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Abstract—Functional electrical stimulation (FES) facilitates
ambulatory function after paralysis of persons with spinal cord 
injury (SCI) by exciting the peripheral motor nerves to activate 
the muscles of the lower limbs. This study identified a process for 
selecting command sources for triggering FES with the surface 
electromyogram (EMG) from muscles partially paralyzed by 
incomplete SCI, given its high degree of intersubject variability. 
We found Discriminability Index (DI) to be a good metric to 
evaluate the potential of controlling FES-assisted ambulation in 
four nondisabled volunteers and two participants with incomplete 
paralysis. The left erector spinae (ES) (mean DI = 0.87) for trig-
gering the left step and the right ES (mean DI = 0.83) for trigger-
ing the right step were the best command sources for participant 1. 
The left ES (mean DI = 0.93) for triggering the left step and the 
right medial gastrocnemius (mean DI = 0.88) for triggering the 
right step were the best command sources for participant 2. Our 
results showed that command sources can be selected objectively 
from surface EMG before a fully implantable EMG-triggered 
FES system for walking is implemented.

Key words: Discriminability Index, electromyogram, functional 
electrical stimulation, gait, implantable stimulator-telemeters,
incomplete spinal cord injury, motor relearning, myoelectric con-
trol, pattern recognition classifier, rehabilitation.

INTRODUCTION

Functional electrical stimulation (FES) provides 
wheelchair-dependent individuals an opportunity for
brace-free ambulation with incomplete spinal cord inju-
ries (iSCIs). Neuroprostheses using FES can electrically 

activate a customized set of muscles selected by a clini-
cian to address individual gait deficits with prepro-
grammed patterns of stimulation to produce cyclic 
movement of the lower limbs for ambulation [1–2]. Users 
normally use a switch to trigger each step manually and 
progress through the customized pattern of muscle acti-
vations required to achieve walking function. In this 
study, we evaluated the ability of both nondisabled vol-
unteers and individuals with iSCI to determine the intent 
to step during level overground walking using surface 
electromyogram (EMG). Our goal was to specify a pro-
cess and criterion for selecting two muscles for a new 
command and control interface that can be implemented 
with only two channels of implanted EMG recording 
electrodes to coincide with the technical capabilities of 
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currently available implantable technology [3–6]. This 
article summarizes the method for evaluating the surface 
EMG from partially paralyzed muscles of two volunteers 
with iSCI and its comparison with normative data from 
four nondisabled participants.

While detecting gait event is possible with physical 
sensors such as force sensitive resistors, accelerometers, 
and gyroscopes [7–8], biopotentials such as EMG can also 
provide useful and reliable information when the move-
ment is impaired [9–11]. The EMG temporally precedes 
the generation of force in a muscle and the resulting move-
ment of a joint [12]. This precedence makes EMG an 
attractive signal for detecting intent and can allow FES to 
assist the desired movement. Graupe and Kordylewski pre-
sented a neural network-based classifier with online learn-
ing capabilities for individuals with complete paraplegia 
that used EMG signals from nonparalyzed muscles above 
the level of the spinal cord lesion (primarily the trunk and 
shoulder muscles) as the command sources [11,13]. 
Thorsen et al. showed that wrist extension improved by 
controlling FES with surface EMG from partially para-
lyzed wrist extensors [14]. Futami et al. showed the feasi-
bility of proportional control of FES with the surface EMG 
from the same muscle (partially paralyzed knee extensors) 
in incomplete hemiplegia [15]. Our research group con-
ducted a preliminary study that demonstrated the feasibil-
ity of FES-assisted walking triggered by the surface EMG 
from partially paralyzed muscles [5]. However, given both 
the high degree of variability observed in the iSCI popula-
tion and the limited number of recording channels avail-
able in implantable neuroprostheses, an objective and 
quantitative method for comparing and selecting the com-
mand sources for an implanted gait-assist system is 
required. A metric taken from signal detection theory 
called the Discriminability Index (DI) is presented in this 
article. We used DI to rank the partially paralyzed muscles 
according to their ability to detect the intent to step during 
level overground walking.

