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Abstract—This study investigated the range of motion (ROM)
(in degrees) of the upper limb and trunk, forces (Newtons), two-
dimensional fraction effective force (FEF,p) (in percent), and
torque (Newton meters) during hand cycling. Seven nondisabled
participants performed a 1 min exercise test at 70 rpm on a hand
cycle (HC) fixed to an ergometer in synchronous (SC) mode ver-
sus asynchronous (AC) mode and in arm-power (AP) versus
arm-trunk-power (ATP) type of propulsion. Higher (p < 0.001)
flexion/extension of the trunk was found during ATP versus AP
type and higher (p < 0.001) lateral flexion and rotation of the
trunk in AC versus SC mode. The trunk ROM should explain the
different force generation patterns observed in this investigation
between AC and SC modes and AP and ATP types. However,
kinetic results do not allow the most effective type or mode of
propulsion (FEF,p: from 72.9% to 89.3%) to be established. We
conclude that trunk movement is an important parameter to con-
sider in ergonomically optimizing hand cycling. Nevertheless,
future studies in experienced HC users, especially with lim-
ited trunk function, should be performed.

Key words: asynchronous, backrest, hand bike, hand cycle, kine-
matics, Kinetics, rehabilitation, synchronous, trunk, wheelchair.

INTRODUCTION

Arm-crank propulsion, also called hand-bike or hand-
cycle (HC) propulsion, has been developed over the last
20 years and is now widely used in rehabilitation programs
for persons with reduced mobility and in the sports field for
the disabled. Indeed, in 2004, it became a Paralympic disci-
pline for the first time. Investigations comparing physiolog-
ical responses during arm-crank ergometry [1-4] or hand
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cycling [5-6] have shown that arm cranking is less strenu-
ous and more efficient—in terms of mechanical efficiency
and cardiorespiratory responses—than hand-rim wheel-
chair propulsion. Because of the current booming devel-
opment in arm cranking, a variety of HCs exist with
different backrest and seat adjustments and crank-axle
heights and crank configurations, such as synchronous
(SC), where cranks are in parallel position, and asynchro-
nous (AC), where cranks are in alternate position 180° to
each other.

Research regarding arm cranking and hand cycling is
often limited to studies evaluating the physiological
responses [5-11]. Different reviews by Van der Woude et al.
report that few studies on the biomechanics of hand cycling
exist [12-13]. Physiological literature on SC or AC
mode shows contradictory results. Generally, studies on
physiological responses between AC and SC arm-crank
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ergometry reveal no difference between the two crank
modes [14-16]. Moreover, a recent study by Goosey-
Tolfrey and Sindall finds significantly higher efficiencies
during submaximal AC versus SC mode of propulsion in
subjects who were wheelchair-dependant trained [17]. In
contrast to previous results in arm-crank ergometry, different
investigations show that SC hand cycling is less strenuous
and more efficient than AC hand cycling [18-23]. Among
these studies, different authors emit the hypothesis that the
beneficial effects of the SC mode may also be caused by the
larger effective muscle mass of the trunk [20-21], which
would allow the weight of the trunk to be effectively used in
propulsion.

Moreover, based on body position on the HC, two types
of propulsion exist [24-25]: arm-power (AP) and arm-
trunk-power (ATP). The sitting position (upright, semire-
cumbent, kneeled, and bent forward) determines whether
the HC is powered with the arms only or with the arms and
trunk [26]. However, only persons with functional trunk
muscles and good abdominal strength can use ATP propul-
sion [25]. We are aware of only one study by Faupin et al.
that focuses on a kinematics comparison between AP and
ATP propulsions [24]. This recent study investigated the
effects of backrest position and gear ratio on hand-cycling
sprinting performance in 10 nondisabled participants. The
results showed that participants had statistically higher
trunk flexion/extension (F/E) and maximal velocity without
use of a backrest [24]. The authors suggested that HC users’
performance improves when they use ATP propulsion.

From that context, obviously, trunk action is an
important factor for mode of propulsion (SC vs AC) and
type of propulsion (AP vs ATP). Thus, the main goals of
this study are to—

1. Evaluate the effects of HC configuration and mode of
propulsion in trunk movement in a group of nondis-
abled participants.

