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Abstract—This cross-sectional study evaluated the intrases-
sion reliability and concurrent validity of trunk accelerometry 
(with force plate measurements) for vertical ground reaction 
force and external mechanical power recorded during a stan-
dardized heel-rise (HR) test in 54 elderly subjects (mean +/– 
standard deviation age 81.2 +/– 6.4 yr). Peak force as well as 
peak and average power revealed intraclass correlation coeffi-
cients of >0.75 and low standard errors of measurement for 
both the force plate- and the accelerometer-based curves. Cor-
relation coefficients for these variables ranged from 0.95 to 
0.98. The accelerometry-derived variables indicated signifi-
cantly lower absolute values. Trunk accelerometry can be used 
as a reliable and valid tool for the quantification of the HR test 
in the elderly population. However, due to several limitations 
in the protocol, the use of this tool can currently only be rec-
ommended in a test-retest manner. Therefore, more research is 
needed to fully validate this tool for clinical use.

Key words: calf muscle strength, calf raises, concurrent validity, 
consistency, criterion-related validity, external mechanical 
power, ground reaction forces, older adults, plantar flexor, 
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INTRODUCTION

Considering the six major determinants of gait, origi-
nally described by Saunders et al. [1], the heel-rise (HR) 
movement at the end of stance has been repeatedly 
shown to have a major impact on the control of the verti-

cal displacement of the center of mass (CoM) during nor-
mal human gait [2–3]. In addition, Sutherland et al. 
described the role of the plantar flexors (PFs) in gait as 
conserving energy by minimizing the vertical CoM oscil-
lation [4].

PF muscle performance has been evaluated with man-
ual muscle testing (testing the ability to move against 
gravity or against a force applied by the examiner) [5], iso-
kinetic devices for the measurement of isometric peak 
torque [6], and handheld dynamometers for the measure-
ment of isometric peak force [7]. However, due to the 
short lever arm (length of the foot), the unilateral standing 
HR test, commonly quantified by the number of repeti-
tions rather than by the amount of force produced, has 
been repeatedly recommended over the use of manual 
resistance [8]. Normative values range from an average of 
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2.7 repetitions in older females [9] to 25 in adults aged 20 
to 59 years [10] and 36 in children [11]. Intraclass correla-
tion coefficients (ICCs) were found to be high for 
intrarater reliability (0.89) in adults [9] and excellent for 
interrater reliability (0.99) in children [11]. Since walking 
requires the PF muscles to work in an eccentric-concentric 
manner, the standing HR test appears to be more appropri-
ate than isometric testing. The major limitation of count-
ing the number of repetitions before exhaustion is that 
only endurance (the ability to maintain a force or force-
generation over a certain period of time) is quantified. The 
counting method lacks the capability to quantify kinetic 
measures such as force and power.

To measure force and subsequently calculate external 
mechanical power (P) (power generated on the body’s 
CoM) in a standing HR test, researchers can use force 
plates. Österberg et al., for example, studied the fatigue 
process of the calf muscles during an HR test based on 
torque and work calculations derived from force plate 
measurements [12]. However, force plates are costly and 
require sophisticated laboratory installation and therefore 
are not reasonable for use in everyday clinical practice. 
Given the limitations associated with simply counting the 
number of repetitions, as well as the issues with costly 
force plate equipment, a need for different tools exists.

Recently, the use of trunk accelerometry has been 
introduced as a cost-effective and easily applied solution 
for measuring human movement. Several investigations 
have been conducted using accelerometers for the quanti-
fication of gait [13–23], chair rising [24–25], and balance 
[20,25–27]. High reproducibility has been found using 
trunk accelerometry for the measurement of spatio-
temporal gait parameters [14–15] and accelerations dur-
ing gait [15,20]. In addition, Meichtry et al. reported high 
validity for quantifying P using trunk accelerometry and 
force plate measurements during gait [18].

Elderly people generally display reduced PF 
strength. This has been shown with manual muscle test-
ing [9], force measurements during isometric PF muscle 
contractions [28], and ankle power measurements during 
walking [29]. For this reason, the ability to quantify the 
kinetic aspects of the HR movement (force, power, etc.) 
is of particular importance.

The current study evaluated the intrasession reli-
ability and the concurrent (criterion-related) validity of 
trunk accelerometry with force plate measurements for 
vertical ground reaction force (VGRF) and P recorded 
during an HR test in elderly subjects.

