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Abstract—Upper-limb amputation can cause a great deal of 
functional impairment for patients, particularly for those with 
amputation at or above the elbow. Our long-term objective is to 
improve functional outcomes for patients with amputation by 
integrating a fully implanted electromyographic (EMG) 
recording system with a wireless telemetry system that com-
municates with the patient’s prosthesis. We believe that this 
should generate a scheme that will allow patients to robustly 
control multiple degrees of freedom simultaneously. The goal 
of this study is to evaluate the feasibility of predicting dynamic 
arm movements (both flexion/extension and pronation/supina-
tion) based on EMG signals from a set of muscles that would 
likely be intact in patients with transhumeral amputation. We 
recorded movement kinematics and EMG signals from seven 
muscles during a variety of movements with different com-
plexities. Time-delayed artificial neural networks were then 
trained offline to predict the measured arm trajectories based 
on features extracted from the measured EMG signals. We 
evaluated the relative effectiveness of various muscle subsets. 
Predicted movement trajectories had average root-mean-square 
errors of approximately 15.7° and 24.9° and average R2 values 
of approximately 0.81 and 0.46 for elbow flexion/extension 
and forearm pronation/supination, respectively.

Key words: amputation, artificial neural network, control, 
electromyographic, myoelectric, myoelectric control, pattern 
recognition, prosthesis, prosthetic limb, transhumeral.

INTRODUCTION

Upper-limb amputation can cause a great deal of 
functional impairment for the estimated 41,000 individu-
als in the United States living with major upper-limb loss 

(i.e., excluding loss of only fingers) [1]. While a person 
may choose to wear only a passive or cosmetic prosthesis 
in place of the amputated arm segments, active prosthe-
ses are capable of restoring function beyond acting as an 
opposition device. Body-powered prostheses are pow-
ered and controlled by gross body movements. These 
movements, usually of the shoulder, upper arm, or chest, 
are captured by a harness system attached to a cable that 
is connected to a terminal device (or, depending on the 
level of amputation, to a prosthetic wrist and/or elbow 
system). Electrically powered prostheses use small elec-
trical motors rather than motion of other body parts to 
power movements of the terminal device (hand or hook), 
wrist, and elbow. Such systems are frequently controlled 
by recording electrical signals—known as myoelectric 
signals (MES) or electromyographic (EMG) signals—
generated by the contractions of residual muscles using 
electrodes placed on the surface of the skin over the mus-
cles, but they can also be controlled by body movements 
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by using linear potentiometers, buttons, force-sensitive 
resistors, or switches. The goal of this work is to evaluate 
the feasibility of achieving EMG-based, simultaneous, 
multiple-joint control of transhumeral prostheses. This is 
part of a larger effort to integrate fully implanted EMG 
recording with a wireless telemetry system that commu-
nicates with the patient’s prosthesis.

EMG signals have proven to be effective command 
sources for the control of externally powered upper-limb 
prostheses. Most commercially available prosthetic sys-
tems use a relatively simple control scheme, whereby the 
amplitude of EMG signals recorded from two sites 
beneath the socket are used to actuate one of the motors 
embedded in the prosthesis. This allows only a single 
degree of freedom (DOF) to be operated at a time and 
requires a mode switch to transition between operating 
the various DOFs of the system. Normal human arm 
functions use coordinated, simultaneous movements of 
the hand, wrist, and elbow to interact with the environ-
ment. These coordinated, simultaneous patterns of move-
ment are particularly prevalent in many activities of daily 
living (ADLs) such as feeding and grooming. When con-
trasted with normative arm function, the sequential con-
trol method seen in prosthetic arms can be frustratingly 
slow and unnatural. While there has been a great deal of 
recent development in the mechanical design of pros-
thetic arms [1], a highly articulated limb is of little use if 
its movements are not well coordinated or if it is difficult 
to operate.

Approximately 20 percent of all individuals with 
upper-limb amputation never seek out a prosthesis, and 
as many as half of those who do receive a prosthesis will 
ultimately abandon the technology [2]. A number of rea-
sons exist for this poor compliance rate; several are 
related to the perception that the functional gain is lim-
ited relative to the awkwardness of the available control 
interfaces and the accompanying poor performance of the 
prosthesis. To improve functional outcomes for individu-
als with high-level upper-limb amputation, researchers 
must develop a more sophisticated approach to MES con-
trol. There are two general goals for these refined meth-
ods: (1) more information must be extracted from the 
EMG signals, and (2) a controller should simultaneously 
identify all intended motions of the patient [3].

Feature extraction and other advanced signal pro-
cessing techniques have been applied extensively to MES 
control problems to increase the information yield from 
EMG signals. Schemes to identify intended movements 

have been developed that rely on features such as simple 
time-domain statistics [4], autoregressive coefficients [5], 
and wavelet coefficients [6] to extract information from 
EMG signals relevant to the motion intent of a patient. 
Another approach for obtaining more information for 
inferring movement intent is to increase the number of 
muscle EMG signals that are recorded. Commercially 
available upper-limb prostheses typically include just 
two EMG recording channels, which are usually applied 
to antagonist muscles (e.g., biceps and triceps) to control 
one prosthesis DOF at a time. Research systems have 
evaluated the use of significantly more EMG channels. 
As early as the 1970s, researchers demonstrated that the 
use of multicontact electrode recordings (i.e., 8 to 10 
EMG channels) with appropriate control schemes was 
able to improve a system’s ability to distinguish as many 
as 10 distinct types of movement, with accuracies rang-
ing from 70 to 98 percent [7].