2. Investigate a possible difference in kinetics and kine-
matics of the upper limb between SC versus AC mode
and AP versus ATP type of propulsion.

METHODS

Experimental Protocol

Once on the HC attached to the ergometer (Figure 1),
we gave the participants 10 minutes to get accustomed to
the equipment. Each participant performed a submaximal
1 min exercise test at a 70 rpm-cycle frequency, imposed by

Figure 1.

Hand cycle fixed to ergometer with dynamometric pedal. Backrest
was modified to make marker on trunk visible. x-, y-, and z-axes =
three-dimensional coordinates in global reference system.

a metronome (sound signal). They repeated the test accord-
ing to SC (parallel cranks) and AC (cranks in alternate posi-
tion, 180° to each other) crank modes and two types of
propulsion, AP and ATP, for four body positions on the HC
with different backrest and seating adjustments (backrest
angle of 45° [B45], backrest angle of 85° [B85], without
backrest [WB], and kneeling position [K]) (Figure 2) [27].
The different tests were randomly performed among par-
ticipants to avoid learning and/or fatigue effects during the
experiment. A complete recuperation period of at least
5 min was imposed between each test, during which the
experimenter adjusted the HC. Moreover, the participant
had 5 min to become accustomed to the new adjustments
(mode or type of propulsion). Type of propulsion technique
was not recommended to the participants before each test.

We collected kinematic and kinetic data on the right
side during the last 30 s of the 1 min exercise test. In
addition, we analyzed the first five complete crank cycles
of the 30 s measurements for all parameters.

Hand Cycle and Ergometer

We use an adjustable sports HC (Sopur, Spirit 470;
Heidelberg, Germany) for the study (Figure 1). The hand-
grips were in a neutral position, and the length of the stan-
dard cranks was 180 mm. For all tests, tire pressure was set
at 8 bars. The HC was affixed to an electromagnetically
braked ergometer (Elite Axiom; Fontaniva, Italy). The Elite
Axiom ergocycle is equipped with a motor unit, which


http://www.handbike.de/archiv/2002/downloads/arm-vs-trunk.pdf
http://www.handbike.de/archiv/2002/downloads/arm-vs-trunk.pdf
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Figure 2.

Schematic of four different hand-cycle testing positions. (Reproduced
by permission from Van Breukelen K. Handbikes: Arm power versus
arm trunk power, an ergonomic classification of handbikes [Internet].
Gouda: the Netherlands; Arm Powered by Double Performance; 2001
[cited 2010]. Available from: http://www.handbike.de/archiv/2002/
downloads/arm-vs-trunk.pdf) B45 = backrest angle of 45°, B85 =
backrest angle of 85°, WB = without backrest, K = kneeling position.

imposes a constant rolling resistance on the front wheel
[28-29]. A virtual slope represents the rolling resistance
and is chosen by the investigator using the software of the
Elite Axiom (1% in the present study).

For the three seating positions, the participants’ feet
were placed on the footrests. According to Mossberg et
al.’s study, placement of the feet on the footrest reduces
participants’ ability to use their lower limbs for stabiliza-
tion [16]. The HC used for the study was an AP bike
(Sopur, Spirit 470), so the seating was adapted for kneeling
(Figure 3). To correct for differences in subject height, we
adjusted the seating position by changing seat or back
cushions. We adjusted the seating position in relation to the
backrest to obtain the same extension of the elbow (15°-
20°) for each participant and to not allow complete elbow
extension during maximal reach [16].

Kinematic Data

A portion of the kinematic data is similar to Faupin et
al.’s protocol [24]. For this portion, we set in quotes.

“A three-dimensional [3-D] movement analysis was
performed with a Vicon 370 system (Oxford Metrics;
Oxford, United Kingdom), with a sample rate of 60 Hz.
This measurement system comprises six digital cameras
equipped with an infrared flash system. Marker locations
are similar to Faupin et al.’s protocol [24,29-30]. We placed
22 anatomical and technical markers on the participants
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Figure 3.
Hand cycle adapted for kneeling position.