METHODS

Subjects
Fifty-nine elderly subjects who were living in three 

different retirement homes were recruited to participate 
in a larger cross-sectional study that evaluated several 
activities of daily living as well as other functional tests 
(i.e., level walking, stair climbing, chair rising, maximal 
voluntary isometric contraction of the knee extensors, 
and isolated double-legged HR). The inclusion criteria 
for the elderly subjects were a minimum age of 65 years 
and the ability to perform at least one of the following 
daily-living activities without assistance: standing up 
from a normal chair, walking 10 meters, and climbing up 
and down a stair with six steps. Exclusion criteria were 
acute ailments such as fever or inflammation, as well as 
any other diagnoses that would prohibit the subject from 
performing the aforementioned activities. Of the initially 
recruited 59 subjects, 5 were unable to perform the HR 
testing procedure, leaving a study population of 54 
(Table 1).

The measurements took place at the gymnasium of 
the Physiotherapy Institute of the Bern University Hospi-
tal and in the three local retirement homes. 

Instrumentation and Data Acquisition
A multicomponent force plate (Kistler Type 

9286BA; Winterthur, Switzerland) was used to measure 
VGRF. The signal was amplified with a gain of 2 by 
using a universal measurement amplifier (UMVE, uk 
labs; Kempen, Germany).

For acquisition of the vertical acceleration (VAcc) data, 
we used a triaxial accelerometer (Model 317A, Noraxon 
U.S.A. Inc; Scottsdale, Arizona [scaling: 6 g; direct current 
filter: on]) with three orthogonal axes (anterior-posterior, 

Table 1.
Subject demographics.

Parameter
n or Mean ± Standard 

Deviation
Total Recruited Subjects 59
Excluded Subjects 5
Included Male Subjects 14
Included Female Subjects 40
Age (yr) 81.2 ± 6.4
Height (m) 1.62 ± 0.10
Weight (kg) 67.8 ± 16.9
Body Mass Index 25.9 ± 5.3
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mediolateral, vertical). The accelerometer was attached to 
the subjects’ lower back by an adjustable, nonelastic Velcro 
fastener belt, with the center of the device on the level of the 
spinous process of the third lumbar vertebra, which is close 
to where the CoM is believed to be [27]. The signal was 
acquired with an 8-channel telemetry system (TeleMyo 
2400 G2, Noraxon U.S.A. Inc [resolution: 16 bit; input 
range ±5 V; noise <2 least significant bit; low-pass digital 
filter: 500 Hz; transmitting rate: 1.5 kHz, delay: 100 ms, 
gain: 1]) that was connected to the previously mentioned 
universal measurement amplifier. Subjects wore the trans-
mitter unit on their chest.

All data were sampled in sync at a rate of 1 kHz with 
a 12-bit analog-digital converter (Meilhaus ME-2600i; 
SisNova Engineering; Zug, Switzerland) and the soft-
ware package “ads,” version 1.12 (uk labs).

Procedures
After reading the description of the study, signing the 

consent form, and completing the preparticipation ques-
tionnaires, the subjects were equipped with the acceler-
ometer and the transmitter unit. All tests were performed 
with subjects wearing normal clothes and uniform anti-
slip socks instead of shoes.

The subjects were asked to lift their heels as fast and 
as high as possible while standing on the force plate with 
both feet and without bending the knee or hip joints. For 
balance and safety purposes, the subjects were allowed to 
touch the examiner’s hands during the test with the 
elbows in 90° flexion. The test consisted of three single 
valid HR trials, with rests of 30 seconds in between. A 
trial was considered valid when the subject was able to 
clearly lift the heels off the ground without bending 
knees and hips. Therefore, each trial was visually 
inspected by a second examiner.

Data Reduction
Prior to any calculations, we used the mean signal of 

the unloaded force plate for baseline correction of the 
VGRF signal. In order to remove possible power-line 
noise from the VGRF and VAcc data, we used a digital 
Notch filter with cutoff frequencies of 49 and 51 Hz. 
Both signals were then low-pass filtered (second-order, 
zero-lag Butterworth) with a cutoff frequency of 30 Hz.

