is the use of
residual movements to drive cable-operated joints. This
body-powered method has been in use for many decades
and is currently the most clinically available option. Its

Abbreviations: DOF = degree of freedom, LDA = linear discrimi-
nant analysis, MES = myoelectric signal, TD = time domain.
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importance is amplified for high-level amputation cases
where the availability of robust input control sources is
often limited. Externally powered systems do exist in
which sensors, such as force-sensing resistors, joysticks,
linear transducers, and rocker switches, are activated by
the user’s residual motion. However, these can prove to be
cumbersome, nonintuitive means of control.

Control of powered devices with use of the myoelectric
signal (MES) originating from the residual limb and shoul-
der complex has had limited success [5-7]. Conventional (or
direct) control uses the amplitude of one or two muscles to
control each DOF and requires some mode switch to select
amongst multiple DOFs. Alternatively, pattern classification
schemes have been used with the MES in an attempt to cap-
ture the complex synergy in the shoulder musculature and
map this to multiple DOFs. Buerkle used a linear discrimi-
nant analysis (LDA) algorithm to classify eight shoulder
motions corresponding to fundamental anatomical DOFs
(shoulder flexion/extension, medial/lateral rotation, abduc-
tion, adduction, and transverse flexion/extension) [8]. The
hypothesis was that the ability to classify natural shoulder
contractions from the remaining musculature would provide
an intuitive means of controlling multiple DOFs at the
shoulder. This study demonstrated that these motions could
be classified with high accuracy but users had considerable
difficulty when performing functional tasks requiring the
use of multiple DOFs. This is likely because reaching and
positioning tasks require the execution of multiple anatom-
ical DOFs, either simultaneously or in sequence. Simul-
taneous control of multiple DOFs with use of an LDA
scheme is not yet possible, and sequential control was non-
intuitive for users and resulted in a considerable mental bur-
den during the experiment.

The clinical team’s selection of a control strategy will
depend heavily on the consideration of several design fac-
tors (patient’s musculature condition, range of motion,
learning ability, etc.) in order to obtain an appropriate
prosthetic rehabilitation plan [7]. Other design issues,
such as sensor orientation and output range, also require
some consideration before the fabrication of the prosthe-
sis because some level of final adjustments and modifica-
tions will invariably be required with any devised
solution. Ideally, it would be beneficial to have an initiali-
zation protocol by which some of these factors would be
considered and their associated implementation complex-
ity removed from the prosthetic-limb design stages.
Automatic tailoring of the system for factors such as the
user’s range of motion, the sensor type, positioning, and
output range would speed up the clinical fitting process.

Devising alternative methods of using shoulder motion
to produce robust input sources will be necessary for intu-
itive and natural control of a prosthetic limb. Previous
research has illustrated users’ ability to manipulate a pros-
thetic device by using an endpoint control system [9-13].
Unfortunately, these systems lacked the ability to be auto-
matically optimized based on the characteristics of the user
and prosthetic limb. The inclusion of such a feature could
have resulted in some of the reported implementations
being made into clinically viable solutions.

This work describes two new self-adjusting input
strategies for the endpoint control of a prosthetic system in
high-level amputation cases. Qualitative and quantitative
measures, used to investigate the strategies’ efficacy and
associated mental burden, are developed and presented.

METHODS

Two endpoint control schemes were investigated in
this work. Two novel methods of determining shoulder
motions were developed:

1. An MES classification scheme that classifies physi-
ologically intuitive shoulder motions.

2. A robust mapping of residual shoulder motion.

These methods provided the intended shoulder motion;
to realize an endpoint control scheme, we iteratively
resolved the shoulder, humeral, and elbow angles by using
an inverse kinematic solution. This required that a Jacobian
inverse be calculated and used with the endpoint position,
whose value is continuously modified by the intended
shoulder motion output values.