METHODS

Participants
Two male participants with iSCI volunteered for this 

study. Participant iSCI-1 was a 23-year-old male with C7 
(seventh cervical [C] vertebra) motor and C6 sensory 
iSCI (American Spinal Injury Association [ASIA] C), 
resulting in bilateral paralysis, who could stand but could 

not initiate a step without help from FES. Participant 
iSCI-2 was a 34-year-old male with T1 (first thoracic [T] 
vertebra) motor and C6 sensory iSCI (ASIA D), resulting 
primarily with left-side paralysis and right-side weak-
ness. Participant iSCI-2 could walk only short distances 
without the help from FES. Each participant received an 
eight-channel Implantable Receiver Stimulator (IRS) 
(IRS-8) and eight surgically implanted intramuscular 
electrodes in a related study designed to facilitate house-
hold and limited community ambulation [16–17]. Four 
male nondisabled participants with a mean age of 
39.5 years (ranging from 25 to 54 years) provided the 
normative data for comparison. The nondisabled partici-
pants had no known injury or pathology to either lower 
limb before or during the study.

Participant iSCI-1 received an IRS and eight intra-
muscular stimulating electrodes (IRSs) bilaterally to 
recruit iliopsoas, vastus intermedius and lateralis, tensor 
fasciae latae, tibialis anterior (TA), and peroneus longus 
muscles. Participant iSCI-2 received an IRS with eight 
stimulating electrodes only on his left side to recruit iliop-
soas, vastus intermedius and lateralis, tensor fasciae latae, 
gluteus medius (GM), gluteus maximus, posterior por-
tion of adductor magnus, and TA (two electrodes). We 
customized temporal patterns of stimulation to activate 
the muscles for their particular gait deficits according to 
established tuning procedures to achieve forward stepping 
in a rolling walker [18–19]. The participants completed 
6 weeks of overground gait training (2 h sessions, 3 times a 
week) using the implanted FES system with the help of a 
physical therapist. Details of the standardized course of 
overground gait training with FES have been summarized 
in previous publications [16–17]. After discharge from 
rehabilitation, the participants volunteered for additional 
studies of the potential for controlling the implanted neu-
roprostheses with the myoelectric signals recorded from 
their partially paralyzed lower-limb musculature.

EMG Signal Acquisition and Processing
The experimental setup is shown in Figure 1. Partici-

pants with iSCI walked with an implanted switch-
triggered FES system based on the IRS-8 implanted pulse 
generator and controlled by an external control unit while 
the activity of the partially paralyzed musculature was 
monitored by way of surface recording electrodes.

Surface EMG signals were collected from GM, 
biceps femoris (BF), medial gastrocnemius (MG), rectus
femoris (RF), TA, and erector spinae (ES) (at T9) bilaterally. 
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In case of participants with iSCI, the surface EMG was col-
lected during switch-triggered FES-assisted gait when each 
step was initiated by a depression of ring-mounted finger 
switch. Nondisabled volunteers were instructed to walk at a 
comfortable self-selected speed while the EMG signals of 
the same muscles were monitored on their right side only.

We collected surface EMG using Ag/AgCl (silver metal 
and silver chloride) electrodes with 2 cm interelectrode 
distance following the SENIAM (Surface ElectroMyo-
Graphy for the Non-Invasive Assessment of Muscles) 
[20]. The EMG signals were amplified and low-pass filtered 
(antialiasing, frequency cutoff = 1,000 Hz) by CED 1902 
amplifiers (Cambridge Electronic Design; Cambridge, 
England) before being sampled at 2,400 Hz. The CED 1902 
amplifier has a switching circuit (clamp) that was activated 
by a trigger pulse that disconnected the electrode inputs 
from the amplifier and connected them to the common elec-
trode just before the start of the stimulation pulse. We 
clamped the input channels of CED 1902 this way when 
stimulation pulses were applied to the muscles to prevent 
stimulation artifact. We set the gain of each channel sepa-
rately in the CED 1902 amplifiers to prevent saturation at 
the maximum muscle activity during the gait cycle.

During each trial, the participants were asked to start 
walking after standing for 3 s and reach a self-selected 
steady state speed within 5 m from the start position. 

After reaching the self-selected steady state speed, the 
participants had to decelerate and return to standing. The 
participants were then asked to wait in terminal stance for 
2 to 3 s. In case of participants with iSCI, the goal was to 
collect about 10 trials for each session (a day of experi-
ments), and three such sessions were evenly spread over 
a week. The gait trials were interspaced with adequate 
rest periods, and the number of trials during a session 
was based on verbal feedback from each participant with 
iSCI. The participants with iSCI were motivated to use 
their partially paralyzed muscles as much as they could 
during FES-assisted walker-aided ambulation. Data were 
collected over a month to capture day-to-day variability, 
which resulted in 60 trials for each participant with iSCI. 
We collected 15 trials for each session (a day of experi-
ments) for each participant from the four nondisabled 
participants, resulting in 60 total trials.