(anatomical markers: one on the forehead, the chin, the ster-
num, the seventh cervical vertebra [C7], and the third lum-
bar vertebra [L3]; two on the acromions, the temples, the
styloid process of the radius and cubitus, and the metacar-
pals of the auricular and index. Technical markers: four
markers are attached to the upper arm and three to the fore-
arm). The reflective markers were spherical: 25 mm for the
anatomical markers and 9 mm for the technical markers.
The technical markers allowed us to use Roux et al.’s global
optimization method, significantly minimizing measure-
ment errors due to sliding of the skin” [31]. We modified
the backrest in such a way as to make the marker on L3
visible (Figure 3).

We calibrated the capture volume before the start of
each test. Based on the static trial, anatomical frames were
defined according to the recommendations of the Inter-
national Society of Biomechanics [32]. Before the actual
measurement, we used a static trial to determine the joint
rotation centers. In the absence of movement and thus of
skin movement, we measured the anatomic marker posi-
tions. “According to the method of Schmidt et al. [33], the
shoulder center is assumed to be 7 cm inferior to the acro-
mion marker, which is the average of visually determined
distances using a ruler. The elbow joint center is the middle
between the medial and lateral eloow markers. The joint
center of the wrist is the middle between the ulnar and
radial wrist marker.” We identified the trunk using markers
on the C7, L3, sternum, and two acromions. We considered
the upper part of the human body an articulated system
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composed of rigid bodies corresponding to the following
body segments: head, trunk, arm, forearm, and hand. We
chose Euler angles to describe the relative movement of the
body segments [31]. During the test, we calculated the
maximum and minimum angles and the total range of
motion (ROM) (in degrees) of the trunk, shoulder, elbow,
and wrist. We placed two reflective markers on the pedal
and one on the crank axis (Figure 1), which allowed us to
measure the crank angle and the angle position of the pedal.
“The kinematic data were filtered through a fourth-order
digital Butterworth filter with a 6 Hz cutoff frequency
[30].” We used MATLAB (MathWorks, Inc; Natick, Mas-
sachusetts) programs to calculate the kinematic data.

Kinetic Data

We used a freely rotating, instrumented, dynamomet-
ric right pedal (Sensy, 9PED version, aluminum; Jumet,
Belgium) with an attached handgrip to measure the reac-
tion forces, both radial and tangential [29]. We calibrated
this dynamometric pedal by hanging weights from a
dynamometric calibration device attached to the pedal
while amplifying and recording voltage outputs from foil
strain gauges. Weights between 0 and 1,500 N in the
radial direction and from 0 to 500 N in the tangential
direction were used in the calibration. A linear regression
equation showed that pedal voltage was a strong predic-
tor of pedal force (R? = 0.99).

We attached two reflective markers to each end of the
handgrip—allowing the handgrip center to be calculated—
and one on the crank axis to allow the handgrip’s angular
position (&) to be obtained and the crank angle (&) (Fig-
ure 4) to be measured with basic trigonometry. In the
handgrip reference system, we measured the forces in two
dimensions, along the x- and y-axes. We used these force
components, measured along the handgrip orientation (6,)
and the crank angle (6,), to calculate the total, the radial,
and the tangential forces, Fiopop, Fr, and Fiang, respec-
tively. We calculated the resultant force (Fyop), Which is
the total force applied to the handgrip, mathematically
using the vector sum of the force components, such as

Frotzp = JFE +E = JFE + Fong N . (D

We obtained the crank torque (T.) by multiplying the
tangential force (Fyang) and the crank length (L) as

Te = Fiang X Le (N'm) . 2)

Fiang 18 the only force component that contributes to
the HC’s forward motion. The 3-D effectiveness of the
force application has been defined as the fraction effec-
tive force (FEF) [34]. Since FEF has been previously
defined in wheelchair literature as a 3-D measure and
because our study only involves two-dimensional (2-D)
forces measurements, we will use the notation FEF,p for
FEF [29] as

1. Frang(01).d61
130 B (61).d61

]

FEF,p = X 100(0/[]) . (3)

A cable connected the dynamometric pedal to the
Vicon system. The Vicon system synchronously collected
the 3-D kinematic data (60 Hz) and the 2-D kinetic data
(1,200 Hz). We then low-sampled this 1,200 Hz signal
(from 1,200 to 60 Hz) using a cubic spline function to
synchronize it with the kinematic data. We filtered the
kinetic data using a fourth-order digital Butterworth filter
with a 10 Hz cutoff frequency [35] and processed the
data of the kinetic measurements with MATLAB.