Current MES control systems typically employ bipo-
lar surface recordings because the electrodes are noninva-
sive, inexpensive, and readily incorporated into the socket 
of the prosthesis. However, surface electrodes also have a 
number of drawbacks, including a limited ability to selec-
tively record from different muscles, changes in signal 
magnitude and frequency content caused by changes in 
the skin-electrode interface associated with environmen-
tal and physiological conditions (e.g., skin moisture), and 
difficulty achieving consistent day-to-day electrode place-
ment. Intramuscular EMG recordings would potentially 
address these limitations and be particularly attractive 
if paired with an implanted recording and telemetry sys-
tem that eliminated all cabling and physical connections. 
Such a system would also have the benefit of accessing 
not only muscles directly beneath the socket but also 
deeper muscles and muscles that are distant from the site 
of amputation. Implanted EMG recordings have been 
used successfully for functional electrical stimulation 
applications [8–9] and are being pursued for upper-limb 
prosthesis applications [10]. While no increases in the 
accuracy of transradial pattern-recognition–based classifi-
ers have been demonstrated when using intramuscular 
EMG recordings in acute laboratory experiments [11–12], 
it is important to note that these findings may not hold for 
other levels of amputation. Even for transradial prosthe-
ses, many of the clinical advantages of intramuscular 
recordings described previously would only be apparent 
in long-term evaluations, which have been outside the 
scope of previous studies.
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A number of different approaches have been taken to 
design a “controller” that maps features from the EMG 
signals to the desired movements of the prosthesis. Dis-
crete limb-movement types or “states” (e.g., elbow flexion 
vs extension) are often identified using pattern-recognition 
approaches such as linear discriminant analysis [13], 
fuzzy logic [14–15], and artificial neural networks 
(ANNs) [4,16]. Alternatively, ANNs have been used to 
predict continuous movement trajectories using EMG sig-
nals rather than discrete states. The continuous prediction 
of trajectories has the potential advantage of allowing 
coordinated and simultaneous control of multiple DOFs in 
a natural manner. Cheron et al. demonstrated that a 
dynamic, recurrent ANN using EMG recordings from sev-
eral relevant shoulder and elbow muscles directly as 
inputs (rather than extracted features of the EMG) could 
be trained to predict arm endpoint trajectories [17]. Sebe-
lius et al. demonstrated ANN prediction of hand and wrist 
movement trajectories in the control of a virtual hand [18]. 
Au and Kirsch developed a time-delayed ANN (TDANN) 
that used EMG signals from several shoulder and arm 
muscles to predict three shoulder motions and elbow 
flexion/extension (FE) [19]. While the aim of Au and Kir-
sch was to investigate an approach to developing 
advanced control systems for restoring shoulder and 
elbow movements to individuals with tetraplegia using 
functional electrical stimulation of paralyzed muscles, the 
results are also directly relevant for above-elbow prosthe-
ses. Au and Kirsch predicted the four joint angles with 
average root-mean-square errors (RMSEs) of <20°, estab-
lishing that muscles in the upper arm and shoulder contain 
significant information related to elbow and shoulder 
kinematics. Control of wrist rotation (i.e., forearm prona-
tion/supination [PS]) as well as elbow FE must demon-
strate complete user interface for transhumeral prostheses, 
which will likely require a different set of muscle EMG 
recordings.

The work presented here specifically investigates the 
use of TDANNs to predict dynamic arm movements 
(both FE and PS) based on EMG features extracted from 
a set of muscles that would be available to an implanted 
system for patients with transhumeral amputation. We 
evaluated the efficacy of using different numbers of mus-
cle EMG signals and the relative advantages of recording 
from specific muscles in predicting the continuous move-
ment of two arm motions. Finally, we explored the design 
of an optimal TDANN that would be used to implement 
an advanced MES controller.

METHODS

Subject Information
Five nondisabled male subjects between the ages of 

24 and 30 took part in this study. All subjects gave 
informed consent to the procedures as approved by the 
MetroHealth Medical Center Institutional Review Board.

General Approach and Experimental Setup
Figure 1 summarizes the overall approach used in 

this study. We conducted experiments in which we simul-
taneously recorded upper-limb kinematics and EMG sig-
nals during a series of arm movements performed by 
nondisabled subjects (Figure 1(a)). TDANNs were then 
trained offline to predict measured arm trajectories based 
on features extracted from the measured EMG signals 
(Figure 1(b)).

Motion Data Acquisition
An Optotrak Certus motion capture system (Northern 

Digital Inc; Waterloo, Canada) with two position sensor 
units recorded the three-dimensional motions of the arm 
(Figure 1(a)) as has been previously described [20]. We 
fixed light-emitting diode (LED) marker clusters over the 
upper arm and forearm to track the motion of the body 
segments. During each trial, the subject was positioned in 
such a way that arm movements throughout the work-
space were unobstructed and at least one of the sensor 
units could view each marker cluster. We established the 
positions of a set of bony landmarks relative to the posi-
tions of the marker clusters by palpating and digitizing 
the locations of these points using the LED-instrumented 
stylus provided with the Optotrak Certus motion capture 
system. The Optotrak Certus motion capture system soft-
ware then automatically calculated the global positions of 
these bony landmarks for each frame. Subjects performed 
several movements as data were collected, including 
(1) single-joint movements, (2) multiple-joint move-
ments, and (3) a set of simulated ADLs. During each sin-
gle-joint movement trial, either FE or PS were performed 
cyclically with the shoulder in one of three distinct pos-
tures: at the subject’s side, abducted 90°, or flexed 90°. 
Additional pronosupination single-joint movement trials 
were collected with the arm at the subject’s side and the 
elbow flexed 90°. Subjects subsequently repeated all sin-
gle-joint movement trials while holding a mass of 1 kg in 
the hand. Multiple-joint movement trials included serial 
movements (e.g., shoulder abduction, then elbow flexion, 
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then supination, then pronation, then elbow extension, 
then shoulder adduction), simultaneous movements (e.g., 
simultaneous elbow flexion and supination followed by 
simultaneous elbow extension and pronation), and 
reaches toward imaginary points in space that spanned the 
workspace of the arm (returning the arm to the initial 
position on an armrest between consecutive reaches). The 
simulated ADLs included feeding, hair brushing, and 
opening a door. All kinematics were recorded at 30 Hz.

