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Abstract—Despite high classification accuracies (~95%) of 
myoelectric control systems based on pattern recognition, how 
well offline measures translate to real-time closed-loop control 
is unclear. Recently, a real-time virtual test analyzed how well 
subjects completed arm motions using a multiple-degree of 
freedom (DOF) classifier. Although this test provided real-time 
performance metrics, the required task was oversimplified: 
motion speeds were normalized and unintended movements 
were ignored. We included these considerations in a new, more 
challenging virtual test called the Target Achievement Control 
Test (TAC Test). Five subjects with transradial amputation 
attempted to move a virtual arm into a target posture using 
myoelectric pattern recognition, performing the test with vari-
ous classifier (1- vs 3-DOF) and task complexities (one vs 
three required motions per posture). We found no significant 
difference in classification accuracy between the 1- and 3-DOF 
classifiers (97.2% +/– 2.0% and 94.1% +/– 3.1%, respectively; 
p = 0.14). Subjects completed 31% fewer trials in significantly 
more time using the 3-DOF classifier and took 3.6 +/– 0.8 times
longer to reach a three-motion posture compared with a one-
motion posture. These results highlight the need for closed-loop 
performance measures and demonstrate that the TAC Test is a use-
ful and more challenging tool to test real-time pattern-recognition
performance.

Key words: multifunctional prosthesis, myoelectric control, 
pattern recognition, performance test, proportional control, 
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upper limb, virtual environment.

INTRODUCTION

Myoelectric control systems based on pattern recog-
nition have been proposed for the next generation of mul-
tifunctional upper-limb prostheses [1–3]. Ideally, a 
multifunctional prosthesis will restore functionality to 
users and measurably improve their quality of life. 
Unfortunately, the only validated prosthetic outcomes 
measure is the Assessment for Capacity of Myoelectric 
Control [4–5], which measures a user’s ability to perform 
a series of two-handed tasks and requires a physical pros-
thesis under volitional control. The Upper Limb Prosthet-
ics Outcome Measures Group (ULPOM Group) was 
formed in 2005 to address the lack of outcomes measures 
for upper-limb prosthetics [6]. In 2009, the ULPOM 
Group presented findings identifying a wide range of vari-
ables that contribute to prosthesis usability. One variable, 
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“control of the prosthesis,” included the need for a meas-
urement tool sensitive enough to both differentiate 
between control schemes and show changes in the ability 
to control the prosthesis over time [7]. The ULPOM 
Group recognized that the evolution of prosthesis design 
constitutes a continuum of research, development, clini-
cal work, and ultimately, home use. The ULPOM Group 
recommended that a series of tests be used to iteratively 
test each preceding stage in the continuum. In this article, 
we work on the development portion of the continuum by 
attempting to develop a test that may be used to quantify 
previously researched control algorithms before imple-
menting them in physical devices that may or may not yet 
exist. Specifically, we developed a test to measure the 
user’s ability to control pattern-recognition systems of 
varying complexity and comprising different components.

During pattern-recognition control, a computer pro-
gram identifies a user’s intended movements by using the 
pattern produced by several channels of surface elec-
tromyography (EMG) signals [8]. The computer classi-
fies the pattern and sends a movement command to the 
prosthesis. A large focus of pattern-recognition research 
is providing better EMG decoding by using various classi-
fiers and feature sets [3,9–12]. The performance of a classi-
fier is commonly assessed by calculating its classification 
accuracy after all data has been collected. Classification 
accuracy is the capability of the algorithm to correctly 
decode user movements. Pattern classification techniques 
such as linear discriminate analysis (LDA) [1,13], fuzzy 
logic [3,14], or artificial neural networks [10–11,13] 
commonly achieve offline classification accuracies
~95 percent.

However, how a pattern classifier’s performance in 
offline tests translates to its performance in real-time 
closed-loop control is relatively unclear [15]. Data are 
collected while the user tries to produce a specific motion.
After the experiment is over, the data are processed and 
classification accuracy is calculated as the percent of times
the classifier correctly identifies the motion. Therefore, 
classification accuracies are calculated during an open-
loop task during which the user has no feedback. At the 
beginning stages of development, offline accuracies provide
useful information without needing a multifunctional 
prosthesis. With offline performance established, the need
for evaluation tools based on real-time performance 
becomes more apparent because it is important to investi-
gate what happens to performance when the user is inter-
acting with the decoded movement.