Statistical Analysis

For each parameter in each trial, we calculated the
mean averages * standard deviation (SD) values for the five
consecutive complete crank cycles. For kinematic parame-
ters, we calculated the total ROM for the trunk (F/E, rota-
tion, and lateral flexion), the shoulder (F/E, internal/external

270°
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Figure 4.

Schematic representation of force using two-dimensional dynamometric
pedal (on right side). Total force (Fyy), radial force (F,), and tangential
force (Fiang) were calculated from handgrip orientations (62) and crank
angle (41) in global reference system.
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rotation, and abduction/adduction), the elbow (F/E) and the
wrist (F/E and radial/ulnar deviation). For Kinetic parame-
ters, we calculated mean and peak forces of Fyq, Fyr, Fiang,
and FEF,p. Furthermore, to investigate kinetics pattern, we
divided the T, cycle into four 90° segments: 0° to 90°, 90°
to 180°, 180° to 270°, and 270° to 360°. We applied a two-
factor analysis of variance for repeated measures with a 2 x
4 design (crank modes: SC and AC, and types of propul-
sion: AP and ATP [body positions of B45, B85, WB, and
K]) to determine the effects of crank modes and type of pro-
pulsion on the biomechanical parameters. Then, we applied
a Bonferroni post hoc test to determine the location of any
significant main effects. The level of significance was set at
p < 0.05. We performed all statistical analyses with MAT-
LAB and SPSS statistical software (SPSS, Inc; Chicago,
Ilinois).

RESULTS

Kinematic Data

Table 1 represents the results of kinematic data,
expressed as mean = SD values for the eight testing con-
ditions. We found significant differences for trunk move-
ment (p < 0.001) according to both crank modes and the
two types of propulsion, with interaction (p < 0.01)
between those two factors. The results showed signifi-
cantly higher elbow (p < 0.001) and shoulder (p < 0.01)
F/E in the SC mode versus AC mode. We also found
influences of the type of propulsion on internal/external
shoulder rotation (p < 0.001) and F/E elbow (p < 0.001).

FAUPIN et al. Hand-cycling biomechanics

Concerning the trunk ROM, the locations of any signif-
icant main effects obtained by the Bonferroni post hoc test
(not represented in Table 1) are represented in Figure 5.
The analyses revealed a significant major effect of crank
mode on trunk ROM, showing lower lateral flexion and
rotation for SC compared with AC. Moreover, the ROM of
rotation and lateral flexion of the trunk was higher in the
AC mode for ATP propulsion (WB and K). As for the type
of propulsion, the statistical analyses showed significant
differences in the trunk movement between B45 versus
WB, B45 versus K, B85 versus WB, and B85 versus K.
Although the F/E of the trunk was higher for both ATP
positions (WB and K) in the SC (vs AC) mode, this result
was not significant for the two other AP propulsion types
(B45 and B85).

Kinetic Data

Table 2 represents the mean averages and SD values
of the studied kinetic variables over the five consecutive
complete crank cycles. Contrary to results obtained dur-
ing the kinematic analysis, we found few significant dif-
ferences between the various test conditions for kinetic
parameters. Indeed, the results of Bonferroni post hoc
test showed significant differences only for the radial
peak force between B45 versus WB, B45 versus K, B85
versus WB, and B85 versus K for the SC mode. The
results also revealed lower FEF,p mean (in percent) for
WB and K compared with B45 and B85 but no signifi-
cant differences (p = 0.06).