Electromyographic Signal Acquisition
EMG signals were recorded from seven muscles for 

each subject: brachialis, biceps, medial head of triceps, pos-
terior deltoid, anterior deltoid, middle deltoid, and clavicular 
pectoralis major. A physician inserted bipolar percutaneous 
(“fine-wire”) intramuscular electrodes (0.05 mm diameter 
insulated nickel alloy wires with exposed tips for recording) 
into the belly of the brachialis. The brachialis EMG was 
recorded intramuscularly because it is inaccessible from the 
surface. Intramuscular electrode placement was verified by 
observing EMG activity during manual muscle tests in 
which the subject attempted to (1) flex the elbow against 
resistance with the forearm fully pronated, then with the 
forearm fully supinated, and (2) supinate the forearm 

against resistance with the elbow flexed slightly. The elec-
trode was concluded to be in the correct location if there was 
(1) no significant change in the EMG amplitude between 
flexing the elbow with the forearm pronated compared with 
flexing the elbow with the forearm supinated and (2) no 
increase in activity as the subject supinated the forearm. 
Failure of either of these tests would be consistent with the 
electrode being in deep portions of the biceps rather than the 
brachialis. When this occurred, the physician advanced the 
cannula deeper into the arm and the tests were repeated to 
verify placement in the brachialis. Two disposable 2.2 cm2

surface electrodes placed approximately 2.5 cm apart (cen-
ter-to-center) over the belly of each muscle obtained differ-
ential surface EMG recordings from the remaining six 
muscles. The exact locations were determined by palpation 
and visual inspection, consistent with the methods outlined 
in an EMG reference [21]. All EMG signals were amplified, 
alternating-current coupled, and low-pass filtered with a 
1 kHz cutoff using CED amplifiers (model 1902, Cam-
bridge Electronic Design Limited; Cambridge, United 
Kingdom) and then sampled at 2.5 kHz with a data acquisi-
tion card (PCIM-DAS1602, Measurement Computing Cor-
poration; Norton, Massachusetts) installed in a computer 
running xPCTarget (MathWorks; Natick, Massachusetts).

Figure 1.
(a) Movement kinematics and electromyographic (EMG) signals recorded during variety of movements from several muscles in nondisabled
upper arm and shoulder. (b) Block diagram of study approach. Time-delayed artificial neural networks were trained to predict measured move-
ment trajectories based on features extracted from measured EMG signals. (c) Definitions of joint angles in this study. FE = flexion and exten-
sion of elbow, PS = pronation and supination of forearm.
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Proprietary Optotrak software (Northern Digital Inc) 
recorded the positions of the bony landmarks of the arm 
during these trials. A custom MATLAB/xPCTarget inter-
face (MathWorks) was used for visualization of EMG 
signals, synchronization of EMG and motion acquisition 
with a hardware trigger, and data storage. Approximately 
50 to 60 movement trials were recorded during each ses-
sion. In total, each experiment lasted about 4 hours, 
including rest time between trials.

Data Processing
The digitized EMG data sets were then processed 

offline by filtering, windowing, and extracting signal fea-
tures. The raw signals were high-pass filtered with a 
fifth-order Butterworth digital filter with a cutoff fre-
quency of 10 Hz to remove movement artifacts. Several 
features were then extracted from 320-sample (128 ms) 
rectangular windows of these signals with 50 percent 
overlap between adjacent segments, producing an effec-
tive sample time of 64 ms. The time-domain statistics 
described by Hudgins et al. were used [4]. Specifically, 
the mean absolute value, waveform length, number of 
zero crossings, and number of slope sign changes were 
extracted from each window, generating a four-element 
feature set for each EMG channel.

The locations of the LED markers measured by the 
Optotrak Certus motion capture system were processed 
(relative to known bony landmark locations) to obtain the 
orientations of the humerus and forearm, and then the 
various joint angles of the arm from each movement trial. 
To do this, we used the locations of the bony landmarks 
used to generate local coordinate systems attached to 
each bone segment. The relative orientations of these 
local bone coordinate systems were used to compute the 
elbow FE and forearm PS joint angles. FE is defined as 
0° when the elbow is fully extended, while PS is defined 
as 0° when the forearm is fully supinated (Figure 1(c)). 
The joint angle trajectories were then digitally upsampled 
with linear interpolation from 30 Hz to 2.5 kHz (to match 
the sampling frequency of the raw EMG). After upsam-
pling, the joint angles were then windowed exactly as the 
raw EMG signals (i.e., 320-sample rectangular windows 
with 50% overlap between adjacent segments). The aver-
age joint angle values were extracted from each window, 
effectively downsampling the motion data such that its 
sample time matched that of the EMG features.

Neural Network Training and Testing
We investigated using a TDANN to predict FE and 

PS joint-angle trajectories based on EMG information 
obtained from muscles that should be intact and available 
in patients with transhumeral amputation. We used a two-
layer feed-forward structure with a nonlinear tangent-
sigmoidal activation function for the hidden layer and a 
linear output layer. This structure is known to be capable 
of characterizing any static nonlinear relationship [22], 
such as that between EMG and muscle force or joint 
position. The use of delayed input signals enables the 
neural network to capture dynamic input-output proper-
ties and account for the delay between onset of EMG 
activity and mechanical arm movement. TDANNs have 
the additional advantage of rapid training time when 
compared with dynamic neural networks with recurrent 
connections. All TDANNs were trained using MAT-
LAB’s Neural Network Toolbox (MathWorks).

