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Abstract—Using electromyogram (EMG) signals to control 
upper-limb prostheses is an important clinical option, offering a 
person with amputation autonomy of control by contracting 
residual muscles. The dexterity with which one may control a 
prosthesis has progressed very little, especially when control-
ling multiple degrees of freedom. Using pattern recognition to 
discriminate multiple degrees of freedom has shown great 
promise in the research literature, but it has yet to transition to a 
clinically viable op tion. This article describes the pertinent 
issues and best practices in EMG pattern recognition, identifies 
the major challenges in deploying robust control, and advocates 
research directions that may have an effect in the near future.
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INTRODUCTION

The use of the ele ctromyogram (EMG) as a control 
source for po wered upper-limb prostheses has received 
considerable attention, because the idea of restoring func-
tion by bridging natural neural pathways is a compelling 
pursuit. The most straight forward and widely used 
approach to estimating mot or intent is by estimating the 
intensity of the EMG from electrodes placed on the skin 
surface, usually placed directly above the remaining mus-
cles that provide the strongest and most stable signal [1]. 
While basic function can be established in this manner, 
the corresponding cont rol is seldom intuitive and does 
not permit effective control of multiple joints in a pros -
thetic limb. Although myoelectric prostheses have found 

an important place a s a clinical option in upper -limb 
prosthetics, the limited dexterity of control is often cited 
as the primary reason for rather low acceptance of these 
devices [2].

Conventional myoelectric control schemes use an 
amplitude measure at each electrode site (suc h as the  
root-mean-square or mean absolute value of the EMG) to 
quantify the intensity of contraction in the underlying 
muscles. Control is achieved by mapping this activity to 
the required prosthetic function; therefore, it is desirable 
that these muscles be functionally related to the functions 
that are to  be resto red. If ph ysiologically appropriate 
muscles are available to res tore lost function, the EMG 
can be used intuitively, such as when a person with trans-
humeral amputation controls a prosthetic elbow by using 
the residual biceps and triceps. In the absence of physio-
logically appropriate musculature, substitutions must be 
used, such as using the wrist flexors/extensors to control 
a hand. If m ore than one device is to b e used, mode 
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switching is often the only strategy (using a hardware 
switch or co-contraction) to divert control to an el bow, 
wrist, or hand. This method of control is, however, slow 
and counterintuitive.

Many factors contribute to the difficulty of extracting 
sufficient information from the EMG for dexterous, mul-
tifunction control. The most obvious and important is the 
lack of physiologically a ppropriate musculature from 
which to estimate the intended motion. This is especially 
problematic in indivi duals with high-level limb defi -
ciency, because little or no muscle remains that would 
produce force in the absent joints.*

Another fundamental challenge is a result of the  
region of muscle activity that  is recorded by EMG. The 
measurable activity is necessarily from muscle near the 
surface of the skin and may involve the contribution of 
more than one muscle, because of EMG cross talk. When 
multiple EMG sites are used, muscle co-activation 
(which is present in most upper-limb articulations) adds 
another layer of complexity. EMG cross talk, muscle co-
activation, and limited sampling depth compromise the  
ability to estimate dexterous motor intent. Cross talk 
mixes otherwise independent information sources. Co-
activation complicates the task of resolving the intended 
force about a joint. Limi ted muscle sampling depth con-
strains the estimation of inte nt to the activit y of only 
those muscles near the surface.

The simple one-mus cle one-function approach to 
conventional control is naïve to the complexities of EMG 
cross talk, muscle co-activation, and the contribution of 
deep muscle. This has motivated the use of a pattern-
recognition approach to my oelectric control. By us ing 
multiple EMG sites, ef fective feature extract ion, and 
multidimensional classifiers, one can achieve cont rol of 
many more classes of motions. While cross talk severely 
compromises conventional control (the intensity measure 
is assumed to arise from a single muscle), it is a predict-
able by-product of the sp atial arrangement in the multi -
electrode pattern-recognition approach. It may even add 
information if the “interfering” EMG is not measured by 
another electrode. The existence of muscle co-activation 
provides spatial information to a pattern classifier, char-

acterizing the natural syner gistic behavior of muscles 
during a giv en contraction. The contribution of deep 
muscles can be at least partially utilized by using features 
that capture low-intensity, low-frequency components of 
the composite EMG signal.

The use of EMG pattern recognition has shown g reat 
promise for improv ed dexterity of control in upper-limb 
prostheses. The concept is by no means new; indeed, the 
first pattern-recognition–based control schemes were devel-
oped as early as the late 1 960s and early 19 70s [3–5]. 
Improvements in signal processing, multiple-channel instru-
mentation, and microprocessor technology have facilitated 
implementation in embedded control systems. Through the 
efforts of many academic and commercial initiatives, pat -
tern-recognition–based control appears to be nearing clini-
cal viability. This article describes the current state-of-the-
art approach to EMG pattern-recognition–based control, 
categorizes the major challenges in deploying robust con -
trol, and identifies promising research that may have con-
siderable effect on improving myoelectric control.