MES-Based Classification Strategy

Simple contractions, which were deemed to be intu-
itive and physically achievable for people with high-level
amputations, were chosen to improve the chances of
developing a practical MES-based classification strategy.
Unlike previous work that only used contraction relating
to humeral movements [14], the MES strategy used con-
tractions elicited during performance of more physiologi-
cally relevant shoulder-girdle movements. The four different
discrete shoulder-girdle movements selected were elevation,
protraction, depression, and retraction. In addition, the mus-
cle contractions related to both internal and external humeral
rotations were included in the motion set, along with a no-
movement class.
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An LDA classification scheme was chosen, given
that previous research has shown it capable of providing
a simple yet robust MES-based pattern-recognition strat-
egy for the control of prosthetic limbs [15]. A feature set
consisting of time domain (TD) statistics, used previ-
ously in real-time MES control schemes [15-17], was
also selected for the MES-based strategy. Included in the
TD set are the number of zero crossings, the waveform
length, the number of slope sign changes, and the mean
absolute value for a given data window.

Shoulder Position-Based Strategy

A shoulder position-based input strategy, termed “vec-
tor projection,” was developed to adapt to several user and
input sensor variables based on a short data collection pro-
tocol performed before use of the prosthetic limb [18]. The
vector-projection algorithm addresses the issue of auto-
matic system calibration by transforming the input sensor
signals based on residual shoulder-girdle motion data col-
lected during a short training session. The training motions
provide the necessary information for calculation of a state
centroid and vector for each of the corresponding motions
within the input signal space (Figure 1).

These state vectors are computed for each desired
motion. Note that the range of motion and absolute orien-
tation for each state have been incorporated into the mag-
nitude of its associated vector. This results in the removal
of dependencies associated with the input sensor type,
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orientation, range, and alignment chosen by the clinical
fitting team.

The implementation of real-time control involves
computing a vector of the current shoulder position
(OCurrent) with respect to the neutral (rest) state (ORest)
(Equation 1):
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The magnitude of this vector and the angles between
it and the adjacent state vectors can be computed with
standard geometry. These vectors can also be projected
onto any of the state vectors (Figure 2); the projected
result represents the normalized input vector magnitude
for the given state x (Equation 2):
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Two tunable coefficients for each state vector, with
values ranging from O to 1, allow a clinician to further
tailor the output signals while fitting the prosthetic limb.
The first coefficient, termed “magnitude coefficient,” sets
a region of no activity near the rest-state centroid such
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Figure 1. Simultaneous projection of input vector onto adjacent class vectors. C =

State vector diagram for vector-projection algorithm. C = centroid,
\/ = vector.

centroid; d = normalized magnitude; &= angle between current input and
adjacent state vectors, normalized magnitude; \/ = vector.
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that no inadvertent output activations occur. The second
coefficient, termed “offset coefficient,” reduces the effec-
tive output signal amplitude as the angle between the
input and state vectors increases. These coefficients pro-
vide the information necessary to transform the original
input sensor values into more meaningful control-system
inputs with increased robustness (Figures 3-4). As can
be seen in Figure 3, the use of a small magnitude coeffi-
cient will reduce the range of the inactive rest state.
Using a larger magnitude coefficient, as seen in Figure
4, increases the necessary shoulder displacement
required to generate an output signal for the given state
(elevation in this case). This necessitated increase in
shoulder displacement may be desirable to ensure that
unintentional activations do not occur as a result of minor
displacements when the user is at rest. Also, the use of a
large offset coefficient (Figure 3) will minimize the
weakening effect imposed on the output signal’s ampli-
tude as the angle between the input and state vectors
increases. Using a smaller offset coefficient value (Fig-
ure 4) allows for a smaller active area, which may or may
not be desirable depending on the user’s range of motion
and, more importantly, ability to reproduce the desired
movement.
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Figure 3.

Elevation state output strength when magnitude and offset coefficients
are setto 0.1 and 0.5, respectively.

Dual-Task Functional Testing

We devised a dual-task paradigm to provide possible
insight into how much effort and concentration the user
would require to effectively control the endpoint of a pros-
thetic limb using one of the two described input strategies.
This is accomplished by periodically requiring a user to per-
form a secondary task concurrently with a primary task [19].

The primary task consisted of a three-dimensional
reaching task within the prosthetic device’s workspace.
Protraction and retraction motions controlled the forward
and backward movements of the manipulator’s endpoint.
Elevation and depression motions were mapped to the
upward and downward motions. Finally, the internal and
external humeral rotations controlled the left and right
movements. In the case of the shoulder position-based
strategy, an MES-based classifier, based on internal and
external humeral rotation, provided the additional input
sources required to operate the usability test’s endpoint
control scheme. Note, however, that such a classifier
could be replaced by other means of measuring the
humeral rotation [20] as they become available.