Virtual environments can provide an alternative set-
ting for evaluating real-time pattern-recognition perform-
ance [16–19]. Through the use of a virtual clothespin 
task, Hargrove et al. showed that system controllability 
and functional performance improved when they included
the transient portion of the EMG signals in classifier 
training [17]. This is of noted importance because includ-
ing this information may have the opposite effect on 
offline classification accuracy by lowering the reported 
performance of the system [17]. More recently, Kuiken et 
al. designed a virtual test called the Motion Test that 
examined the clinical robustness and accuracy of pattern-
recognition control [18] in users with amputation who 
had undergone targeted muscle reinnervation (TMR) sur-
gery [20–21]. The Motion Test instructs users to follow
prompts for a movement and observe a virtual prosthesis 
decoding their movements. Users must maintain their 
muscle contractions until the virtual prosthesis moved 
through its full range of motion [18]. Previous Motion 
Test results suggest that the reinnervated muscles of users 
with amputation and TMR can produce sufficient EMG 
information for real-time pattern-recognition control [18].
Although this test provides real-time performance met-
rics, the required task is oversimplified; motion speeds 
are normalized and unintended movements (i.e., misclassi-
fications) are ignored.

We included these considerations (i.e., motion speeds 
and misclassifications) in a new, more challenging virtual 
test called the Target Achievement Control Test (TAC 
Test). The TAC Test evaluates user control and position-
ing of a multifunctional prosthesis. We instructed sub-
jects to move a virtual prosthesis into a target posture and 
maintain it for a period of time (i.e., 2 s) (Figure 1). If the 
subject overshot the target posture or produced unneces-
sary movements (either through volitional control or 
motion misclassifications), these had to be corrected to 
achieve success.

In this study, subjects with a transradial amputation 
controlled a virtual prosthesis using myoelectric pattern 
recognition with proportional control. To illustrate the 
flexibility of the new virtual performance test, subjects 
performed the TAC Test with two classifier complexities 
(a 1-degree of freedom [DOF] classifier and a 3-DOF 
classifier) and two task complexities (one or three motions
required to achieve target posture success). Results of 
subjects testing both complexities showed that the TAC 
Test provides valuable information about user myoelec-
tric control and pattern-recognition control algorithms that 
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could not be obtained using existing performance meas-
ures (e.g., offline classification accuracy) or existing real-
time virtual performance tests (e.g., Motion Test).

METHODS

Subjects
Five individuals with a transradial amputation partici-

pated in this study. Table 1 presents demographic infor-
mation about the subjects.

Electromyographic and Pattern-Recognition 
Configuration

We used six self-adhesive silver/silver chloride bipo-
lar surface electrode pairs (Noraxon Dual electrodes, 
Noraxon; Scottsdale, Arizona) to record muscle activity. 
The electrode pairs had a 1 cm diameter circular conduc-
tive area and a 2 cm interelectrode distance. We placed
four electrode pairs in a ring at the proximal portion of 
the residual forearm around the apex of the muscle bulge 

(2–3 cm distal to elbow crease) and positioned the other 
two electrode pairs on the distal end of the residual limb. 
For subjects with short residual limbs, we placed all six 
electrodes in the ring at the proximal portion of the fore-
arm. The EMG signals were amplified, sampled at a fre-
quency of 1 kHz and high-pass filtered at 20 Hz, to 
reduce motion artifact.

Subjects trained the system to recognize seven 
motion classes (wrist flexion, wrist extension, wrist supi-
nation, wrist pronation, hand open, hand closed, and no 
movement). To train the pattern-recognition system, we 
prompted subjects by demonstrating each movement and 
asked them to perform the movement at a comfortable 
and consistent level of effort. In training, subjects held 
each contraction for 3 s, repeated eight times. We split 
the data into two groups with 12 s of data used to train the 
LDA classifier and 12 s of data used to test the LDA
classifier. The pattern-recognition system segmented data 
from all EMG channels into a series of 150 ms analysis
windows with a 50 ms window increment. We extracted
four time-domain features (mean absolute value [MAV], 
number of zero crossings, waveform length, and number 
of slope sign changes) from each analysis window. With 
this LDA classifier, only one class decision was made at 
a time (i.e., sequential control). This pattern-recognition 
scheme has been previously described [1] and has shown 
to produce effective real-time control [18,22]. After sub-
jects trained the classifier, it was used to predict user 
commands and control a virtual prosthesis in real time. 
We assessed classification accuracy offline by dividing 
the number of correct class decisions by the total number 
of class decisions. For this experiment, we calculated the 
proportional movement speed by averaging the MAV of 
all channels (k) of EMG signals for a given data window 
and multiplying by a class gain factor (G) [15,23]:

where i = class. We configured desired speed gains for 
each class such that subjects could achieve full dynamic 
range where the maximum EMG amplitude corresponded 
to 100° per second. Subjects practiced in the virtual envi-
ronment for 5 to 10 min prior to testing.

Target Achievement Control Test
A screen displayed a target posture and a virtual 

prosthesis that responded to classifier output (Figure 1). 

Figure 1.
Target Achievement Control Test (TAC Test). Subjects moved multi-
functional virtual prosthesis into target posture. Virtual hand turned 
green when target was reached within acceptable tolerances (±5° for 
each degree of freedom). Figure illustrates starting and ending posi-
tions for successful trials. (a) Example trial from conditions 1 and 2 
requiring one motion to reach target posture (e.g., wrist flexion).
(b) Example trial from condition 3 requiring three motions to reach 
target posture (e.g., wrist flexion, wrist supination, and hand close).
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For the TAC Test, the subjects moved the virtual prosthe-
sis from a nonneutral position to a neutral posture (target).
The neutral position was 0° of wrist flexion or extension 
and 0° of wrist rotation (see Figure 1, successful trial 
end). To provide visual feedback, the virtual hand turned 
green when it was within an acceptable tolerance of the 
target (±5° for each DOF) (Table 2). Subjects completed 
tests more quickly if they only produced the motion(s) 
necessary to reach the target. If a subject overshot the tar-
get posture or produced unnecessary movements, he or 
she had to correct those motions to achieve success. TAC 
Test trials ended successfully when subjects were able to 
keep the virtual prosthesis in the target for 2 s. Target 
postures were never at the end of DOF ranges, which 
ensured controlled stopping and dwelling within the target 
posture as part of the required task. TAC Test trials ended 
unsuccessfully if subjects were unable to achieve and 
maintain the target posture by the specified time out. We 
tested three conditions in this study.

Condition 1
Subjects controlled a 1-DOF virtual prosthesis and 

performed the TAC Test with one required motion per 
trial. We tested each DOF separately. For wrist rotation, 
we used only the data for wrist supination, wrist prona-
tion, and no movement to build and test the LDA classi-
fier. The target posture required subjects to either 
supinate or pronate the virtual wrist across a movement 
distance of 75° to achieve success. Subjects repeated the 
protocol for wrist flexion and extension and hand open 
and closed. We presented the 1-DOF classifiers to the 
subjects in random order. For each 1-DOF classifier, sub-
jects performed four sets of the TAC Test; each set con-
sisted of two repetitions of each target posture (two 
postures) with a trial time out of 15 s. Condition 1 con-
sisted of a total of 48 trials.

Condition 2
Subjects controlled a 3-DOF virtual prosthesis and 

performed the TAC Test with one required motion per 
trial. We used data for all seven motion classes to build 

Table 1.
Demographics of subjects with transradial amputation.

Subject Age (yr)
Arm with 

Amputation
Arm 

Tested
Time Since 
Amputation

Type of 
Prosthesis Used

1 53 Right Right 20 yr Myoelectric
2 62 Right Right 25 yr Myoelectric
3 55 Bilateral Right 32 yr Body-powered
4 24 Left Left 9 mo Body-powered
5 32 Bilateral Right 3 yr Body-powered

Table 2.
Target Achievement Control Test configurable parameters.

Parameter Description Study Setting
Test Complexity Number of motions required to reach target posture. 1 (C1, C2); 3 (C3)

Movement Distance Distance between initial position of virtual hand and target posture for 
each tested motion. Larger or smaller distances can be used to test gross 
or fine motor control.

75°

Target Width Acceptable tolerance for reaching target posture. Smaller target widths 
lead to more challenging trials.

±5°

Dwell Time Length of time virtual prosthesis has to continuously remain in target 
posture for trial to be considered successful.