The processing of the data was performed offline, 
which is illustrated in Figure 2 and explained in the fol-
lowing. The implanted FES system delivered electrical 
pulses at a frequency of 20 Hz, so the sampled EMG was 
divided into bins of 50 ms duration. In each bin, we 
blanked 30 ms following the start of the stimulation pulse 
to remove the residual stimulation artifact and M wave, 
thus leaving the signal related to the voluntary muscle 
activity (Figure 2(a)). The blanked portion of the EMG 
was reconstructed (Figure 2(b)) with the average value 
of the EMG in the preceding and succeeding blocks [21]. 
We then low-pass filtered the whole EMG pattern (5th 
order zero-lag Butterworth, frequency cutoff = 3 Hz) to 
extract the linear envelope (LE) (Figure 2(c)). The EMG 
pattern for each muscle was normalized by the maximum 
value of the EMG LE during gait cycle. The normalized 
LEs during a gait cycle were then divided into double-
support and swing phase of gait based on the occurrence 
of foot strike and foot off. The foot and ground contact 
sequences were determined from insole foot switches 
(B&L Engineering; Santa Ana, California) placed bilater-
ally at the medial and lateral heel, first and fifth metatar-
sal, and big toe. One can detect the intent to step based on 
the magnitude of the LE when it crosses a selected 
threshold (i.e., threshold-based classifier [TC]) or by 
matching the LE pattern with a specified (characteristic) 
pattern of muscle activity using cross-correlation analysis 
(i.e., pattern recognition classifier [PRC]). The LE pat-
tern for participant iSCI-1 has been presented in Dutta et 
al. [5], and the LE pattern for participant iSCI-2 is shown 
in Figure 3. The ballistic stepping with the lower limbs 

Figure 1.
Experimental setup for surface electromyogram (sEMG) data 
collection with switch-triggered functional electrical stimulation-
assisted overground walking.
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was assisted with preprogrammed temporal patterns of 
FES, which were triggered with EMG.

Selection of Command Sources
The normalized LEs of the EMG from each muscle 

were divided into two classes: the class “True” was com-
posed of LEs during the double-support phase before foot 
off and the class “False” consisted of the LEs during all 
other activities, including terminal stance, swing, and quiet- 
standing. We randomly allocated half the data to training 
and used it to find a characteristic pattern of activation by 
ensemble-averaging the LEs. The characteristic pattern
found for the class True was cross-correlated with the LEs 
from the other half of the data (test data) for the classes—
True and False. We computed Receiver Operating 

Figure 2.
Processing of raw electromyogram (EMG) collected during functional 
electrical stimulation to find its linear envelope (LE): (a) Raw EMG 
with blanking trigger, (b) processed EMG with blanked portions 
reconstructed with average EMG from pre- and postvolitional blocks, 
and (c) LE found from processed EMG . IPI = interpulse interval.

Figure 3.
Characteristic linear envelope (LE) pattern for triggering functional 
electrical stimulation for participant 1 with incomplete spinal cord 
injury: LE characteristic patterns for (a) class “true” (N = 150) and 
(b) “false” (N = 150). EMG = electromyogram, ES = erector spinae,
FO = foot off, FS = functional stimulation, MG = medial gastrocnemius, 
std dev = standard deviation.
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Characteristic (ROC) curve for each of the candidate mus-
cles to assess the trade-off between the True Positive Rate 
(sensitivity) and False Positive Rate (1 = specificity) of 
both TCs and pattern recognition-based binary classifiers, 
while the decision threshold was varied [22–24]. For the 
PRC, the ROC curve was computed from the cross-
correlation coefficient of the characteristic pattern with the 
LEs for the True and False classes, whereas for the TC, the 
ROC curve was computed from the amplitude of the LEs 
for the True and False classes.

The LEs from the surface EMG signals of the left 
and right sides of all four nondisabled participants were 
considered symmetrical. Therefore, the performances of 
the PRC and TC were evaluated only for the right side in 
the case of nondisabled participants.

The area under the ROC curve exhibits a number of 
desirable properties for characterizing overall accuracy 
of binary classifiers—it is independent of the decision 
threshold and invariant to a priori class probabilities [25]. 
The area under the ROC curve, also called the DI, was 
numerically computed with trapezoidal integration. For 
cases where 0.5 DI < 1, the mean of the True class data 
was greater than or equal to the mean of the False data 
and the values greater than the discrimination threshold 
were classified as True. Therefore, DI indicated how well 
a simple binary classifier could discriminate between the 
intent to step (True) and the intent to stand (False) during 
the double-support phase of gait.