We used several strategies during TDANN training to 
achieve good generalization, despite expected variations in 
the muscle activation patterns over time caused by small 
changes in movement strategy and fatigue. We used a 
repeated, random subsampling method for cross-validation. 
This method randomly splits the data set into training and 
testing data—here, we randomly selected 10 to 12 trials as 
the independent test data set and used the remaining trials 
for training. The process was constrained such that each test 
set was guaranteed to have representative trials (randomly 
selected for each split) from each of the four categories of 
movement—single-joint movements with no load, single-
joint movements with load, simultaneous and sequential 
movements, and simulated ADLs. The remaining trials 
(which comprised the training data set) were then used to 
train the neural network. All trials in the training set were 
split such that only the first 80 percent of each trial was pre-
sented to the backpropagation algorithm. We used the 
remaining data (i.e., the last 20% of each trial in the training 
set) during training to monitor the TDANN’s ability to 
generalize to novel inputs and prevent memorization. Thus, 
we stopped the training when the error for this subset of 
training data did not improve or increase for 50 consecutive 
training iterations. All networks were trained in batch 
mode. The weights of the network with the minimum train-
ing error were saved as the final network structure. We sub-
sequently used the testing data set to evaluate the predictive 
ability of the trained network on novel inputs. This process 
was repeated five times (i.e., a 5-split cross-validation). 
Each network was trained two different times to account for 
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different random initialization weights. We used the net-
work with better performance in subsequent analyses. All 
results reported in this article are the cross-validated aver-
ages over the five splits of the network.

The number of neurons used in the hidden layer was 
varied systematically between 5 and 80 while we moni-
tored the prediction error. We also investigated using a 
variable time history of the EMG features as inputs to the 
TDANN. To determine the extent of the time history of 
the features required to most accurately predict the joint 
angles, we varied the number of delays from 1 to 15 (64–
960 ms). The goal was to find the smallest TDANN capa-
ble of providing good prediction results, which would pre-
vent memorization of the inputs and allow efficient, real-
time implementation in a prosthetic limb in the future. 
Selecting a “simpler” TDANN also avoids the degradation 
in performance one would expect in larger networks 
because of their increased dimensionality and the limited 
amount of training data. The maximum number of 
TDANN training iterations and the minimum error goal 
were chosen heuristically based on the performance 
observed during training. The performance of all the 
trained networks was quantified as the ability to predict 
the joint-angle data from the testing data set. The good-
ness of fit of the TDANN was summarized by the RMSE 
and the coefficient of determination (R2) between the 
experimentally recorded joint-angle trajectories and the 
corresponding trajectories predicted by the TDANN. 
RMSE is in physical units (in this case, degrees) and thus 
has more direct functional implications. R2 is a normalized 
goodness of fit measure that indicates the correspondence 
between actual and predicted joint trajectories regardless 
of their magnitude.

We used a two-way repeated-measures analysis of 
variance (ANOVA) with the number of hidden layer neu-
rons and the number of input delays as factors to deter-
mine whether changing the structure produced significant 
changes in network performance. Separate analyses were 
run with each of the performance metrics (described previ-
ously) as the response variables. Multiple comparisons 
with Bonferroni corrections ( = 0.05) were employed 
post hoc to identify which architecture was just large 
enough for accurate joint-angle prediction. This architec-
ture was used for all remaining analyses. After identifying 
an appropriate architecture, we used a one-way repeated-
measures ANOVA with multiple comparisons and Bonfer-
roni corrections to determine whether the performance 

was consistent across all categories of movements 
included in the study.

Muscle Subset Selection
While the EMG signals were recorded from a total of 

seven muscles in the upper arm and shoulder region dur-
ing experimental sessions, it is possible that not all of 
them are actually useful for predicting FE and PS joint 
angles. Keeping in mind that increasing the number of 
muscles has an associated cost in terms of surgical com-
plexity and device expense, we examined reduced sub-
sets of muscles to determine whether they would be 
sufficient for movement trajectory prediction. We evalu-
ated the relative effectiveness of various muscle subsets 
by implementing a forward-selection algorithm. At each 
step of this algorithm, each muscle that was not already a 
part of the set was tested for inclusion by adding the 
EMG features from that muscle to the neural network 
input and repeating the training process. The muscle that 
had the largest positive effect was then retained as a part 
of the input set and the algorithm repeated the process 
with the remaining muscles in the next step. Thus, we 
began with a subset that included the muscle that had the 
most significant contribution to network prediction and 
continued adding muscles until all seven were included, 
resulting in an ordinal set of muscles for each subject. We 
used a one-way repeated-measures ANOVA and multiple 
comparisons with Bonferroni corrections ( = 0.05) to 
determine the minimum number of input muscles that 
provided performance that did not statistically differ 
from the maximal observed performance. Effectively, 
this was the number of muscles such that adding more 
muscles did not statistically improve performance, as 
quantified by a statistically significant increase in the R2

or decrease in the RMSE.
Since it would be advantageous to use a fixed set of 

muscles in a clinical system rather than tailoring the sur-
gical targets to each patient, we also considered a single 
ordered muscle set based on the average ranks across all 
of the subjects. We used a two-way repeated-measures 
ANOVA (the number of muscles and subset type—fixed 
vs subject-specific—as factors) with multiple compari-
sons and appropriate Bonferroni corrections to determine 
whether fixing the muscle set has a significant effect on 
predictive accuracy.
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RESULTS

Figure 2 illustrates the EMG (top seven panels) and 
kinematic (lower two panels) data recorded during a typi-
cal experimental trial. During this trial, the subject 
reached for a series of imaginary targets in space that 
spanned the workspace of the arm, returning the arm to a 
resting position on the leg between reaches. Features 
were extracted from windows of EMG recordings of the 
seven muscles and the TDANN used them to predict the 
joint angles across the many trials of a given experiment.