The secondary task consisted of a reaction assessment
task and captured a measure of the mental burden associated
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Figure 4.
Elevation state output strength when magnitude and offset coefficients
are set to 0.5 and 0.3, respectively.
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with the primary task. An experimental apparatus was
designed and fabricated with the intended purpose of—

« Acquiring both shoulder position and MES originat-
ing from the shoulder complex.

 Providing a manipulator device capable of handling
endpoint control.

* Quantitatively measuring the input strategy perform-
ance for gross movement tasks.

 Quantitatively capturing some measure of mental burden.

Primary Task: Usability Test

The goal of the usability test was to evaluate each
input strategy’s ability to control the position of an end
effector during a reaching task. As a result, we preferred
to solely concentrate on evaluating the gross movement
of the manipulator rather than focusing on fine manipula-
tion displacement, because these would normally be
linked to the DOFs of a prosthetic limb’s hand and wrist
components. The inverse kinematics algorithm required
to calculate the desired endpoint position uses the
device’s current joint angles to successfully converge to
the new joint angle values. Given that no commercially
available prosthesis provides the necessary positional
feedback for such an implementation, a servo-based
manipulator was designed and used for the experiment
(Figure 5). The control strategy’s output signals were
transmitted to the manipulator embedded control system
to actuate its servomotors.

Users were required to press target buttons by con-
trolling the manipulator using one of the input strategies.

S Transverse Flex/Ext

Shoulder Flex/Ext

Humeral Rotation

Elbow Flex/Ext

Primary
Reaction
Button

Secondary

Reaction
Button @

Figure 5.
Experimental apparatus setup. Flex/Ext = flexion/extension.
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A trial consisted of moving the manipulator to (1) press
the illuminated start button, (2) press the randomly
selected illuminated target button, and (3) repeat the pro-
cess until instructed otherwise.

Secondary Task: Reaction Test

The purpose of the reaction test was to periodically
introduce a secondary task in the experiment that allowed
for quantitative measurement of the user’s mental bur-
den. It included two push buttons and a buzzer that would
instruct the user when to perform the secondary task. The
users were required to rest their left hand by pressing the
nearest reaction button located in front of them. During
the course of the trial, the buzzer would activate, which
indicated to the users to release the currently pressed
reaction button, press the secondary reaction button, and
return their hand back to a resting position by re-pressing
the primary reaction button.

The reaction test was not activated for every target
used in the primary task. The prompting of the secondary
reaction task was randomized in an attempt to avoid any
user anticipation during the course of the experiment. A
random time delay (varying between 0 and 2 seconds)
was also added before the start of the secondary task to
further reduce the user’s ability to anticipate the com-
mencement of the reaction test. The mental-burden met-
ric used for the data analysis is expressed as the
difference between the time (T) to depress the primary
button when performing both the reaction and usability
tests and the time to depress the same button when solely
performing the reaction test (Equation 3):

A =T

Reaction Reaction During Usability Test TReacliouOl]ly

3

EXPERIMENTAL PROCEDURE

The experiment consisted of one session during which
subjects were fitted with eight silver-silver chloride
Duotrode electrodes (6140, Myotronics; Kent, Washing-
ton) placed at physiologically relevant locations (Figure 6)
for the desired shoulder-girdle movements. A reference
electrode (2259, 3M Health Care RedDot; St. Paul, Minne-
sota) was placed on the clavicular bone region midway
between the sternum and acromion. A second similar elec-
trode was placed on the acromion bone landmark and was
used to attach the joystick connector (Figure 7). Note that
previous research has shown that the longitudinal place-
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Figure 6.
Electrode (1-8) placement diagram. Source: Gray H. Anatomy of the human body. Philadelphia (PA): Lea & Febiger; 1918. p. 409, 433, 436, 438.

Figure 7.
Experimental setup: (a) Joystick apparatus used to capture movements used by shoulder position-based strategy and (b) subject setup for humeral
rotation isometric contractions.
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ment of electrodes does not improve classification accu-
racy over transverse placement [21]. As a result, one
electrode was positioned transversely over the rhomboid
region to maximize its pickup area.