2 s

Trial Time Out Length of time in which trial must be completed. Trial is considered 
failed if time out is reached without success.

15 s (C1, C2); 45 s (C3)

C = condition.
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and test the LDA classifier. Similarly to condition 1, the 
target posture only required subjects to perform one 
motion across a movement distance of 75° to achieve 
success. Unlike condition 1, all three DOFs were active 
during each trial. For example, if a subject was trying to 
pronate his or her wrist and the hand closed, the subject 
needed to reopen the hand before achieving the target 
posture. Subjects performed four sets of the test; each set 
consisted of two repetitions of each target posture (six 
postures) with a trial time out of 15 s. Condition 2 con-
sisted of a total of 48 trials.

Condition 3
Subjects controlled a 3-DOF virtual prosthesis and 

performed the TAC Test with three required motions per 
trial. Similarly to condition 2, we used data for all 
motions to build and test the LDA classifier. Unlike con-
dition 2, target postures required subjects to perform 
three motions, such as wrist flexion, wrist supination, and 
hand open, to achieve success. Each trial required mov-
ing the virtual prosthesis across 75° for each required 
motion. Therefore, subjects had to move the virtual pros-
thesis over a total 225°. Subjects performed four sets of 
the test; each set consisted of one repetition of each target 
posture (eight postures). Since the pattern-recognition 
algorithm used in this study allowed only sequential 
motions, the trial time out for condition 3 was 45 s. Con-
dition 3 consisted of a total of 32 trials.

Prior to testing, we gave subjects at least 5 min to 
familiarize themselves with each condition. We presented 
the conditions to the subjects in random order. We used 
the first test set of each condition as practice and subse-
quent sets for data analysis. We analyzed the effects of 
classifier complexity by comparing conditions 1 and 2 
and the effects of task complexity by comparing condi-
tions 2 and 3.

TAC Test performance metrics included completion 
time, completion rate, and path efficiency. We set com-
pletion time as the time from trial start to the successful 
achievement of the target posture, not including the 2 s 
dwell time. We set completion rate as the percentage of 
successfully completed postures in a set of trials. We cal-
culated path efficiency as the shortest path to the target 
divided by the total distance traveled by the virtual hand 
[24]. Therefore, a trial with a path efficiency equal to
100 percent indicated that the subject was able to move 
the virtual prosthesis directly into the target posture and 
stop within the acceptable tolerance. We only reported 
completion time and path efficiency for successful trials.

Statistical Analysis
We performed a paired t-test to assess the statistical 

difference between classification accuracy, completion 
rate, completion time, and path efficiency across the two 
levels of classifier and task complexities.

RESULTS

Classifier Complexity (Comparison of Conditions 1 
and 2)

Classification accuracy was not significantly differ-
ent between the 1- and 3-DOF classifiers (p = 0.14). 
Average classification accuracy was 97.2 ± 2.0 percent 
(mean ± standard deviation) across all 1-DOF classifiers 
(condition 1) and 94.1 ± 3.1 percent across all 3-DOF 
classifiers (condition 2).

When the TAC Test required only one motion per 
posture, subjects completed significantly more trials and 
completed them significantly faster while using the 1-DOF
classifier compared with using the 3-DOF classifier (p = 
0.002 for completion rate and p < 0.001 for completion 
time) (Figure 2, Table 3). Figure 3 displays the position 
and decision history of an example trial using the 3-DOF 
classifier. Path efficiency measures demonstrated a simi-
lar trend of significantly decreased performance with the 
3-DOF classifier compared with the 1-DOF classifier 
(p = 0.03).

Figure 2.
Average completion rate curves for all three conditions. Solid line 
indicates performance during trials that required only one motion per 
posture using 1-degree of freedom (DOF) classifier (condition 1). 
Dashed line indicates performance during trials that required only one 
motion per posture using 3-DOF classifier (condition 2). Dotted line 
indicates performance during trials that required three motions per 
posture using 3-DOF classifier (condition 3). Shaded regions represent
±1 standard error.
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Task Complexity (Comparison of Conditions 2 and 3)
When the TAC Test required subjects to perform 

three motions to achieve each posture (condition 3), sub-
jects completed significantly more trials (p = 0.03) in a 
significantly longer time (p = 0.001) compared with
performing only one motion (condition 2) (Figure 2, 
Table 3). Note that the trial time out length for condition 
3 was three times that of condition 2. Figure 4 displays 
the position and decision history of a subject using the
3-DOF classifier to reach a posture that required three 

motions. The average completion time for achieving a three-
motion posture was 3.6 ± 0.8 times longer than the average 
completion time for a one-motion posture. The average path 
efficiency for the three-motion posture was significantly 
lower than that for the one-motion posture (p = 0.01).