Optimization of Neural Network Architecture
We varied a number of architectural parameters of 

the TDANN to determine an optimal structure for pre-
dicting the FE and PS angles based on the features calcu-
lated from the windows of EMG data. Figure 3 shows 
the effects of varying the number of hidden layer neurons 
and the number of input time delays on average joint-
angle prediction performance for all subjects. Generally, 
increasing the number of hidden layer neurons and the 
number of input time delays resulted in an increase in the 
accuracy of prediction as quantified by statistically sig-
nificant changes in RMSEFE, RMSEPS, R2

FE, and R2
PS

(p < 0.001) for both factors. For all metrics, the interac-
tion between the number of hidden layer neurons and the 
number of input time delays was not statistically signifi-
cant (p > 0.50), so we considered them independently 
when selecting the optimal value of each parameter.

We used multiple comparisons with Bonferroni cor-
rections to determine the specific architecture to be used. 
There were no significant differences in RMSEFE (p > 
0.28), RMSEPS (p > 0.21), or R2

FE (p > 0.12) when the 
number of hidden layer neurons was increased beyond 
10. R2

PS, however, showed a statistically significant 
increase when the number of neurons was increased from 
10 to 20, but did not show any significant changes (p > 
0.99) when increased beyond 20. With respect to the 
number of input time delays, both RMSEFE and R2

FE
increased progressively as the number of past values 
increased from 1 to 5, but we saw no further improve-
ment (p > 0.10) beyond 5 past values (i.e., 320 ms of time 
history). No statistically significant increases (p > 0.11) 
in either RMSEPS or R2

PS were found when increasing 
the number of input delays beyond 7 (i.e., 448 ms of time 
history). As there was no significant benefit to including 
more than 20 hidden layer neurons or 7 input time delays 

for any of the performance metrics, we selected these to 
be the parameter values for subsequent analyses.

Figure 2.
Experimental data recorded during single trial during which subject 
reached for series of imaginary targets in space, returning arm to rest 
position between reaches. ANTD = anterior deltoid, BICP = biceps, 
BRAC = brachialis, CPEC = clavicular pectoralis, FE = flexion/
extension, MIDD = middle deltoid, POSD = posterior deltoid, PS = 
pronation/supination, TRIC = triceps.
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Time-Delayed Artificial Neural Network Prediction of 
Movement Trajectories

Once an adequate neural network structure was identi-
fied, we used the features extracted from the EMG record-
ings as inputs to assess their overall ability to predict the 
joint-angle trajectories. Figure 4 illustrates the ability of a 

TDANN with 20 hidden layer neurons and 7 input delays 
to simultaneously predict the FE and PS joint angles from 
EMG recordings from a single subject for a variety of dif-
ferent arm movements. The upper row of panels illustrates 
TDANN joint-angle predictions (black line) for elbow FE, 
while the lower row of panels illustrates forearm PS 

Figure 3.
Optimization of neural network architecture. Cross-validated performance is shown as function of number of hidden layer neurons (left) and 
input time delays (right). Light dotted lines correspond to networks trained with specific numbers of neurons (left) or input delays (right). Solid 
bold lines indicate mean ± standard deviation. Solid black vertical bars indicate range of values that provided optimal performance. FE = flexion/
extension, PS = pronation/supination, RMSE = root-mean-square error.
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performance. The left column of panels illustrates move-
ments during which one joint was moved at a time, the 
center column illustrates a combination of serial and 
simultaneous movements, and the right column illustrates 
simulated ADLs—all predicted by the same TDANN. 
Note that the data plotted in each panel represents several 
movements.

Table 1 summarizes the cross-validated average 
RMSE and R2 values for each joint angle and each sub-
ject for different movement types. The bottom two rows 
of the table summarize performance across all subjects 
for both FE and PS. The predictions were generally better 
for FE than for PS. There were no statistically significant 
differences across the four categories of movements for 
RMSEFE (p = 0.06), RMSEPS (p = 0.09), and R2

PS (p = 
0.35) while R2

FE did show a significant difference (p = 
0.01), with the performance during simulated ADLs 
being lower than during single-joint movements without 
a load and simultaneous/serial joint movements. Addi-

tionally, there was no significant difference in predictive 
accuracy of the single-joint movements performed with a 
load in the hand relative to single-joint movements with-
out load for any metric (RMSEFE [p > 0.99], RMSEPS
[p = 0.63], R2

FE [p > 0.99], and R2
PS [p > 0.99]).

Muscle Subset Selection
To identify which muscles contain the most relevant 

information for joint-angle prediction, we evaluated EMG 
features from different combinations of muscles as 
TDANN inputs using a forward-selection algorithm. A 
TDANN with 20 hidden layer neurons and 7 input delays 
was trained to test each subset of inputs, repeated with 
5 different sets of testing data. Features from all seven 
channels were tested individually and we first selected the 
single channel that produced the best prediction perform-
ance on the testing data set. We then evaluated prediction 
with the remaining six channels paired individually with 
the first channel, choosing the second most effective 

Figure 4.
Prediction performance of time-delayed artificial neural network (TDANN) for flexion/extension and pronation/supination joint angles for vari-
ety of movements (subject 5). Each column represents different movement type, with each row representing different degree of freedom. Several 
different movements were performed during each 30 s trial. Within each panel, experimentally recorded trajectory (red line) is overlaid with pre-
dictions from TDANN (black line).



748

JRRD, Volume 48, Number 6, 2011
muscle. Then the remaining five channels were paired with 
the best two channels, and so on. We repeated this proce-
dure for both DOFs (FE and PS). Furthermore, this proce-
dure was performed using two different performance 
metrics (RMSE and R2) to guide the selection process, 
resulting in four distinct ordinal muscle sets for each sub-
ject (i.e., muscles selected to optimize FE or PS predic-
tions and muscles selected to minimize RMSE or 
maximize R2).