DIs for the PRC (DIPRC) and TC (DITC) were 
derived from the areas under the ROC curves generated 
for each EMG signal source. The data were randomly 
partitioned 10 times into training and test data sets for a 
10-fold cross validation. For consistency, the same train-
ing and test data sets were used by both PRCs and TCs, 
for computing the ROC curves in a paired experimental 
design. Therefore, we generated 10 ROC curves for each 
classifier by randomly pooling the LEs into training and 
test data sets. The DI was computed for each ROC curve 
and then averaged to find the mean (DIPRC and DITC) ± 
standard deviation (SD) (SD(DIPRC) and SD(DITC)) for 
each classifier.

Statistical Analysis
We performed a two-way two-tailed analysis of vari-

ance (ANOVA) (ANOVA2 in MATLAB R14 [The Math-
Works, Inc; Natick, Massachusetts]) on the DIs computed 
from the walking data. All observations were considered 

mutually independent for the ANOVA test. The p-value 
was computed for the null hypotheses:
  • H10: The DIs for the PRC and TC have equal mean 

values.
  • H20: The DIs for all the muscles have equal mean 

values.
  • H30: No interactions are between the classifier type 

and muscles selected.
If the p-value was close to zero (<0.05), then that null 

hypothesis was rejected and the result was considered sta-
tistically significant. To find which pairs were significantly 
different, we performed post hoc tests. The critical values 
for simultaneous comparison of all linear combinations of 
mean values were found from the conservative Scheffé S
procedure with a significance level of 0.05 (= 0.05).

RESULTS

Table 1 depicts the mean ± SD values of the DIs for 
nondisabled participants by muscle and classifier type. The 
value of DI was equal to zero for TC when the amplitude 

Table 1.
Mean ± SD values of DI for nondisabled participants (n = 4) by 
muscle and classifier type. Muscles tested were GM, BF, MG , RF, TA, 
and ES (at 9th thoracic vertebra) and classifiers were PRC and TC. SD 
of DI was over 10 random partitions (i.e., 10-fold cross validation).

Muscles for Right-Step 
Classifier for 
Nondisabled 
Participants

DIPRC ± SD 
(DIPRC)

DITC ± SD 
(DITC)

Ipsilateral GM 0.42 ± 0.00 0.00 ± 0.00

Ipsilateral BF 0.29 ± 0.00 0.00 ± 0.00

Ipsilateral MG 1.00 ± 0.00 1.00 ± 0.00

Ipsilateral RF 0.74 ± 0.01 0.59 ± 0.05

Ipsilateral TA 0.52 ± 0.00 0.00 ± 0.00

Ipsilateral ES 1.00 ± 0.00 1.00 ± 0.00

Contralateral GM 1.00 ± 0.00 1.00 ± 0.00

Contralateral BF 1.00 ± 0.00 1.00 ± 0.00

Contralateral MG 0.26 ± 0.00 0.00 ± 0.00

Contralateral RF 1.00 ± 0.00 0.42 ± 0.04

Contralateral TA 1.00 ± 0.00 1.00 ± 0.00

Contralateral ES 0.49 ± 0.02 0.00 ± 0.00
BF = biceps femoris, DI = Discriminability Index, ES = erector spinae, GM = 
gluteus medius, MG = medial gastrocnemius, PRC = pattern recognition clas-
sifier, RF = rectus femoris, SD = standard deviation, TA = tibialis anterior, 
TC = threshold-based classifier.
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of LE in the True class was lower than that in the False 
class. This result is because we were interested in those 
muscles that the participant activates to trigger the step-
ping action, and therefore, the mean of the True class data 
has to be greater than or equal to the mean of the False 
data. We found statistically significant differences in the 
mean values of DI because of muscle as well as the classi-
fier type. Results from the post hoc analysis are presented 
in Figure 4. Ipsilateral MG and ES and contralateral BF, 
GM, and TA all performed equally well (mean DI = 1) as 
command inputs (Figure 4(a)). Figure 4(b) shows that 
the PRC (mean DIPRC = 0.76) performed much better 
than the TC (mean DITC = 0.5) during walking of nondis-
abled participants.