Table 1.
Mean =+ standard deviation values of kinematic data obtained from each hand-cycle testing condition.
Range of B45 B85 WB K ANOVA
Motion (°) (p-Value)
SC AC SC AC SC AC SC AC Type Mode Inter
Trunk
FIE 21+1.7 14+0.7 1.3+09 1.1+0.7 119+44 26+14 12.8+5.3 1.7+0.8 0.001 0.001 0.01
LFr/LFI 0.8+0.5 5.0+£29 0.7+04 3.9+28 1.0+04 75+23 1.3+05 6.1+1.9 0.001 0.001 0.01
Rr/RI 18+04 15.1+£8.1 19+10 13.1+£6.9 3.2+23 31.4+10.6 34+20 268+7.6 0.001 0.001 0.01
Shoulder
F/IE 62.0+4.7 528+7.2 65.6 +4.3 59.2+6.7 56.1+2.3 465+6.1 585+1.4 51.9+6.0 0.001 0.01 NS
Ad/Ab 146+55 13.2+55 13.9+7.2 126 +6.2 13.0+4.8 17.3+4.8 11.0+1.6 176+ 3.4 NS NS NS
Ri/Re 114 %56 9.7+4.2 102+ 4.6 85+4.0 11.1+36 135+8.1 12.8+6.2 16.7 £ 6.6 0.01 NS  0.05
Elbow F/E 76.3+£75 69.2+8.4 739+119 68.4+6.3 63.4+139 576+9.4 60.5+6.7 60.7 £10.3 0.001 0.001 NS
Wrist
F/IE 18.2+10.3 16.8+9.7 15.7+11.0 15.7+£9.3 154 +8.4 19.3+8.3 13.7+5.9 145+7.9 NS NS NS
Ir/lu 15.1+6.1 154 +6.1 17.9+6.9 19.2+13.1 15.0+4.0 13.1+6.1 148+4.1 14.7+5.2 NS NS NS

AC = asynchronous, Ad/Ab = adduction/abduction, ANOVA = analysis of variance, B45 = backrest angle of 45°, B85 = backrest angle of 85°, F/E = flexion/exten-
sion, Inter = interaction between propulsion type and crank mode, Ir/lu = inclination radial/inclination ulnar, K = kneeling position, LFr/LFI = lateral flexion right/
lateral flexion left, NS = nonsignificant, Ri/Re = internal rotation/external rotation, Rr/RI = rotation right/rotation left, SC = synchronous, WB = without backrest.
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Figure 5.

Trunk range of motion (in degrees) according to eight hand-cycle testing conditions. Significant differences: “p < 0.05, “p < 0.01, ™"p < 0.001. AC =
asynchronous, B45 = backrest angle of 45°, B85 = backrest angle of 85°, K = kneeling position, SC = synchronous, WB = without backrest.

With respect to T, (Figure 6), the statistical analysis
revealed a significant main effect of crank mode with
lower T, in SC versus AC for phase 1 (0°-90°) and
inversely a higher T, in SC versus AC for phase 3 (180°-
270°). As for the type of propulsion, only SC between
B45 and K for phases 3 and 4 (270°-360°) showed sig-
nificant differences.

DISCUSSION

Effects of Mode of Propulsion and Hand-Cycle
Configuration in Trunk Range of Motion

The statistical analyses (Table 1 and Figure 5)
revealed a significant major effect of crank mode on the

ROM of the trunk. The result showed a higher F/E of the
trunk for the ATP type of propulsion (WB and K) in the SC
versus AC mode. Indeed, trunk F/E was the highest for
WB (11.9° + 4.4°) and K (12.8° £ 5.3°) in the SC mode
than for WB (2.6° £ 1.4°) and K (1.7° £ 0.8°) in the AC
mode. Inversely, the lateral flexion and rotation are lower
in SC versus AC whatever the type of propulsion. The big-
gest difference of the ROM between SC versus AC is for
trunk rotation amplitude in WB (3.2° £ 2.3° vs 31.4° +
10.6°).