Twelve nondisabled, healthy, male individuals rang-
ing in age from 25 to 33 were recruited to participate in
this experiment. Each subject was required to provide
informed consent before participating in the experiment.
The University of New Brunswick Research Ethics
Board approved the experimental procedure used for this
research. Each subject was given a general overview of
the purpose of the experiment. The data collection pro-
cess was also described in detail since most subjects had
no prior experience with MES data collection. The data
collection protocol used for each strategy has previously
been reported in literature [18,22]. The testing of a given
input strategy was performed immediately following its
associated training data collection session. The partici-

LOSIER et al. Dual-task paradigm to evaluate prosthetic-limb control

pants practiced moving the manipulator for 5 minutes
with the input strategy. The order in which the input strat-
egies were presented was randomized to negate any
learning effects associated with the experiment. Three tri-
als were completed for each input strategy.

RESULTS

The principal objective of this experimental test was
to obtain quantitative and qualitative outcomes from the
input strategies under consideration. Figure 8 shows the
averaged usability test outcomes for each subject, where
time refers to the average time required to reach the but-
tons during the usability test. The data were subjected to
a one-way analysis of variance to investigate statistical
significance. A p-value of less than 0.001 was found,
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Figure 8.

Usability performance of input strategies for each subject. Subject identifiers (Ids) were renumbered to provide monotonically decreasing data

curve. MES = myoelectric signal.
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indicating that the vector-projection input strategy was
significantly better than the MES-based strategy.

The purpose of evaluating the reaction test outcomes
was to measure the additional mental load associated with
performance of the functional test. Previous research has
used secondary tasks as a means of increasing the mental
burden during performance of a usability task [13,23-24].
Using this method provided a measure of the mental load
associated with the primary task. The experimental results
(Figure 9) did not reveal any significant difference
between the two strategies (p = 0.29). The addition of the
secondary task did not significantly affect the results from
the usability test.

Qualitative results, obtained through a short series of
questions to the user, were also recorded upon completion
of the experiment. Users were asked their preferred input

strategy after completing the entire experiment. The user
group mainly favored the shoulder position-based strategy
(83%) over the MES-based classifier input strategy. Users
also reported fewer nonelicited manipulator actuations
with the shoulder position-based strategy. These findings
corroborate the experiment’s quantitative results.

DISCUSSION

This research demonstrated that various input sources
could be exploited to produce effective adapting strate-
gies that provide a means of automatically calibrating and
optimizing the signals used in the control scheme of a
prosthetic-limb system. Although using a servo-based
manipulator to measure and quantify both usability and
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mental burden metrics is difficult, the experiment tested
the usability of the system to reach fixed endpoint posi-
tions. It highlighted the ability of both strategies to use an
endpoint control scheme without increasing the mental
burden of the user. The strategies also facilitated the intu-
itive mapping of the user’s residual movement with the
functional space in which a prosthesis can operate.

Ongoing work has focused on the implementation of
the shoulder position-based algorithm on an embedded
microcontroller. Preliminary results have shown the embed-
ded prototype to be compatible with commercially available
prosthetic devices. The device is restricted to traditional
control paradigms given that commercially available pros-
theses do not provide the necessary position feedback
required for an endpoint control strategy. Despite this limi-
tation, the automatic tailoring nature of the system has made
it a viable option during the clinical fitting process.

CONCLUSIONS

This research exploited the multiple input sources
found at the shoulder complex for the control of pros-
thetic limbs with high-level amputation cases. Both pre-
sented strategies were shown to provide an intuitive and
robust means of control and have great potential for prac-
tical implementation. The investigation of the functional
usability of the control strategies revealed that the shoul-
der position-based method outperformed the MES-based
scheme, while the reaction tests showed that both strate-
gies added little increase to the mental burden imposed
on the user. A preliminary fitting has been done with a
shoulder disarticulation client using an Otto Bock pros-
thesis, with very encouraging results. Ongoing work is
focused on the simplification and standardization of the
vector-projection approach so that it may be easily imple-
mented into any system and thereby accessible to the
prosthetic rehabilitation strategy of suitable candidates.
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