Figure 5 shows the ability of the TDANN to predict 
both elbow FE and forearm PS as a function of the num-
ber of muscles used as inputs, using both RMSE (upper 
panel) and R2 (lower panel) as the performance metric. In 
general, Figure 5 shows a trend of increasing perform-
ance with an increasing number of muscles included in 
the set across both motions and both performance metrics 
(p < 0.001). There was no significant change in R2

PS (p > 
0.99) when including more than four muscles, while 
performance plateaued at three muscles for RMSEFE (p > 
0.99), RMSEPS (p > 0.23), and R2

FE (p > 0.99).
The relative contribution of the EMG signals from 

different muscles to the joint-angle predictions varied 
across subjects, i.e., the “rank” of each muscle in the 
forward-selection process was different across subjects. 

Table 1.
Summary of time-delayed artificial neural network prediction performance across all subjects (N = 5) and all movement types.

Movement
Type

Single Joint
(without load)

Single Joint
(with load)

Simultaneous/Serial Joint Simulated ADLs

RMSE (°) R2 RMSE (°) R2 RMSE (°) R2 RMSE (°) R2

Subject 1
FE 12.8 0.67 16.2 0.77 13.8 0.89 11.1 0.74
PS 25.0 0.53 25.4 0.54 24.0 0.62 19.8 0.64

Subject 2
FE 12.4 0.86 11.5 0.83 11.1 0.90 20.6 0.73
PS 17.5 0.55 18.6 0.59 24.9 0.49 22.6 0.44

Subject 3
FE 13.0 0.88 15.3 0.88 16.0 0.83 19.8 0.71
PS 29.2 0.40 34.5 0.37 34.5 0.22 29.7 0.42

Subject 4
FE 12.7 0.87 17.9 0.73 18.6 0.83 20.8 0.56
PS 22.7 0.36 24.6 0.43 26.6 0.30 25.0 0.35

Subject 5
FE 7.2 0.90 7.2 0.84 7.6 0.87 11.0 0.74
PS 14.0 0.74 19.8 0.56 22.1 0.53 23.2 0.54

Mean ± SD
FE 11.6 ± 2.4 0.83 ± 0.10 13.6 ± 4.3 0.81 ± 0.06 13.4 ± 4.2 0.86 ± 0.03 16.7 ± 5.1 0.70 ± 0.08
PS 21.7 ± 6.0 0.51 ± 0.15 24.6 ± 6.3 0.50 ± 0.09 26.4 ± 4.8 0.39 ± 0.22 24.1 ± 3.7 0.47 ± 0.11

ADL = activity of daily living, FE = flexion/extension, PS = pronation/supination, RMSE = root-mean-square error, SD = standard deviation.

Figure 5.
Cross-validated time-delayed artificial neural network prediction per-
formance as function of number of muscles that were provided as input to 
network. Muscles included were customized to each subject and selected 
using forward selection method. RMSE = root-mean-square error.
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To determine the average importance of each of the mus-
cles, we averaged the rank of the muscles across all sub-
jects. Table 2 illustrates the results, which show the 
average rank across subjects for each muscle when differ-
ent performance metrics were used to guide the forward-
selection algorithm that ranked the muscles. These per-
formance metrics (each illustrated in a column in Table 2) 
were the RMSE of FE only, RMSE of PS only, average 
RMSE across both FE and PS, and corresponding three 
measures for R2. In all cases, a single TDANN with 20 
hidden layer neurons and 7 input delays was trained to 
predict both joint angles. The last column is an overall 
“meta”-average across all six metrics. It shows that 
biceps, brachialis, and triceps were generally selected 
early in the process (and as such have lower average 
ranks in Table 2), and that the three different heads of the 
deltoid and the clavicular pectoralis had very similar 
average ranks (indicating that they were not added with 
any particular order across all subjects).

As a practical matter, using a fixed set of muscle 
EMG signals in a clinical system rather than to customize 
a set for each patient would be desirable. Figure 6 illus-
trates the effect of using a fixed set of muscles based on 
average overall population predictive performance rather 
than using muscle sets specifically tailored to each sub-
ject using the forward selection method. The muscles 
selected in Figure 6 were the muscles that had the best 
average rank across all subjects using the average of the 
six different performance metrics (i.e., the values in the 
last column of Table 2). For example, biceps had the low-
est average rank; therefore, they were used for evaluating 
the set of muscles with only one muscle for all subjects. 
Brachialis had the second lowest rank, so for evaluation 
of the subset with two muscles, brachialis and biceps 
were used, and so on. Figure 6 shows the TDANN pre-
diction performance when features extracted from the 

fixed subsets were used as inputs compared with when 
features from the variable subject-specific subsets were 
used as inputs. For FE, there is no significant difference 
in performance (R2 or RMSE) between the fixed and sub-
ject-specific subsets once two or more muscles are 
included (p > 0.43). For PS, there is no significant differ-
ence in performance between the fixed and variable sub-
sets for any number of muscles (p > 0.36).

DISCUSSION

Our long-term goal is to develop an implanted 
telemetry system and external controller for transhumeral 
prostheses that will use information extracted from EMG 
recordings to predict the prosthesis motor commands 
needed to make natural movements involving simulta-
neous control of multiple DOFs. Specifically, a TDANN 
structure was optimized and then successfully trained to 
simultaneously predict FE and PS movement trajectories 
recorded from nondisabled subjects using features 
extracted from windows of EMG as inputs. While they 
will need to be verified in a larger group of subjects, the 
results of this pilot study suggest that using EMG signals 
from muscles that would be available for recording in 
patients with transhumeral amputation to predict relevant 
arm motions (FE and PS) for a prosthetic limb is feasible.

Neural Network Optimization and Prediction
Performance

In this proposed TDANN, time-domain features [4] 
were extracted from windows (128 ms wide with 50% 
overlap) of EMG recordings and provided as inputs to the 
network. We did not systematically vary the window size 
or the amount of overlap, so it may be possible that 

Table 2.
Mean ± standard deviation ranks for each muscle using various performance metrics to guide forward selection process. Last column indicates 
overall average rank for each muscle across all six performance metrics.