The starting points of the VGRF and VAcc curves 
were defined as the points that exceeded two standard 
deviations (SDs) of the mean of the signals with subjects 
standing still on the force plate. The end point of the HR 

movement (i.e., the end of the upswing) was defined as the 
minimum value following the peak VGRF, respectively 
the peak VAcc. The VAcc-derived force curves (FVAcc)
were calculated according to Newton’s second law of 
motion (m = body mass in kilograms, aVAcc = measured 
vertical acceleration in meters/seconds squared):

                                 FVAcc = m × aVAcc  .                             (1)

P was subsequently calculated for the VGRF and 
VAcc curves based on a previously described algorithm 
[30]:

 and            (2)

,                     (3)

where FVGRF is the VGRF-derived force curve and FVAcc 
the VAcc-derived force curve. For a sampling frequency 
of 1 kHz, the sampling interval (dt) was 0.001 s. All force 
and power curves were then normalized to body weight 
(BW) in newtons and parameterized into the variables 
peak force (Fmax [BW]), time to peak force (tFmax [sec-
onds]), rate of force development (RFD [BW/seconds]), 
total time (tTotal [seconds]), peak P (Pmax [watts/BW]), 
and average P (Pmean [watts/BW]) (Figure).

All data were analyzed with a custom LabVIEW pro-
gram (version 8.5, National Instruments, Corp; Austin 
Texas).

Statistical Analysis
We performed a repeated-measures analysis of vari-

ance (ANOVA) for each of the VGRF- and VAcc-derived 
variables to rule out a possible systematic error between 
the three trials (one trial = one HR movement). Intrases-
sion reliability (consistency) was determined with the 
ICC(3,1) (i.e., relative reliability) and the standard error 
of measurement (SEM) (i.e., absolute reliability [response 
stability]). This three-step reliability approach was sug-
gested by Weir [31]. In addition, we calculated the mini-
mum detectable differences (MDDs) using a 95 percent 
confidence interval:
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  Concurrent (criterion-related) validity was analyzed 
with Pearson correlations for the variables with ICCs 
>0.75. According to Maffiuletti et al., ICCs >0.75 could 
be considered strong [32]. In order to detect statistically 
significant differences between the VGRF-derived and 
the VAcc-derived absolute values, we conducted paired-
samples t-tests and set significance at the p < 0.05 level. 
Finally, the absolute mean differences were expressed as 
percentages.

Statistical calculations were performed with SPSS 17 
for Windows (SPSS, Inc; Chicago, Illinois) as well as 
Microsoft Excel 2007 (Microsoft, Inc; Redmond, 
Washington).

RESULTS

Descriptive statistics and reliability calculations are 
presented in Table 2. Repeated measures ANOVA 

revealed no significant systematic error for all variables. 
ICCs for the VGRF- and VAcc-derived variables ranged 
from 0.48 to 0.83 and 0.28 to 0.80, respectively. The 
highest reliability indexes for the VGRF-derived vari-
ables were found for Fmax (ICC = 0.83; SEM = 0.059), 
Pmax (ICC = 0.83; SEM = 0.071), and Pmean (ICC = 0.81; 
SEM = 0.038). RFD revealed an ICC of 0.81 with a 
rather high SEM (0.836). For the VAcc-derived variables, 
Fmax (ICC = 0.79; SEM = 0.030), Pmax (ICC = 0.80; 
SEM = 0.025), and Pmean (ICC = 0.78; SEM = 0.015) 
indicated the highest reliability. Fmax, Pmax, and Pmean
revealed ICCs >0.75 for both the VGRF- and VAcc-
derived curves.

Pearson correlation coefficients for these variables 
0.98 (p < 0.001), 0.96 (p < 0.001), and 0.95 (p < 0.001), 
for Fmax, Pmax, and Pmean, respectively, indicated strong 
concurrent validity. However, the VAcc-derived variables 
had significantly lower absolute values than the VGRF-
derived variables, i.e., –12.76 ± 4.51 percent for Fmax
(p < 0.05), –72.75 ± 5.22 percent for Pmax (p < 0.05), and 
–71.58 ± 8.87 percent for Pmean (p < 0.05). Validity data 
for these three variables are presented in Table 3.

DISCUSSION

The quantification of the HR test using trunk acceler-
ometry in the elderly has been shown to be a highly reli-
able and valid method for the measurement of peak force 
(Fmax) and reliable for the measurement of peak and 
average P (Pmax and Pmean). Based on the high ICCs and 
the respective low SEM values, Fmax was considered to 
be the most reliable parameter. Pmax and Pmean also 
showed high ICCs, but in relation to the absolute value of 
Fmax, had larger SEMs. Another high relative reliability 
index has been revealed for the force plate-derived RFD 
variable. However, the corresponding SEM was too large 
to consider the variable as reliable. In addition, the accel-
erometry-based RFD showed low relative and consider-
ably large absolute reliability. The reliability of the 
temporal variables (tFmax and tTotal) has been proven to 
be very weak in terms of both the relative as well as the 
absolute indexes. Since the calculation of RFD included 
the temporal variable tFmax, the poor reliability could 
therefore be explained by the weak reproducibility of the 
temporal variables.