To our knowledge, no previous study has determined
the effect of crank mode on the ROM of the trunk. How-
ever in the literature, two studies emit the hypothesis that
the beneficial effects of the SC arm mode may also be
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Table 2.
Mean =+ standard deviation values of different kinetic parameters measured during eight hand-cycle testing conditions.
B45 B85 WB K ANOVA
Parameter (p-Value)
SC AC SC AC SC AC SC AC Type Mode Inter
T (N'm) 94+08 100x34 8.7+2.0 99+25 9.1+1.6 94+17 8.0+17 8.8+22 NS NS NS
FEF,p (%) 89.3+54 81178 85.1+10.8 80.6+11.4 76.6£120 76.9%9.1 729+11.4 7491108 NS NS NS

Peak Forces

Radial 31.7+£123 473x150 426172 50.1+24.7
Tangential 97.0+£152 99.6+294 79.1+£15.2 103.6 +26.3
Total 101.6 £16.1 107.9+37.0 88.1+133 111.2+247

76.8+31.1 588+234
97.1+£153 99.2+316
112.6 +21.0 109.5+28.0

(0.06)

705+173 465+19.2 005 NS 0.05
91.2+342 91.7+29.4 NS NS NS
1140+26.0 98.2+26.8 NS NS NS

AC = asynchronous, ANOVA = analysis of variance, B45 = backrest angle of 45°, B85 = backrest angle of 85°, FEF,p = two-dimensional fraction effective force, Inter =
interaction between propulsion type and crank mode, K = kneeling position, NS = nonsignificant, SC = synchronous, T, = crank torque, WB = without backrest.

caused by the larger effective muscle mass of the trunk,
which allows the weight of the trunk to be effectively
used in propulsion [20-21]. With proper trunk control,
trunk flexors and extensors will actively produce power.
On the contrary, the alternating character of the move-
ment in AC requires more trunk stabilization.

Our results do not fully agree with this hypothesis.
Although the F/E of the trunk is greater for both ATP
positions (WB and K) in the SC (vs AC) mode, we did
not find this result for the two other AP propulsion types
(B45 and B85). Consequently, F/E of the trunk does not
have a main role in these conditions. Moreover, AC
causes a higher rotation and lateral flexion of the trunk in
the ATP versus AP propulsion. Thus, we conclude that,
in AC mode, the trunk muscles not only stabilize but also
propel the nondisabled participant.

Concerning HC configuration, the kinematic charac-
teristic (Table 1) substantially showed significant differ-
ences, especially for the trunk ROM according to the four
types of body positions (B45, B85, WB, and K). The
results indicated no significant difference in the trunk
ROM between B45 versus B85 and between WB versus
K. Thus, the ROM of the trunk was higher in ATP pro-
pulsion (WB and K) than in AP propulsion (B45 and
B85). Our results are consistent with the first results of
Faupin et al. [24]. Although their study design differed
from the present study with respect to the test condition
(8 s maximal sprints), they also reported both a statisti-
cally higher trunk F/E and maximal-reached velocity
without use of a backrest compared with two backrest
adjustments (angle slope ranging to 45° and 65°).

Indeed, we can hypothesize that the ATP types of pro-
pulsion (WB and K) would allow the athlete to use the trunk
muscles actively during the propulsive phase. Contrary to
ATP, the use of the trunk muscles during AP propulsion

(B45 and B85) was difficult because of the semilengthened
position. The AP propulsion is realized because of the arms.
As a result, a better stability of the user in the HC was
achieved in AP propulsion. Disabled persons with limited
trunk function, such as spinal cord injuries, mainly use this
type of propulsion, whereas persons with less-severe dis-
abilities, such as athletes with lower-limb amputees, more
often use ATP HC. For verifying the current findings, future
studies should focus on disabled HC users.

Kinetic and Kinematic Responses of Upper-Limb to
SC Versus AC Propulsion Mode and AP Versus ATP
Propulsion Type

In a general way, whatever type and mode of propul-
sion, torque values (N-m) are not significantly different
(Table 2). However, concerning the torque pattern for the
four 90° segments, Figure 6 shows a significant effect of
crank mode with lower torque in SC compared with AC
for phase 1 (0°-90°) and inversely a higher torque in SC
versus AC for phase 3 (180°-270°) whatever the type of
propulsion. Moreover, significant differences appeared in
SC between B45 and K for phases 3 and 4. This result
may be related to the different uses of the trunk and joint
ROM of the shoulder and elbow. Indeed, the statistical
results revealed a higher elbow and shoulder F/E in ATP
(WB and K) versus AP (B45 and B85) and a significantly
higher elbow and shoulder F/E in the SC mode versus
AC mode. Such angle variations may be caused by the
trunk ROM, and the fact that in K, the shoulders were
above the cranks, whereas for B45, they were below the
cranks.