BACKGROUND—STATE OF THE ART

The task of discriminating among a set of muscular 
contractions for myoelectric control is influenced by the 
EMG interface and the pattern-recognition methods.

EMG Interface
The use of E MG as an estimator of motor intent is 

greatly affected by electrode site selection.† This involves 
the selection of the n umber and the placement of e lec-
trodes. If the availability of useful muscle sites is limited, 
targeted muscle reinnervation is an effective means of 
accessing neural information otherwise lost to a person 
with a high-level amputation, as described below.

Targeted Muscle Reinnervation
The success of any myoelec tric control scheme  is 

largely determined by the availability of suitable muscu -
lature from which to extract control information. For the 
purpose of establishing an intuitive interface, acquiring 
the control information from physiologically appropriate 

*This impediment is not critical in persons with transradial amputation 
because, depending on the nature of the deficiency, many of the mus-
cles that naturally control the wrist and hand often remain (with the 
exception of the intrinsic muscles of the hand).

†Other factors pertaining to the EMG interface may be of minor influ-
ence, such as the type of electrode and instrumentation, but these will 
not be discussed here.
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muscles (those that woul d normally contribute to t he 
function to be  restored by the prosthesis) is  desirable. 
Although many physiologically appropriate muscles may 
be available in the case of persons with transradial ampu-
tation [6–7], this becomes a significant problem as the 
level of amputation becomes more proximal. With higher 
levels of limb deficiency, restoration of more functional-
ity (devices to control) is  required from fewer  (or no) 
physiologically appropriate sites. Even the most sophisti-
cated pattern-recognition approach cannot provide intu -
itive control without access to  the appropriate neural 
information.

A major advance in the field of upper-limb prosthet-
ics has been the selective transfer of brachial nerves to 
new muscle sites. This surgical procedure, termed “tar-
geted muscle reinnervation” (TMR), was co nceived by 
Dr. Todd Kuiken at the Re habilitation Institute of Chi-
cago [8–9]. The most dramatic example of the benefit of 
TMR in restoring neural pathways is in the case of a per-
son with shoulder disa rticulation amputation. The four 
major brachial nerves (median, radial, musculocutane-
ous, ulnar) can be  transferred to the pectoral muscles 
(which are of little functional use to a person with shoul-
der disarticulation). After the nerves are anastomosed to 
distinct regions of pectoral tissue, conventional surfa ce 
electrodes can monitor these restored source s of neural 
information that no w correspond to musculature that 
would have been distal to the amputation (elbow, wrist, 
and hand), as illustrated in Figure 1.

This procedure has also bee n effectively applied to 
persons with transhumeral amputation; the neural infor -
mation pertaining to hand and wrist function can be 
restored by transferring the median ne rve to the medial 
biceps and the dis tal radial nerve to the brachialis or lat -
eral triceps [10]. In persons with transradial amputation, 
remnant muscles have been shown to provide good* con-
trol of wrist and basic hand  function but multiple hand 
grasps may require TMR to restore the neural intent 
directed to absent intrinsic muscles of the hand [6].

TMR has been shown to provide dramatic restoration 
of prosthetic function using conventional control [11] by 
providing physiologically appr opriate control sites. The 
fact that the remnant nerves  are usually  truncated at a 
proximal location along their course (prior to branching) 

results in a mixture of motor functi ons within the fasci -
cles. The consequence is that the new EMG sites, in gen-
eral, contain a mixture of functions corresponding to the 
various branches of each nerve. Through pattern recogni-
tion using the TMR sites, these mixtures can be used to 
discriminate the various functions quite effectively. This 
was shown by Zhou et al. [10] when a shoulder disarticu-
lation patient was able  to discriminate 27 classes of 
upper-limb function with g reater than 97 percent ac cu-
racy. This approach has been shown to perform very well 
in real-time [12] with both  shoulder disarticulation and 
transhumeral amputees, and clinical experience with pat-
tern recognition and TMR shows great promise.

EMG Site Selection
Many studies have demon strated that increasing th e 

number of channels will improve EMG pattern-recognition 
performance [10,12–15]. For transradial amputees, with  
electrodes placed above the remnant muscles of the fore-
arm, dramatic improvement in accuracy results when the 
number of channels is increased up to four or five; beyond 
this, there are diminishing benefits. Th is effect has been 
shown in some detail by Hargrove et al. [16]. Six individu-
als with intact upper limbs performed 10 types of motion  
(forearm pronation, forearm supination, wrist flexion, wrist 
extension, radial deviation, ulnar deviation, key grip, chuck 
grip, hand open, and a rest state). A 16-channel array of 
equally spaced electrodes was placed around the circumfer-
ence of the forearm. The effect of selective electrode place-
ment was investigated by comparing naïve site selection (a 

*“Good” in t he sense that classification accuracies generally exceed 
90 percent.