Muscle RMSEFE RMSEPS RMSEAvg R2
FE R2

PS R2
Avg Overall

Biceps 2.8 ± 1.3 1.4 ± 0.9 1.6 ± 0.5 2.8 ± 1.3 1.2 ± 0.4 1.8 ± 0.4 1.9 ± 0.7
Brachialis 2.4 ± 1.9 3.2 ± 1.6 2.6 ± 2.1 2.4 ± 1.9 3.2 ± 1.6 2.4 ± 2.1 2.7 ± 0.4
Triceps 3.2 ± 2.2 3.4 ± 2.1 3.8 ± 2.1 3.4 ± 2.3 4.0 ± 2.5 3.8 ± 2.6 3.6 ± 0.3
Middle Deltoid 5.4 ± 1.1 4.0 ± 1.4 4.2 ± 1.1 5.6 ± 1.1 3.8 ± 1.1 4.8 ± 1.6 4.6 ± 0.8
Posterior Deltoid 3.6 ± 1.9 6.0 ± 1.0 5.4 ± 1.8 3.6 ± 1.9 5.2 ± 1.5 5.2 ± 1.5 4.8 ± 1.0
Anterior Deltoid 5.6 ± 1.1 4.4 ± 1.5 5.0 ± 1.9 6.2 ± 0.8 4.4 ± 1.5 5.2 ± 1.5 5.1 ± 0.7
Clavicular Pectoralis 5.0 ± 2.3 5.6 ± 1.9 5.2 ± 1.8 4.0 ± 1.9 6.0 ± 1.7 4.8 ± 1.6 5.1 ± 0.7
Avg = average, FE = flexion/extension, PS = pronation/supination, RMSE = root-mean-square error.
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further optimization could improve prediction results. 
Evaluation of additional EMG features is another avenue 
for further refinement, as previous studies have shown 
that the inclusion of wavelet coefficients and autoregres-
sive coefficients may provide modest gains in EMG 
pattern-classification accuracy [12].

Our results (Figure 3) indicate that a modestly sized 
TDANN with 10 to 20 hidden layer neurons was suffi-
cient for joint-angle prediction using these time-domain 
features. Approximately 450 ms of input time history was 
shown to be useful in prediction. This finding is consis-
tent with the 1 to 2 Hz mechanical natural frequency of 
the elbow [23]. Note that the inclusion of this input time 
history would not translate to a 450 ms pure delay per-
ceived by the patient—it simply makes the current 
TDANN output a function of the current input as well as 
inputs occurring across the previous 450 ms. Any per-
ceived delay in our proposed scheme would be from 
EMG signal collection, windowing and feature extraction, 
and ANN computations. With overlapping windows for 
feature extraction, the total perceived delay should be 
within the suggested guidelines (i.e., 100–300 ms) for 
prosthesis controllers [3,24].

Since the selection of this “optimal” architecture was 
based on detecting statistically significant improvements 

in the predictions (i.e., increases in R2 and decreases in 
RMSE) as a function of these parameters, identifying a 
different architecture with larger subject numbers might 
be possible. We might expect errors on the testing data to 
eventually increase if we continue to increase the number 
of neurons or delays caused by memorization of the train-
ing data rather than formation of a general model (i.e., 
overfitting). Prior to the errors increasing, there is a range 
of architectures that provide statistically equivalent per-
formance. With the data collected in this study, we 
attempted to identify the smallest such network architec-
ture to use in subsequent analyses. While we believe that 
our general findings related to the prediction of FE and 
PS are likely to be consistent, additional subjects will 
need to participate to verify that the number of hidden 
layer neurons and input time delays will generalize for 
the overall population.

Across a range of movements, TDANNs were able to 
predict the elbow FE and forearm PS joint angles from 
EMG recordings (Table 1). Average RMSEs across all 
subjects were approximately 15.7° and 24.9°, with pre-
dicted trajectories having average R2 values of approxi-
mately 0.81 and 0.46 for elbow FE and forearm PS, 
respectively. The RMSE for elbow FE is consistent with 
that demonstrated by Au and Kirsch [19], who also dem-
onstrated the feasibility of using an EMG-based neural 
network approach to decoding more proximal move-
ments such as humeral rotation, which is a frequently 
overlooked lost movement in the population with above-
elbow amputation. We would expect the predictions for 
FE to be superior to those for PS, because the EMG fea-
tures from most of the primary muscles (i.e., biceps, bra-
chialis, and triceps) involved in that movement were 
provided as inputs to the network. The only intact muscle 
directly involved in PS for a patient with transhumeral 
amputation is the biceps, which also acts as an elbow 
flexor; the other muscles involved in PS (i.e., supinator, 
pronator quadratus, and pronator teres) would all be 
missing following a transhumeral amputation. Given the 
initial results presented here, it is likely that the predic-
tion of PS will need to be improved for the proposed 
scheme to be functional. It is possible that, with training, 
patients may be able to learn to modulate the activation 
of the residual musculature to control PS. Additionally, 
employing this scheme with patients who have under-
gone targeted muscle reinnervation [25] may improve PS 
prediction by providing information directly related to 
the activity of these missing muscles.

Figure 6.
Time-delayed artificial neural network prediction performance using 
different muscle subsets. Black circles show subsets tailored to each 
subject (variable). Gray triangles show subsets chosen based on 
results across all subjects (fixed). RMSE = root-mean-square error.
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The accuracy of PS predictions was consistent across 
all categories of movement. The errors for FE were larger 
during simulated ADLs than single-joint movements 
without a load and simultaneous/sequential joint move-
ments. The detection of these differences in performance 
across classes of movement is affected, however, by lim-
ited statistical power because of the small number of sub-
jects that participated in this pilot study.