DISCUSSION

We investigated subject performance with various 
classifier and task complexities to highlight the TAC Test. 

Table 3.
Target Achievement Control Test performance measures by condition.

Condition
Classifier 

Complexity 
(DOF)

Task Complexity 
(No. of Motions)

Classification 
Accuracy (%)

Completion
Rate (%)

Completion
Time (s)

Path
Efficiency (%)

1 1 1 97.2 ± 2.0* 99.4 ± 1.2* 2.9 ± 1.0* 92.8 ± 3.9*

2 3 1 94.1 ± 3.1* 68.9 ± 9.3*† 5.6 ± 0.9*† 81.1 ± 5.0*†

3 3 3 94.1 ± 3.1 92.1 ± 7.6† 20.1 ± 4.0† 54.7 ± 11.1†

*Paired t-test indicates significant difference between conditions 1 and 2 (p < 0.05).
†Paired t-test indicates significant difference between conditions 2 and 3 (p < 0.05).
DOF = degree of freedom.

Figure 3.
Position and decision history during example Target Achievement Control 
Test (TAC Test) trial requiring one motion to reach condition 2 target 
posture using 3-degree of freedom (DOF) classifier. Virtual prosthesis 
began in 75° wrist extension, 0° wrist rotation, and hand 50% closed. User 
had to flex wrist to reach target posture (0° flexion or extension, 0° wrist 
rotation, and hand 50% closed). Gray bars indicate target position for each 
DOF. Since TAC Test required all DOFs to match target position, subject 
had to correct any misclassifications (e.g., wrist pronation). Virtual arm 
reached target position at 5.3 s (indicated by T*). Trial ended at 7.3 s after 
subject was able to remain in target posture for 2 s.

Figure 4.
Position and decision history during example Target Achievement 
Control Test trial requiring three motions to reach condition 3 target 
posture using 3 degrees of freedom. Virtual prosthesis began in 75° 
wrist flexion, 75° wrist supination, and hand 25% closed. User had to 
extend and pronate wrist and close hand to reach target posture
(0° flexion or extension, 0° wrist rotation, and hand 75% closed). 
Gray bars indicate target position for each degree of freedom. Virtual 
arm reached target position at 18.2 s (indicated by T*). Trial ended at 
20.2 s after subject was able to remain in target posture for 2 s.
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The existing offline measure of classification accuracy is 
a limited metric of control caused by a ceiling effect. 
Classification accuracy is bounded by a maximum value 
of 100 percent, with pattern-recognition algorithms com-
monly reporting accuracies ~95 percent. The result of 
decades of research into classifier types and feature sets 
is very minimal increases, if any, in classification accu-
racy and how these changes relate to controllability is 
unclear. Existing virtual performance measures such as 
the Motion Test are oversimplified. The Motion Test 
prompts subjects to perform one motion until the virtual 
prosthesis moves through its full range of motion [18]. In 
a previous study by Li et al., users with a transradial 
amputation controlled 11 motions of a virtual prosthesis
with an average classification accuracy of 79 ± 11 percent
[22]. Users successfully completed 72 percent of the 
Motion Test trials [22]. In the current study, subjects who 
performed the TAC Test controlled only seven motion 
classes of a virtual prosthesis (condition 2) with an average
classification accuracy of 94.0 ± 3.1 percent. Even with 
fewer classes and much higher classification accuracy, 
subjects successfully completed only 69 percent of the 
TAC Test trials, highlighting the need for closed-loop 
performance measures. The TAC Test is challenging 
because subjects are required to “undo” unintended 
movements and command DOF stopping, because all 
DOFs are needed to match the target posture. Also unlike 
the Motion Test, the TAC Test allows subjects to move 
the virtual prosthesis at a slow or fast rate, depending on 
the intensity of their muscle contraction.