Figure 1.
Targeted muscle reinnervation in person with shoulder disarticulation. 
EMG = electromyogram, N. = nerve. Source: Reproduced with per-
mission of the Rehabilitation Institute of Chicago.
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simple symmetric subset of the 16-channel array for 2, 4, 8, 
and 16 channels) to “optimal” site selection (the N  sites 
that yield the highest accuracy for each N-channel subset).

Figure 2 shows that optimum channe l selection 
results in 99 percent accuracy with only four channels. 
Using the naïve site selec tion scheme, performance 
climbs quickly to 95 percent with four channels and then 
gradually increases to 97 pe rcent when using all chan -
nels. This indicates that, alth ough benefit can be gained 
by optimizing site selection, it is not a critical factor, pro-
vided that a suf ficient number of channe ls is available. 
The requisite number is not large (nominally four chan -
nels) in the forearm as the spatial coverage of the EMG 
appears to be sufficient to charac terize the ava ilable 
information from the underlying musculature. This was 
confirmed in this study by comparing the classification 
accuracy using the EMG from six carefully placed intra-
muscular sites. No significant difference in accuracy was 
observed, suggesting that no  further discriminant infor-
mation was available from the EMG.

Although the effect of the numbe r of channels  
depends on other factors (th e number of classes, th e 
physiology and geometry of the underlying musculature), 
these results appe ar to gene ralize well to most studies 

involving EMG sites on the  forearm, as is the case  for 
persons with transradial am putation. For persons with 
high-level amputations, the required number of channels 
is not a s straightforward because site selection strongly 
depends on the anatomy of the residual limb or shoulder 
complex [17]. The required number of channels is very 
different for TMR us ers. Because of the rich and some -
what complex information av ailable from nerve transfer 
sites, as many as 10 ele ctrodes may be required on the 
pectoralis region and possibly a few other sites for per -
sons with shoulder disarticulation [10].

Pattern-Recognition Methods

Best Practices in EMG Pattern Recognition
All approaches to EMG pattern reco gnition have the 

fundamental processing stages s hown in Figure 3. The 
EMG signals may be subject to preprocessing to remove 
unwanted interference; the mos t common sources are 
power line harmonic s and mo tion artifact due to elec -
trode movement.

A feature-extraction stage is used to increase the infor-
mation density of the EMG signals. Ideally, contraction 
discrimination information should be retained while other 
irrelevant information is discarded. Many disparate meth-
ods of EMG feature extraction have been investigated, 
including time-domain (TD) [18–21], autoregressive (AR), 
and cepstral features [13,22 –24]. Joint time-frequency 
methods have been shown to effectively represent transient 
EMG patterns resulting from dynamic contractions [25–
26]. A comparison of feature sets has  shown that for 
slowly varying EMG patterns,  a concatenated TD/AR 
(TDAR) feature set outperform s all others [16,24] but the 
slight improvement in performance over simple TD fe a-
tures incurs considerable processing overhead.

If the resultant feature set occupies a high-dimensional 
space (as is t he case wi th most ti me-frequency trans-
forms), it may be beneficial to reduce the dimensionality 
of the feature space by selecti on of a subset of features 
[10,27] or a strategic combin ation of features , such as 
averaging [26], principal components analysis [25,28], 
independent components analysis [29 ], or nonlinear pro -
jection [30].

Just as researchers have pursued an extensive range 
of feature sets, the same can be said of classifiers. Possi-
bly every form of statistical and learning classifier has 
been investigated and compared for u se in myoelectric 

Figure 2.
Increase in classification accuracy as channels are added for both  
optimal and symmetrical channel subsets. Source: Reprinted with per-
mission of IEEE from Hargrove LJ, Englehart K, Hudgins B. A com-
parison of surface and intramuscular myoelectric signal classification. 
IEEE Trans Biomed Eng. 2007;54(5):847–53. [PMID: 17518281]
DOI:10.1109/TBME.2006.889192
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control. An extensive examination of classifiers is given 
in Scheme et al. [31] and Zecca et al. [32].

A common observation is that, if a n effective repre-
sentation of the EMG signals is in pla ce (an appropriate 
feature set and a suf ficient number of channels), most 
modern classifiers will have similar performance. This 
observation was effectively illustrated by Hargrove et al. 
[16] in their examination of the relative ef fects of fea-
tures and c lassifiers on a co mmon data set (previously 
described in “EMG Site Selection” section). The effect of 
the feature set is shown in Figure 4(a), which shows the 
mean and s tandard deviation of the c lassification accu-
racy over the six subjects. The influence of the classifier 
is shown in Figure 4(b). One can see that the feature rep-
resentation has greater influence than the complexity of 
the classifier. The implication is that, with an appropriate 
feature representation, the classification task is esse n-
tially a linear problem.