The DI of some of the muscles of both the partici-
pants with iSCI improved during the month-long data 
collection. Twelve 1-day sessions were spread over a 
month. We used half the trials during each session to train 
the classifiers and the other half to compute the DI. Fig-
ure 5 shows the changes in the DI over the period of data 
collection for the participant iSCI-1, whereas Figure 6
shows the time course of variations in DI for the partici-
pant iSCI-2. Figures 5(a)–(b) and 6(a)–(b) show the 
results from the left-step classifier, and Figures 5(c)–(d) 
and 6(c)–(d) show the results from the right-step classi-
fier. Figures 5(a) and (c) and 6(a) and (c) show the 
results from the TC, whereas Figures 5(b) and (d) and
6(b) and (d) show the results from the PRC. We noted 
that the DI improved for the ipsilateral MG and ipsilat-
eral ES muscles of the participant iSCI-1, regardless of 
the classifier applied (i.e., both muscles performed 
equally well in either the TC or PRC). The left ES for the 
left-step TC and PRC and the right ES for the right-step 
TC and PRC had the highest DI during most sessions for 
participant iSCI-1.

The DI improved similarly for both TC and PRC for 
participant iSCI-2, as well (Figure 6). As shown in Fig-
ure 6, the leading muscles for PRC command source—
ipsilateral MG , ipsilateral ES, and contralateral RF (ipsi-
lateral and contralateral are defined with respect to the 
classifier; for example, for left-step classifier, left MG , 
left ES, and right RF were the best)—had comparable DI 
during most sessions. Also, the left-step PRC that was the 
more involved side improved more noticeably than the 
right-step PRC. The DI of the leading muscles for PRC 
took about eight sessions to reach steady state (DI > 0.95) 
for the bilaterally involved participant iSCI-1, whereas

the DI took about four sessions for the unilaterally 
involved participant iSCI-2.

Data from all trials during the month-long data collec-
tion were pooled together for a 10-fold cross validation. 
Table 2 lists the mean ± SD values of the DI of the left- and 
right-step classifiers for participant iSCI-1 by muscle and 
classifier type. The performance of the TC and PRC for this 
participant with incomplete paralysis generally paralleled 
those for nondisabled participants. We found statistically 
significant differences in the mean values of DI because of 
muscle as well as the classifier type. The results from the 

Figure 4.
Post hoc analysis of Discriminability Index (DI) with critical values ( = 
0.05) from Scheffé S procedure by (a) muscle for right-step classifier 
and (b) classifier type for right-step trigger for nondisabled participants. 
Muscles tested are gluteus medius (GM), biceps femoris (BF), medial 
gastrocnemius (MG), rectus femoris (RF), tibialis anterior (TA), and 
erector spinae (ES) (at 9th thoracic vertebra). Binary classifiers tested 
are pattern recognition classifier (PRC) and threshold-based classifier 
(TC). True mean with 95% confidence interval is shown for highlighted 
(a) muscle and (b) classifier and others in pairwise comparison. Mean 
values are significantly different if their intervals do not overlap.
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post hoc analysis are presented in Figure 7. The ES and 
MG were the preferred command inputs, regardless of the
side for this bilaterally involved participant, and the PRC 
slightly outperformed the TC. The left ES (mean DI = 0.87) 
performed the best followed by the left MG (mean DI = 
0.79) for command source inputs for the left step, and the 
PRC (mean DIPRC = 0.65) performed slightly better than 
the TC (mean DITC = 0.60), as indicated in Figure 7(a) and 
(c). For the right step, right ES (mean DI = 0.83) performed 
the best, followed by the right MG (mean DI = 0.80) as 
command inputs, and the PRC (mean DIPRC = 0.66) per-

formed slightly better than the TC (mean DITC = 0.59), as 
shown in Figure 7(b) and (d).

Table 3 lists the mean ± SD values of the DI of the 
left- and right-step classifiers for iSCI-2 by muscle and 
classifier type. These outcomes were consistent with the 
results obtained for both the nondisabled group and par-
ticipant iSCI-1. We found statistically significant differ-
ences in the mean values of DI because of both muscle 
and classifier type. The results from the post hoc analysis 
are presented in Figure 8. The left ES (mean DI = 0.93) 
was the best command source for the left step, followed 

Figure 5.
Session-to-session changes in DI during month-long data collection for participant 1 with incomplete spinal cord injury (total 12 sessions): 
(a) left-step threshold-based classifier (TC), (b) left-step pattern recognition classifier (PRC), (c) right-step TC, and (d) right-step PRC. (For left-
step classifiers, left side is ipsilateral and right side is contralateral. For right-step classifiers, right side is ipsilateral and left side is contralateral.) 
BF = biceps femoris, ES = erector spinae, GM = gluteus medius, MG = medial gastrocnemius, RF = rectus femoris, SD = standard deviation, 
TA = tibialis anterior.
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by the left MG (mean DI = 0.87), and the contralateral 
right RF (mean DI = 0.85) (for left-step classifier, right 
side is contralateral) was the best for identifying the 
intent to take a left step. 