Note that the results presented here used offline 
analysis of experimentally recorded data is important. 
That is, subjects were not provided with the opportunity 
to observe TDANN prediction errors during the experi-
ments and to then alter their activation patterns to 
improve the predictions. We believe that having a user 
“in the loop” to correct for errors would result in better 
performance, but only further testing will evaluate this 
assumption. The relatively short duration of the experi-
ment did not enable us to evaluate whether or not the per-
formance of the proposed scheme would degrade or 
improve over time. An adaptive algorithm, however, 
could potentially be employed to address any variations 
in system performance. Our experiments also used non-
disabled subjects with fully intact muscles. Impaired pro-
prioceptive and tactile feedback may impair a person 
with amputation’s ability to generate consistent patterns 
of muscle activation, which is crucial for the proposed 
control scheme to be functional. Other studies involving 
pattern recognition have shown that performance of these 
methods shows a significant decrease when applied to 
signals gathered from the amputated limb relative to 
those gathered from the nondisabled limb in patients with 
transradial amputation [26]. Future testing will be 
required to evaluate the ability of patients with amputa-
tion to control their multijoint myoelectric prosthesis 
using the proposed scheme.

Input Muscle Selection
While the EMG signals were recorded from a set of 

seven muscles in the arm and shoulder during experimen-
tal sessions, not all muscles made a significant contribu-
tion to the ability of the neural network to predict the 
movements. To identify which muscles contained the 
most relevant information, we evaluated muscle subsets 
using a forward-selection algorithm. Figure 5 shows a 
trend of improving performance with an increased num-
ber of muscles included as inputs to the TDANN, but this 
improvement in performance saturated after three or four 
muscles. We recognize that the order in which muscles 

were identified may vary with the choice of a different 
selection algorithm (such as a backward elimination 
approach) but believe that our general findings are likely 
to be consistent regardless of algorithm choice.

While the results of the forward-selection process 
would suggest the need for subject-specific muscle sets 
for optimal control, identifying a standard set of muscles 
that would be generally useful across different patients 
with an above-elbow amputation may be desirable. We 
found no significant difference between a fixed muscle 
set (chosen based on population statistics as shown in 
Table 2) and the subject-tailored muscle sets when look-
ing at sets that contained two (biceps and brachialis) or 
more muscles. Additionally, once two more muscles (tri-
ceps and one head of the deltoid) were added to the fixed 
set, there was no significant difference between the per-
formance of this four-muscle subset and the performance 
using all seven muscles (Figure 6), suggesting that the 
remaining muscles did not add significant new informa-
tion for prediction of the FE and PS joint angles.

One potentially confounding factor was that the bra-
chialis was the only muscle for which we used a fine-wire 
intramuscular electrode. Our original intent was to sample 
all channels intramuscularly. Subjects participating in an 
earlier study, however, reported significant levels of dis-
comfort when intramuscular electrodes were inserted into 
the biceps, triceps, and brachialis. As their range of 
motion was limited by the presence of just three fine-wire 
electrodes, we did not proceed with recording from the 
remainder of the muscles in this fashion. The EMG sig-
nals from the rest of the muscles considered in this study 
(biceps; triceps; anterior, middle, and posterior deltoid; 
and clavicular pectoralis major) are reliably accessible in 
a laboratory setting with surface electrodes, and manual 
muscle tests were used to verify placement at the onset of 
each experiment. While it is possible that the relative con-
tribution of the brachialis would have been different if we 
had used intramuscular electrodes for all seven muscles, 
we do not believe that this would change our general find-
ings regarding the input muscle set. The fundamental 
goals of this study were to (1) examine the feasibility of 
decoding the movement trajectories using the natural pat-
terns of activation in the remaining musculature and 
(2) identify muscles containing key information. Given 
the subject discomfort and its effect on range of motion, 
we believed that we could achieve these goals by using a 
combination of intramuscular (when necessary) and sur-
face electrodes in this laboratory study. However, many of 
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the muscles considered would not be accessible in a clini-
cal system using currently available surface technolo-
gies—whether they are deeper muscles (e.g., brachialis) 
or muscles that would not be located directly beneath the 
socket (e.g., deltoid). A chronically implanted EMG 
recording system will be necessary to realize the proposed 
control approaches. Noting that the findings may not be 
directly relevant for patients with short transhumeral 
amputation is also important; the brachialis may not be 
intact because its origin is more distal than the triceps or 
biceps.

Options for Controlling Terminal Device
In addition to a prosthetic elbow and wrist rotator, a 

command interface for transhumeral prostheses must also 
include operating a terminal device (i.e., hand) for grasp-
ing. Our study, however, did not directly address this 
important issue. Achieving robust and natural MES con-
trol of the hand is not likely for this patient population 
because of the loss of all relevant hand musculature. 
Users of body-powered transhumeral prostheses fre-
quently use movements of the shoulder to operate their 
terminal devices with a harness and cable system. We 
believe that an analogous myoelectric hand controller 
could be devised whereby a patient would modulate the 
EMG signals from shoulder girdle muscles (e.g., trape-
zius) to open and close the hand. Combining such a 
scheme with the neural network controller developed in 
this study could enable patients to operate all three joints 
of their prostheses in a simultaneous and coordinated 
fashion, but future work is necessary to assess the feasi-
bility of this approach.

CONCLUSIONS

This feasibility study demonstrated that an appropri-
ately designed TDANN is capable of predicting continu-
ous and simultaneous elbow FE and forearm PS joint 
angles, with average RMSEs of approximately 15.7° and 
24.9° and average R2 values of approximately 0.81 and 
0.46, respectively, in nondisabled subjects using features 
extracted from EMG signals obtained from muscles that 
would remain following a transhumeral amputation. 
These results indicate that the signals contain a signifi-
cant amount of information related to arm movements. 
With further development, it may be possible to not only 
control these two DOFs simultaneously, but to do so with 

enhanced accuracy, which would enable patients to make 
more natural, coordinated movements and improve their 
ability to perform ADLs.
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