The most popular choices of cla ssifiers in rec ent 
work are based on marginal advantages in classification 
performance; these include linear discriminant analysis 
(LDA) [33], support vector machines [34–37], and hid-
den Markov models [38–39]. The main advantage of 
LDA is its simplicity of implementation (especially in an 
embedded processor) and ease of training.

Before feature extraction, the EMG signals must be 
windowed; from each window a classification decision 
will be made. The fundamental trade-off in selecting the 
window length is that longer windows will improve the 
stability of the features (reducing the variance and 
increasing classification performance) but will  incur a 
longer delay in the classification decision .*

For conventional proportional control, it has been 
previously accepted that an actuation delay greater than 
300 ms will be perceived by the user. Farrell and Weir. 
investigated window length for direct control of a hand 
open/closing task and found 150 ms to be optimal [40]. 
The optimum window l ength is more dif ficult to ascer-
tain when pattern recognition is being used, because the 
relationship among controller delay, classification error, 
and real-time controllability is complex [41]. Although 
the classification error tends to de crease with increasing 
window length [33], increas ed delay deteriorates per-
formance in manipulation. A real-time control test was 
used to study the interaction between these effects, and 
the results suggest  that the optimum window length for 
pattern-recognition control is between 150 and 250 ms, 
depending on the skill of the subject [41].

Classifier Performance Metrics
Ultimately, the most meanin gful assessment of pros -

thetic control is an evaluation of the function that a user 
derives from the device. Several tests of prosthetic function 
have been developed and are widely used for conventional 
prosthetics [42–47]. These test s are largely qualitative and 
are intended to measure skill and efficacy during functional 
tasks. Given the commercially available prosthetic options, 
most have ev olved to b e primarily intended for hand 
manipulation, not multiarticulated tasks involving position-
ing and orienting a hand using powered wrist, elbow, and 
shoulder devices. Moreover, they require that a user be fit-
ted with a prosthesis, so conduc ting these tests on subjects 
before fitting is not possible . The qualitative nature of the 
tests presents a challenge when one is trying  to develop 
quantitative metrics for control performance. These tests 
are affected as much by the capabilities of the prosthetic 
devices; the fit of the socket; and the opinion, sk ill, and 
experience of the admitting clinician as they are by the per-
formance of the c ontrol system. For these reasons, EMG 
pattern recognition has been measured instead by offline 

*The delay is almost entirely due to waiting for the data to be 
acquired. With most feature sets and classifiers, the processing delay 
is usually inconsequential because modern microprocessors can per-
form feature extraction and classification in milliseconds.

Figure 3.
Stages of signal processing for electromyogram (EMG) pattern recognition.
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metrics (largely classification accuracy) and, only more 
recently, by real-time tests.

Offline Metrics. A recent emphasis on the clinical 
viability of pattern–recognition–based control has high -

lighted a dis parity between classification accuracy and 
usability (measured using virtual environments and clini-
cal testing). Loc k et al. found only a  weak correlation 
between classification accuracy and usability [48]. H ar-
grove et al. found that they could improve the results of a 
virtual clothespin placement task while decreasing classi-
fication accuracy by including transient contractions in 
the training data [49]. One possible explanat ion for this 
paradox is the simplistic manner in which offline classifi-
cation metrics are defined.

In their expe riments, Hargrove et al. suggeste d that 
errors causing inadvertent ac tivations of the limb were 
more “costly” than those th at cause a pause in motion 
[49]. This may be attributed to the fa ct that extraneous 
motions require that the users perform additional correc-
tive motions, increasi ng frustration and diverging from 
their originally planned task trajectory. Therefore, defin-
ing a metric that directly reflects this contribution to the 
total classification error is informative. The error rate for 
purely active decisions, or the active error rate (AER), 
can be defined as

 (1)

where an active decision is a single output from the con-
trol system resulting in limb motion. Using this metric in 
combination with the total error rate (TER), which can be 
defined as

   (2)

may provide a more representative picture of the usabil-
ity of a clas sifier. Note that deceptively forcing AER to 
0 percent is possible by setting all output decisions to no 
motion; therefore, we recommend always including TER 
as well (which would tend toward 100% in this case) 
when reporting AER.

Real-Time Tests. The desire to provide more mean -
ingful metrics associated w ith prosthetic function has 
motivated the development of real-time tests to assess 
dynamic performance when pattern recognition is being 
used. Kuiken et al. introduce d a real-time test involving 
moving a virtual prosthesis through the range of a 
selected motion [50]. The efficacy of control is measured 
by the time required to selec t the desired motion and to 
complete the desired motion and the percentage of suc-
cessfully completed motions. Recently, this paradigm has 
been extended to multiple degrees of freedom (the Target 

Figure 4.
Comparison of (a) six feature sets using linear discriminant analysis 
(LDA) classifier and (b) five classifiers using autoregressive (AR) 
feature set. Source: Reprinted with permission of IEEE from Har-
grove LJ, Englehart K, Hudgins B. A comparison of surface and intra-
muscular myoelectric signal classification. IEEE Trans Biomed Eng. 
2007;54(5):847–53. [PMID: 17518281]
DOI:10.1109/TBME.2006.889192.