As for the nondisabled participants and participant 
iSCI-1, the PRC (mean DIPRC = 0.72) consistently out-
performed the TC (mean DITC = 0.46) for the left step in 
iSCI-2. For the right step, the right MG (mean DI = 0.88)
was the best command source followed by the right ES 
(mean DI = 0.85) and the contralateral left RF (mean 

DI = 0.85), and the PRC (mean DIPRC = 0.69) slightly 
outperformed the TC (mean DITC = 0.55) for this unilat-
erally involved participant.

DISCUSSION

Ipsilateral ES and MG consistently performed well as 
signal sources in detecting the intent to initiate a step in 
both nondisabled and participants with iSCI, regardless

Figure 6.
Session-to-session changes in DI during month-long data collection for participant 2 with incomplete spinal cord injury (total 12 sessions): 
(a) left-step threshold-based classifier (TC), (b) left-step pattern recognition classifier (PRC), (c) right-step TC, and (d) right-step PRC. (For left-
step classifiers, left side is ipsilateral and right side is contralateral. For right-step classifiers, right side is ipsilateral and left side is contralateral.) 
BF = biceps femoris, ES = erector spinae, GM = gluteus medius, MG = medial gastrocnemius, RF = rectus femoris, SD = standard deviation, 
TA = tibialis anterior.
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of side. These muscles were not targeted for electrical 
stimulation in the participants with iSCI and were able to 
yield clean signals unaffected by stimulation artifact. We 
selected the two best muscles for the command source 
and the type of classifier with post hoc analysis using the 
critical values found from Scheffé S procedure after two-
way ANOVA of the DI. Left ES and right ES were the 
best command sources for participant iSCI-1, who exhib-
ited a symmetrical paralysis and was susceptible to mus-
cle spasms in his MG , which decreased its reliability as a 
command source. In contrast, for iSCI-2, the left ES and 
right MG were the best command sources for the left and 
right steps, respectively. This participant was more 
impaired on his left side, which exhibited a similar result 
as participant iSCI-1. However, his right leg was less sus-
ceptible to spasms, which allowed the MG to be used as a 
robust and reliable command source as in the nondis-
abled cases.

The PRC consistently performed better than the TC 
in both nondisabled and participants with iSCI. The basic 
PRC presented in this article used an ensemble average 
of the LEs in the True class as the feature for pattern rec-
ognition, and its performance may be improved even fur-
ther with better feature extraction techniques, such as 
principal component analysis [5].

The DI of the leading candidates for muscle command 
sources improved for both participants with iSCI during 

the month-long data collection. The DI in the case of the 
bilaterally involved participant iSCI-1 took longer to reach 
steady state as compared with unilaterally involved partici-
pant iSCI-2. The participants with iSCI were asked to use 
their redundant motor function during their switch-
triggered FES-assisted walking. The improvement in the 
DI of the PRC showed that the participants with iSCI were 
relearning consistent volitional EMG patterns that were 
required to trigger the PRC of the corresponding step dur-
ing FES-assisted walking.

This observation illustrates a potential benefit of 
EMG control over switch-triggering or other method of pro-
gressing through the stimulation patterns for walking. 
Incorporating the volitional activity of the partially para-
lyzed muscles that were previously involved in the motor 
activity of walking may have therapeutic effects because of 
the exercise and practice required to reincorporate them into 
functional walking patterns. On the contrary, reliance on 
switch triggering or automatic cycling through the stim-
ulation patterns may reinforce the nonuse and further atro-
phy of the affected musculature. In addition, EMG control 
may give users options to naturally modulate walking speed 
based on the activity of the muscles selected for command 
sources without the need to select preprogrammed stimulus 
patterns for various walking velocities. Such systems may 
facilitate maneuvering in otherwise inaccessible environ-
ments, negotiating architectural barriers and avoiding 

Table 2.
Mean ± SD values of DI of left and right-step classifiers for participant 1 with incomplete spinal cord injury by muscle and classifier type. 
Muscles tested were GM, BF, MG , RF, TA, and ES (at 9th thoracic vertebra) and classifiers were PRC and TC. SD of DI was over 10 random 
partitions (i.e., 10-fold cross validation).