The TAC Test does not exhibit similar ceiling effects 
because a wide range of testing difficulties can be 
achieved by modifying test parameters (Table 2). For 
example, if a subject was able to achieve a 100 percent 
completion rate with a ±10° tolerance on the target pos-
ture, the experimenter or clinician can reduce the toler-
ance to ±5° to make the test more difficult. In the current 
study, we asked subjects to position the virtual arm into 
postures that required either one or three movements. An 
interesting observation was that subjects did not seem to 
be as affected by misclassifications at the beginning of 
movement while attempting to achieve a three-motion 
posture compared with a one-motion posture. While
performing the TAC Test with one required motion per 
posture, subjects would often correct unintended move-
ments as they happened (Figure 3). During trials that 
required three motions per posture, many subjects did not 
correct movement misclassifications right away but rather 

waited until they were closer to the target posture to correct
the movements as needed (Figure 4). In this case, mis-
classifications may actually have helped complete the 
motion. It is also possible that subjects were unable to 
determine whether the virtual hand was at the target in 
one DOF until the other DOFs were close to their target 
positions. These observations are not possible with other 
existing virtual performance measures. Similar observa-
tions are harder to track when subjects use a physical 
prosthesis since current physical prostheses do not include
position-tracking.

In addition to testing subject performance, the TAC 
Test provided a good environment for subjects to practice 
pattern-recognition control. To succeed in the test, sub-
jects needed to plan their movements and produce repeat-
able muscle patterns. Movement timing and sequential 
control are other key pattern-recognition concepts. Sub-
jects needed to control their muscle contraction length 
and intensity to properly position the virtual prosthesis 
and relax their muscles without eliciting another motion 
in order to keep the virtual arm at the target. Because the 
pattern-recognition algorithm used in the current study 
only allowed sequential control, subjects needed to per-
form only one motion at a time. Since the TAC Test does 
not depend on the type of control, algorithms that provide 
simultaneous and proportional control [25] can be tested 
within this virtual environment if they prove beneficial. 
The variable configuration (movement distance, time 
limit, acceptable tolerance, etc.) allows subject testing 
with different performance levels while still engaging 
subjects and maintaining motivation (Table 2).

The TAC Test must not be confused with a validated 
upper-limb prosthesis usability outcome measure. The 
ability to control a prosthesis is only one important com-
ponent in a user’s overall ability to use a prosthesis, 
which may include many other variables such as terminal 
device type, functional level, motivation, and level of 
therapy [7]. We developed the TAC Test to specifically 
test control algorithms so that differences in control strate-
gies may be measured and compared. This aligns with the 
findings from the ULPOM Group’s critical recommenda-
tion that the information to be captured is specific to the 
area in which it is being tested. We believe that the TAC 
Test captures important information about the control 
algorithms being tested; therefore, we assume that sys-
tems that score higher on the TAC Test will be more con-
trollable and ultimately, more usable. Future work must 
be completed to test that assumption.
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One limitation of the TAC Test is that subjects inter-
act with a virtual, not a physical, environment. Although 
the goal of developing this virtual test was not to com-
pletely replicate the physical environment, it is important 
to acknowledge the differences. User control and perform-
ance may differ between these two environments because 
the virtual environment does not model the prosthesis 
inertia. Wearing a physical prosthesis may alter the way 
users contract their muscles. Supporting the prosthetic 
weight may also affect how quickly muscles fatigue. 
During physical prosthesis control, not only position but 
also force and acceleration matter. While performing the 
TAC Test, users can successfully complete trials even 
with large terminal decelerations (e.g., they can stop 
abruptly in the target posture). Large terminal decelera-
tions with a physical prosthesis may cause unwanted 
interactions (e.g., placing a cup down too fast may cause 
the liquid to spill). Finally, for patients to use prosthesis, 
they would still require significant therapy for pattern-
recognition systems that prove to be controllable in a
virtual environment.

CONCLUSIONS

Although fundamental differences exist between the 
virtual and physical environments, the TAC Test provides 
a good platform for pattern-recognition control practice 
and testing. The virtual test measures real-time perform-
ance in a variety of testing settings. Current results dem-
onstrate that significant online differences can be seen 
even when no significant offline differences exist. There-
fore, the virtual test provides more control information in 
the continuum of offline measure of classification accuracy
and the full setup necessary for physical prosthesis testing.
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