AER = 100% # Incorrect Active Decisions
Total # Active Decisions

-------------------------------------------------------------------- ,

TER = 100% # Incorrect Decisions
Total # Decisions

--------------------------------------------------- ,
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Achievement Control test [51]) to more closely resemble 
functional assessment.

Persons with Amputation Versus Nondisabled Individuals
Most investigations of EM G pattern recognition have 

used individuals with int act limbs instead of those with 
limb deficiencies. This is often due to the challenges of 
accessing an appropriate amputee population for research 
purposes. It is also true that many studies using individuals 
seek to explore the pattern-recognition performance in an 
“ideal” context before dealing with the confounding fac-
tors introduced by limb deficiency, such as sc ar tissue, 
variation in muscle geometry, and possible changes in cor-
tical representation and motor pathways [52]. A recent 
study investigated the performance of variou s classifiers 
with 10 nondisabled subjects and 5 transradial-amputation 

subjects [31]. As shown in Figure 5, relatively little differ-
ence (within the nondisabled and amputee groups) is seen 
in the c lassification error between the better-performing 
classifiers. What is more interesting, however, is that 
although the absolute average performance differs between 
nondisabled and amputee subjects,* the relative perform-
ance of the c lassifiers is fairly consistent between the two 
groups. That is, the ranking of the classifiers’ performance 

*Obviously, certain factors pertain to persons with amputation that are 
unique and will influence the absolute results, such as the availability 
and condition of remnant muscle, scar tissue, and t he fit of the 
socket. Proprioceptive feedback is partially or co mpletely absent 
when persons with amputation perfo rm contractions related to the 
missing limb, which can affect the articulation of these contractions.

Figure 5.
Comparison of several commonly used classification techniques using conventional classification accuracy. Results represent (a) average over 
11 classes of motion collected from 10 nondisabled subjects and (b) average over 7 classes of motion collected from 5 subjects with transradial 
amputation. ANN = artificial neural network, GMM = Gaussian mixture model, KNN = K nearest neighbor, LDA = linear discriminant analysis, 
MBC = multiple binary classifier, QDA = quadratic discriminant analysis, SVM = support vector machine.
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is consistent whether from an amputee or a nondisabled 
population. This result is important because it implies that 
results from nondisabled individuals can be generalized to 
persons with amputation.

The same obse rvation can be made when different 
feature sets are compared, as shown in Figure 6; the rela-

tive performance of the feature sets is consistent between 
nondisabled individuals and persons with amp utation. 
Again, one can see tha t the TDAR feature set outper -
forms the others.

Training for Pattern Recognition
Pattern-recognition–based myoelectric control will 

very likely s ee clinical implem entation in the near future 
and will become increasingly stable as the challenges men-
tioned in the previous section are met. In the near term, it is 
essential that appropriate tr aining tools and protocols be 
developed to enable clinical professionals to effectively 
configure, train, and main tain pattern-recognition–based 
systems for their clients. Some  valuable insight pertaining 
to the clinical aspects of training users with pattern recogni-
tion can be found in Simon et al. [51], Lock et al. [53], Har-
grove et al. [54], Stubblefield et al. [55], Nielsen et al. [56], 
Armiger and Vogelstein [57], Momen et al. [58], and Burger 
et al. [59].

Software environments for EMG pattern-recognition 
training are beginning to have an effect on the  research 
community, and the goal is to retool these to be powerful 
clinical tools for prosthesis configuration, user training, 
and assessment. The Acquis ition and Control Environ -
ment (ACE) software package [60] provides a flexible 
MATLAB-based environment, allowing real-time data 
acquisition and visualization, control, and configuration 
of a prosthesis. Pattern recognition as well as conven -
tional control techniques may be used to drive a prosthetic 
limb or a simple virtual lim b. The Revolutionizing Pros-
thetics 2009 project, sponsored by the Defense Advanced 
Research Projects Agency, produced a po werful Virtual 
Integration Environment capable of real-time control and 
interaction in a v irtual environment [61]. Control ele-
ments were derived from ACE (implemented in MAT-
LAB), and th e virtual environment realized in MSMS 
(Musculoskeletal Modeling Software), an open-source 
software environment [62]. Recently, the Rehabilitation 
Institute of Chicago develo ped a stand-alone software 
package called CAPS (Control Algorithms for Prosthetics 
Systems) [12] with a refined user interface and intuitive 
control configuration, intended  for research and clinical 
deployment.