Muscle
Left-Step Classifiers Right-Step Classifiers

DIPRC ± SD (DIPRC) DITC ± SD (DITC) DIPRC ± SD (DIPRC) DITC ± SD (DITC)
Left GM 0.77 ± 0.06 0.66 ± 0.06 0.48 ± 0.07 0.57 ± 0.06
Left BF 0.56 ± 0.03 0.57 ± 0.05 0.55 ± 0.07 0.58 ± 0.04
Left MG 0.81 ± 0.02 0.77 ± 0.06 0.68 ± 0.06 0.59 ± 0.04
Left RF 0.72 ± 0.04 0.57 ± 0.05 0.66 ± 0.05 0.55 ± 0.05
Left TA 0.63 ± 0.08 0.58 ± 0.06 0.53 ± 0.05 0.56 ± 0.07
Left ES 0.96 ± 0.04 0.78 ± 0.06 0.57 ± 0.05 0.55 ± 0.05
Right GM 0.50 ± 0.04 0.53 ± 0.03 0.77 ± 0.04 0.53 ± 0.03
Right BF 0.56 ± 0.04 0.56 ± 0.05 0.52 ± 0.04 0.52 ± 0.06
Right MG 0.58 ± 0.04 0.56 ± 0.06 0.85 ± 0.05 0.75 ± 0.05
Right RF 0.65 ± 0.08 0.53 ± 0.06 0.69 ± 0.05 0.53 ± 0.05
Right TA 0.56 ± 0.05 0.55 ± 0.06 0.68 ± 0.04 0.56 ± 0.05
Right ES 0.51 ± 0.06 0.60 ± 0.05 0.89 ± 0.06 0.77 ± 0.04
BF = biceps femoris, DI = Discriminability Index, ES = erector spinae, GM = gluteus medius, MG = medial gastrocnemius, PRC = pattern recognition classifier, 
RF = rectus femoris, SD = standard deviation, TA = tibialis anterior, TC = threshold-based classifier.
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obstacles, or traveling over uneven surfaces. Furthermore, 
individuals with iSCI exhibiting upper-limb impairments 
(incomplete tetraplegia is the largest subgroup of the SCI 
population) who may have difficulty manipulating controls 
of switch-triggered devices may benefit from such myo-
electric systems that do not rely extensively on manual 
dexterity.

This feasibility study has demonstrated a method to 
select command sources accurately and reliably based on 

surface EMG from partially paralyzed muscles for myo-
electrically controlled neuroprostheses employing FES to 
restore or enhance ambulation after incomplete SCI. Such 
myoelectrically controlled FES has been successfully 
implemented in upper-limb neuroprostheses [26]. More-
over, the objective method presented in this article is appli-
cable to intramuscular EMG as well, e.g., one can first 
select the best muscle set from surface EMG and then 
select the best location in those muscles from fine-wire 

Figure 7.
Post hoc analysis of Discriminability Index (DI) with critical values (= 0.05) from Scheffé S procedure by (a) and (b) muscle and (c) and 
(d) classifier type for participant 1 with incomplete spinal cord injury. (a) and (c) are for left-step classifier, while (b) and (d) are for right-step 
classifier. Muscles tested are gluteus medius (GM), biceps femoris (BF), medial gastrocnemius (MG), rectus femoris (RF), tibialis anterior (TA), 
and erector spinae (ES) (at 9th thoracic vertebra). Binary classifiers tested are pattern recognition classifier (PRC) and threshold-based classifier 
(TC). True mean with 95% confidence interval is shown for highlighted (a) and (b) muscle and (c) and (d) classifier and others in pairwise 
comparison. Mean values are said to be significantly different if their intervals do not overlap.
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EMG for implanting of intramuscular electrodes. Intra-
muscular electrodes were shown to be more selective and 
sensitive than surface electrodes in detecting EMG signals 
from adjacent muscles [27] and may improve the classifi-
cation accuracy. We envision future myoelectrically con-
trolled neuroprostheses incorporating the command 
inputs determined by such methods to operate as described 
in Dutta et al. [5,28]. To proceed to EMG-triggered walk-
ing, users will have to trigger the FES-assisted sit-to-stand 
transition as well as the first FES-assisted stepping with a 
manual switch and thereafter trigger the subsequent steps 
using EMG based on TC or PRC. Users will be able to 
modulate the gait speed as well as stop at any time using 
the volitional EMG. After stopping, they will have to trig-
ger the FES-assisted stand-to-sit transition with a manual 
switch. Research has shown that such EMG-triggered FES 
produces better coordination during stand-to-walk transi-
tion than either switch-triggered or autotriggered (electri-
cal stimulation patterns cycled at a fixed rate) FES [29].