In the current study, the calculated FEF,p value is
between 72.9 and 89.3 percent. Our results are consistent
with the first results of Hettinga et al., who found mean
FEF between 79 and 83 percent [25]. However, results in
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Figure 6.

Torque (N-m) for four 90° segments according to eight hand-cycle testing conditions. *Significant difference (p < 0.05) between synchronous and
asynchronous crank mode or between K and B45. B45 = backrest angle of 45°, B85 = backrest angle of 85°, K = kneeling position, WB = without

backrest.

Table 2 do not indicate which mode and type of propulsion
were the most effective (FEF). We found no significant
difference between AC versus SC and ATP (WB and K)
versus AP (B45 and B85) for the FEF parameter (Table 2).
Moreover, these counterintuitive findings showed results
with relative lower FEF,p mean (percent) in WB and K
than in B45 and B85 (but no significant difference, p =
0.06). Indeed, the results of the Bonferroni post hoc test
revealed, for the SC mode, a higher radial peak force in
ATP (WB and K) versus AP (B45 and B85). To explain
this latter finding, we can assume that the use of the trunk
during ATP propulsion might lower stability, and conse-

quently, the application of force would be less effective.
Indeed, instability would cause the participant to apply less
tangential force and increase radial force.

Limitations and Future Recommendations

All participants in our study had no previous experi-
ence in hand cycling. Studying the effects of ergonomic
adjustments and design within an inexperienced popula-
tion has already demonstrated their value in hand cycling
[20-24,36-37]. Consequently, this study was completed
within a homogenous and equally trained subject group.
Moreover, the participants could not be accustomed in any
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way to a specific trunk ROM, especially to a particular
type or mode of propulsion. A shortcoming might be
that we collected our data from nondisabled participants:
these results are thus not completely transferable to novice
wheelchair-dependent users. Although our results help us
better understand trunk use during the hand-cycling pro-
pulsion phase, future studies with different populations,
especially persons with limited trunk function, still need to
be done.

In the current study, we placed the HC on a stationary
ergometer (Elite Axiom). The use of a stationary ergome-
ter could explain why the participants had no problem
keeping the front wheel parallel to the propelling direc-
tion during the AC mode in hand cycling. One should be
cautious extrapolating these data since a steering condi-
tion was not permitted. Indeed, steering is suggested to
involve trunk function in a different way. Moreover, the
ergometer does not measure precisely the rolling resis-
tance on the two back wheels, thus precisely calculating
power output was not possible. In addition, the Elite
Axiom tends to overestimate the average power [27].
However, the calculated values for rolling resistance on
the front wheel are reliable and thus can be used for inter-
subject comparisons. Both mechanical efficiency (from
power output and oxygen uptake) and biomechanical
parameter must be studied in the field condition for fur-
ther ergonomic optimization of HC.

CONCLUSIONS

In this study performed with seven novice nondis-
abled subjects, the main findings are the differences in
the use of the trunk movement according to both crank
modes (SC and AC) and two types of propulsion (AP and
ATP). Higher F/E of the trunk was observed during ATP
versus AP propulsion, and higher lateral flexion and rota-
tion of the trunk in AC versus SC mode. These results
demonstrated more trunk movement during ATP type and
AC mode of hand cycling. Trunk ROM should explain
the different force generation patterns observed in this
investigation between AC and SC modes and AP and
ATP types. However, kinetic results did not establish the
most effective type or mode of propulsion. In conclusion,
trunk movement is an important parameter to consider
for ergonomic optimization of hand cycling. The results
of this study should be confirmed in experienced HC

FAUPIN et al. Hand-cycling biomechanics

users, especially with limited trunk function, and in con-
ditions that are more realistic.
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