Figure 6.
Comparison of commonly used feature sets. Results represent 
(a) average over 1 1 classes of motion collected from 10 nondisabled 
subjects and (b) average over 7 classes of motion collected from 5 sub-
jects with transradial amputation. AR = autoregressive, MFCC = me l-
scale frequency cepstral coefficients, TD = time-domain, TDAR = time-
domain/autoregressive.
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MAJOR CHALLENGES TOWARD CLINICAL 
ROBUSTNESS

An important question is, What is the required accu-
racy in order for pattern-recognition control to be consid-
ered reliable by the user? The usability of a prosthesis is 
influenced by ma ny factors, including the fi t of t he 
socket, the capabilities of th e devices, and the intuiti ve-
ness of the control system. In  turn, cla ssification accu-
racy is only one componen t of the intuitiveness and 
reliability of the controller since, as a metric, it does not 
consider the dynamic effects of real-time control.

Experience in establishing  the relationshi p between 
pattern-recognition accuracy and usability is l imited, 
mainly because the dexterous devices required to exploit 
multifunction control currently only exist in limited num-
bers as research prototypes. Experiments have been con-
ducted using virtual environments to avoid the need for 
devices and to focus on the controller itself [12,48–49]. It 
seems intuitive that higher accuracy should yield control 
systems with better usability , but preliminary work sug -
gests that the relationship between accuracy and usability 
is not so str aightforward [17,49,53]. What is evident, 
however, is that, as accuracy falls below roughly 85 per-
cent, a multifunction system can become  frustrating to 
use and usability can deteriorate considerably. Accuracy 
is determined by the capabilities of the user, but (for a 
reasonable number of c lasses) an accuracy of 90 percent 
is a reasonable expectation for most users  under ideal 
conditions.

The reality is, however, that ideal conditions do not 
exist in practic al use. The most significant issues to be 
overcome stem from the act of wearing a prosthesis and 
using it in a functional manner. These, among others, 
include electrode shift, variation in force, vari ation in 
position of the limb, and transient changes in EMG.

Electrode Shift
Each time a user dons a prosthesis, the electrodes will 

likely settle in a slightly different position, relative to the 
underlying musculature. The electrodes may also  shift 
during use because of loading and positioning of the limb. 
A shift of 1 cm of four electrodes placed circumferentially 
about the forearm has been shown to increase classifica-
tion error in a 10-class ex periment from roughly 5 to 
20 percent (if shifted distally) and to 40 percent (if rotated 
about the forearm) [54]. Also, including shifted versions 
of the data in the training session has been shown to virtu-

ally eliminate degradation due  to shift in the test set  
[54,63]. A different approach, investigating the effect of 
bipolar electrode configurations, showed that larger elec-
trodes and wider electrode separation can improve resil-
ience to shift but not nearly  as much as incorporating 
exemplars of shift into the training regimen [64].

Variability in electrode position from day to day may 
necessitate a daily training session when the prosthesis is 
being donned. The data from each donning could be 
stored and reused to emulate  the pooling of data from 
various shift locations. As data are accumulated, the sys-
tem may become resilient to typical shifts encountered 
during donning and in use. A daily calibration is proba-
bly warranted to accommodate other influences that may 
affect the EMG, such as electrode impedance (due to skin 
dryness, humidity), muscle hyper- or hypotrophy, and 
learning effects as the person with amputation becomes a 
more experienced user.

Variation in Force
Conventional control schemes usually map the inten-

sity of a contraction to velocity or posi tion of a device, 
thereby intrinsically incorporating a natural variation in 
contraction strength. Patte rn-recognition control, how-
ever, relies on clustering repeatable patterns of EMG  
activity into discernible classes. Contractions performed 
at different force levels may be very different from one 
another and therefore prese nt a challenge to a  pattern 
classifier. To demonstrate the impact of variation in 
force, we conducted an experiment * in which users per-
formed contractions at 20 to 80 percent of the strongest 
contraction they felt comfortable producing (this is 
clearly a subjective rating). Using eight electrodes spaced 
about the forearm, 11 subjects were asked to produce  
nine classes of motion (wrist flexion, wrist extens ion, 
wrist pronation, wrist su pination, hand open, key grip, 
chuck grip, power grip, and pinch grip). A tenth class of 
no movement was also included. Each of the nine ac tive 
classes was performed at each of the prescribed levels of 
relative effort.

To investigate the ability of a pattern-recognition sys-
tem to handle variations in force, we trained a classifier 
by using data from each force level and tested it at each 
level. The results of the 10-class experiment using a TD  
feature set and an LDA classifier are shown in Figure 7.

*These are unpublished results acquired for illustration in this review.
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As would be expected, training and testing a classi-
fier at the same force level results in the best ac curacies 
(gray bars). The best intralevel accuracy is achieved in 
the 60 to 70 percent effort range, which may be explained 
by the fact that subjects generally find it di fficult to pro-
duce low-level contractions with consistency. High-level 
contractions sometimes produce tremor, which may 
degrade recognition.

To determine the ability of a pattern-recognition sys-
tem to genera lize to new force levels not seen during 
training, we trained classifiers at each force level and 
then tested them on all force levels. The blue bars show 
the error when tested on contractions from all force lev-
els. Clearly, the prese nce of contra ctions from unse en 
force levels increases the error considerably, to the point 
where the system would be unusable (gre ater than 32% 
error). The green bars show the recognition error on only 
the unseen force levels (interlevel error); as expected, this 
performance is worst of all.