CONCLUSIONS

This study demonstrated that the DI is a robust metric 
for evaluating partially paralyzed muscles and selecting 
command sources objectively for myoelectrically controlled 
gait-assist neuroprostheses based on surface EMG with post 

hoc procedures. However, the best muscle set to extract a 
command signal may vary from person to person, depend-
ing on the individual extent and severity of paralysis. Bilat-
eral ES was the best command source for participant iSCI-1 
because of the symmetrical nature of his paralysis and plan-
tar flexion spasms, while the left ES and right MG were the 
best command sources for iSCI-2 who presented with more 
involved left-side paralysis. In spite of intersubject variabil-
ity, ipsilateral GM and ES consistently performed well in 
discriminating between the intent to step and all other activ-
ity in nondisabled participants as well as participants with 
iSCI. The participants with iSCI learned to generate consis-
tent EMG patterns during this study, which improved the 
performance of the PRC. Moreover, during offline analysis, 
the PRC performed better than the TC in terms of DI.

However, considering the heterogeneous nature of 
injury and recovery after iSCI, we find that drawing a 
broad and generalizable conclusion is difficult. This arti-
cle presented a quantitative technique for selecting EMG 
command sources from partially paralyzed muscles in 
presence of intersubject variability in the iSCI population. 
The participants with iSCI should be provided with
enough FES-assisted gait training so that they can relearn 
volitional EMG patterns. During this training period, the 
binary classifier (TC and PRC) performance can be moni-
tored in terms of their DI. After a steady state is reached, 
one can use the post hoc procedures described in this 

Table 3.
Mean ± SD values of DI of left and right-step classifiers for participant 2 with incomplete spinal cord injury by muscle and classifier type. 
Muscles tested were GM, BF, MG , RF, TA, and ES (at 9th thoracic vertebra) and classifiers were PRC and TC. SD of DI was over 10 random 
partitions (i.e., 10-fold cross validation).

Muscle
Left-Step Classifiers Right-Step Classifiers

DIPRC ± SD (DIPRC) DITC ± SD (DITC) DIPRC ± SD (DIPRC) DITC ± SD (DITC)
Left GM 0.49 ± 0.07 0.00 ± 0.00 0.74 ± 0.00 0.69 ± 0.02
Left BF 0.47 ± 0.03 0.00 ± 0.00 0.88 ± 0.01 0.59 ± 0.03
Left MG 0.99 ± 0.00 0.74 ± 0.06 0.68 ± 0.01 0.66 ± 0.02
Left RF 0.46 ± 0.04 0.68 ± 0.03 0.99 ± 0.00 0.69 ± 0.02
Left TA 0.47 ± 0.00 0.00 ± 0.00 0.68 ± 0.02 0.70 ± 0.02
Left ES 0.99 ± 0.00 0.87 ± 0.03 0.49 ± 0.01 0.57 ± 0.02
Right GM 0.83 ± 0.00 0.71 ± 0.03 0.40 ± 0.02 0.00 ± 0.00
Right BF 0.87 ± 0.00 0.60 ± 0.02 0.37 ± 0.02 0.00 ± 0.00
Right MG 0.83 ± 0.01 0.69 ± 0.03 0.99 ± 0.00 0.75 ± 0.06
Right RF 0.99 ± 0.00 0.71 ± 0.02 0.59 ± 0.01 0.56 ± 0.04
Right TA 0.82 ± 0.01 0.48 ± 0.02 0.41 ± 0.02 0.58 ± 0.02
Right ES 0.41 ± 0.08 0.00 ± 0.00 0.99 ± 0.00 0.71 ± 0.05
BF = biceps femoris, DI = Discriminability Index, ES = erector spinae, GM = gluteus medius, MG = medial gastrocnemius, PRC = pattern recognition classifier, 
RF = rectus femoris, SD = standard deviation, TA = tibialis anterior, TC = threshold-based classifier.
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study to identify two best EMG command sources for 
triggering FES-assisted gait, which is a valuable tool for 
testing the feasibility and optimizing system performance 
before installation of an implanted stimulator-telemeter 
using implanted EMG electrodes.
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