In an attempt to counteract this severe degradation in 
performance, an obvious strategy is to include exemplars 
from all force levels in the training set. The orange bar 
labeled “All” indicates the performance when we pooled 
data from all force levels and tested on all levels. It is 
encouraging that the error dr ops substantially to 17 per -
cent, which is not ideal, but approaching a usable system. 

It is not desirable, however, to have persons with amputa-
tion undergo an extensive training s ession that would 
require contractions from all levels, especially if they are 
to do this daily to accomm odate electrode shift while  
donning the prosthesis. A restricted protocol was there-
fore investigated: using only the lowest (20%) and high-
est (80%) force levels. As shown in the figure (indicated 
by a red ba r), the error incre ases only mar ginally (to 
19%) from training with all levels. W ork is ongoing to 
further reduce the intralevel errors to levels that are com-
fortably within a range of a usable system (<10% error).

Variation in Position of Limb
The unrestricted functional use of an uppe r-limb 

prosthesis necessitates using the limb in a variety of posi-
tions. For a person with transradial or transhume ral 
amputation, this will i mpose a loading of the muscles 
inside of the socket from which EMG is being recorded. 
This will alter the nature of the EMG due to compression 
of the muscle and, possibly, elicitation of eccentric con -
traction or mechanical  stimulation of the muscle . As 
well, various limb positions will impose different gravita-
tional forces, causing displacement of the muscles.

Scheme et al. performed an experiment to characterize 
the influence of limb position on pattern-recognition accu-
racy [65]. EMG data corres ponding to eight classes o f 

Figure 7.
Effects of training and testing with different force levels. Blue bars represent training at specified force levels (horizontal axis) and testing with all 
force levels, green bars when testing only at force levels different from training set, and gray bars when testing at same force level as training.
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motion were collected from eight healthy nondisabled sub-
jects (seven male, one female). The subjects were fitted 
with a cuf f made of thermoformable gel (taken from a 
6 mm Alpha liner by Ohio W illow Wood; Mt. S terling, 
Ohio) that was embedded with eig ht equally spaced pairs 
of stainless steel dome electrodes. The cuf f was placed 
around the dominant forearm proximal to the elbow at the 
position with largest muscle bulk. When a c uff is us ed, 
only the effect of muscle displacement due to gravity will 
influence the EMG; c ompression at the electrode sites 
only occurs when a socket is used.

Subjects were prompted to produce contractions cor-
responding to the following eight classes of motion: wrist 
flexion/extension, wrist pronation/supination, hand open, 
power grip, pinch grip, and a  no motion/rest c lass. Each 
repetition was sustained for 3 seconds and a 3 second rest 
was given between subsequent repe titions. This was 
repeated twice in each of the limb pos itions shown in 
Figure 8. 

TD features and an LDA class ifier were used to pro-
cess the data. In a manner similar to the force experiment, 
the data were trained at each individual position and 
tested at each individual position. The results are illus-
trated in Figure 9.

As expected, the intraposition error is low, averaging 
6.9 percent over all positions. The worst intraposition 
error was observed at P7 (h umerus reaching forward, 
elbow bent at 90°); the best is at P3 (straight arm hanging 
at side). The average interposition error (35%) is consid-
erably worse than the average intraposition error. Indeed, 
almost none of the situations of interposition classifica -
tion yield clinically ac ceptable performance: the lowest 
error is 13.6 pe rcent when training with arm straight 
down and testing when leaning down (these should intu-
itively be similar); the next lowest is 17.7 percent.

As with force and electrode shift, a strategy to reduce 
interposition error is to train with exemplars from each 
position. Figure 10 shows that this is an ef fective 
approach, yielding an average error of 7.4 percent, which 
is only slightly higher than the average intraposition error 
of 6.9 percent.

Using these same data, Scheme et al. have shown that 
the results can be slightly further improved by instru-
menting the humerus and fore arm with accelerometers 
[65–66]. Whether accelerometers are included or only 
EMG is used, however, the burden remains on the person 
with amputation to complete a training se ssion with an 
exhaustive set that includes all positions.

Transient Changes in EMG
Transient changes are additional factors that con -

found the use of EMG and are a result of short- and long-
term variations in the recording environment during use. 
External interference, electrode impedance changes, 
electrode shift and lift, and muscle fatigue may alter the 
EMG and present challenges to clinical robustness.

Strategic filtering and electromagnetic shielding can 
eliminate most forms of interference. The other sources 
of variation are intrinsic to  the system and cannot be  
effectively suppressed and are  therefore more problem -
atic. Although a pattern-recognition system may be cali -
brated upon donning, the nature of th ese effects is 
unpredictable, and therefore, the system must adapt to the 
changes in EMG. Adaptive EMG pattern-recognition sys-
tems have been investigated by several groups [67–70]. 
Adaptation of a pa ttern classifier is challenging because 
the system must know not only how to ad apt but also 
when to adapt. For a classifier to know how to adapt 
properly, it must have knowledge (or a reliable es timate) 
of the intended motion that generates the data to which it 
must adapt. If the user is directed (supervised) during the 
data acquisition, the classes will be known and the task is 
straightforward. The great est benefits to be gained 
through adaptation, however, are du ring normal, unsu-
pervised use, and therefore, the system must gues s the 

Figure 8.
Limb positions (labeled P1–P8) in  which subjects re peated contrac-
tions corresponding to wrist flexion/extension, wrist pronation/supina-
tion, hand open, power grip, pinch grip, and no motion/rest.
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intended class. Knowing when to adapt is equally critical. 
When parsing a data stream in real time, the system must 
be confident that the data are representative of the esti-
mated class. Some success has been reported through the 
use of entropy measures to characterize the uncertainty in 
the data and, therefore, attempt to select appropriate data 
for retraining. Improvement as  a result of adaptation has 
been shown during extended use [67] and for specifically 
induced effects (electrode shift, fatigue) [70], but the 
dynamics of adaptation and the interaction with the user 
are still not well understood. A completely stable, unsu-
pervised solution has yet to be  realized but is of great 
clinical interest.

FUTURE PROSPECTS

The main clinical advantage of surface EMG is that it 
is noninvasive, but its robustness is limited by inherent 
problems of electrode movement and lift, skin impedance 
changes over the day , and motion artifact. Implanted or 
intramuscular EMG (us ing wire electrodes) circu mvents 
these issues and has been shown to produce similar 
pattern-recognition results as EMG, as long as the intra -
muscular EMG is impl anted in the appropriat e muscles 
[16,71]. It is neither convenient nor practical, though, to 
use percutaneous wires in chronic use, due to the risk of 
breakage and infection.

Figure 9.
Intra- and interposition error. Rows indicate position from which training data were acquired. Main diagonal represents intraclass errors.
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Wireless, implanted EMG sensors have recently 
become available as resea rch prototypes [72] and may 
incorporate the functional a dvantages of wire elec trodes 
with minimal inva siveness. Implantable MyoElectric 
Sensor (IMES) electrodes [73] are 2 mm in diameter and 
15 mm long with a recording electrode on both ends. The 
devices are powered inductively and transmit EMG  data 
using an inductive link between an e xternal coil and a 
coil within the device. These devices have been success-
fully used to decode finger motion in a primate by 
implantation of nine IMESs in  the forearm of a  macaque 
monkey [74].

In addition to improved  recording robustness, 
another advantage of embedded EMG sensors is the pros-
pect of providing simultaneous control of multiple 
degrees of freedom. Although the re have been attempts 
to accomplish this with EMG [56,75–77], none of these 
approaches have been found to be clinically reliable. It is 
unlikely that robust, simulta neous, independent control 
of multiple degrees of free dom is attainable for the per -
son with transradial ampu tation using surfa ce EMG 
because of the complex nature  of forearm muscle syner-
gies [78–79], the inherent cross talk in the surface signal 
[75,80], and the  displacement in these muscles that 
occurs during c ontraction. Various approaches have 
attempted to decompose the multimuscle syner gies into 
the activity of consti tuent muscles, but the  models are 
very sensitive to anatomical and electrophysiological fac-
tors that may change during use. While more feasible, 
achieving simultaneous, independent control using intra-
muscular EMG is still a challenging task, because a sta -
ble muscle synergy map must be developed for each user.

There is currently intens e international research 
focused on the recording of motor intent from peripheral 
nerves and the motor cortex for brain-machine interfaces, 
functional electrical stimulatio n, and prosthetic control. 
Although great advances have been made in these fields, 
there remain many medic al and technical challenges to 
overcome before they are rea dy for clinical considera-
tion. An excellent overview of  this work is provided in 
Velliste et al. [81], Micera et al. [82], and Baker [83].

CONCLUSIONS

The capabilities and limitations of EMG pattern rec-
ognition for prost hetic control are wel l understood in 
research settings and are now under scrutiny in the con-
text of clinical applicat ion. This is of great interest in 
terms of functional benefit to users, especially now that 
highly dexterous, multifunc tion hands and wr ists are 
commercially available. This  article has described the  
most important aspects of pattern-recognition–based con-
trol, which include the EMG interface, signal processing, 
and performance evaluation. The major issues that must 
be accommodated to yield reliable performance in rea l 
use have been identified and illustrated, and methods for 
mitigating these issues have been described. The near  
future will be a transitional period for EMG control, as 
more clinical experience guides best practices for inter-
facing, training, and signa l processing. Recent develop-
ments in intramuscular and neural sensors will one day 
have a dramatic effect on the field, but only when medi-
cal and technical challenges are met.
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