These results largely support the results of other 
investigations using trunk accelerometry for the quantifi-
cation of human movement. Hartmann et al. showed 

Figure.
Definition of variables: peak force (Fmax) (body weight), time to peak 
force (tFmax) (seconds), rate of force development (RFD) (body 
weight/seconds), total time (tTotal) (seconds), peak power (Pmax) 
(watts/body weight), and average power (Pmean) (watts/body weight) 
as well as starting and ending points.
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excellent intra- and interrater and test-retest reliability of 
spatio-temporal gait parameters with ICCs between 0.86 
and 0.99 and coefficients of variation (CVs) between 
1 and 4 percent [14]. In addition, ICC values between 
0.94 and 0.96 and measurement error values of 0.009 m 
for step length, 0.022 m for stride length, and 1.644 step/
min for cadence have been found [15]. Also, test-retest 
reliability for acceleration measures during gait has been 
proven to be high, with ICCs between 0.79 and 0.93 and 
CVs between 2.88 percent and 6.8 percent [15,20]. 
Meichtry et al. reported high correlations (r > 0.82) for P 
values derived from trunk accelerometry and force plate 
measurements during gait and concluded the accelerome-
ter is a valid measurement tool [18].

Despite the good reliability indexes for Fmax, Pmax, 
and Pmean, the accelerometry-derived variables were sig-
nificantly underestimated compared with the force plate 
measurements. While Fmax showed a difference in the 
absolute values of about 13 percent, the difference for the 
P variables was about 72 percent. We believe that these 
large differences were mainly due to a tilt of the acceler-

ometer. An inaccurate positioning over the lumbar spine, 
the lumbar curvature, or a forward leaning of the trunk 
might have caused the device to be slightly inclined in 
the sagittal plane.

Moe-Nilssen presented an algorithm to calculate the 
average tilt of an accelerometer device during walking by 
estimating the gravitational components in the anterior-
posterior and mediolateral directions [33]. However, in 
the current study, the gravitational component was dis-
abled by using a direct current filter during the measure-
ments. Therefore, a retrospective inclination correction 
was not possible. In addition, this algorithm was devel-
oped to correct for the inclination during a periodic 
movement like walking. In the current study, only single 
movement tasks were performed, and therefore, the algo-
rithm might not have been appropriate. It might be possi-
ble that the algorithm would be applicable for the 
quantification of the classic HR testing routine, i.e., 
repetitive HRs without resting periods in between.

Likely, the most accurate solution for correcting the 
tilt angle would have been the use of an inclinometer, i.e., 
gyroscope. However, this was not the purpose of the cur-
rent study. Further, most accelerometry systems designed 
for measuring physical activity in everyday clinical prac-
tice do not contain integrated gyroscopes.

The difference between the VGRF-derived and the 
VAcc-derived P values has been shown to be much big-
ger than that between the force values. This has been 
assumed to be mainly due to the double-integration pro-
cedure used for the calculation of P.

In contrast to the results of Hartmann et al. and Hen-
riksen et al., the temporal variables in the current study 
were least reliable [14–15]. A possible explanation for 

Table 2.
Descriptive statistics (mean ± SD), test for systematic error (ANOVA), reliability indexes (ICC and SEM), and MDD for variables Fmax (body 
weight), tFmax (seconds), RFD (body weight/seconds), tTotal (seconds), Pmax (watts/body weight), and Pmean (watts/body weight).

Variable
VGRF-Derived VAcc-Derived

Mean ± SD p-Value ICC SEM MDD Mean ± SD p-Value ICC SEM MDD
Fmax 1.28 ± 0.14 0.07 0.83* 0.059 0.162 1.12 ± 0.07 0.08 0.79* 0.030 0.082
tFmax 0.18 ± 1.89 0.81 0.50 0.046 0.127 0.11 ± 0.05 0.13 0.31 0.038 0.105
RFD 0.39 ± 0.09 0.22 0.81 0.836 2.317 1.28 ± 1.11 0.23 0.62 0.687 1.904
tTotal 0.37 ± 0.17 0.83 0.48 0.065 0.180 0.30 ± 0.07 0.46 0.28 0.056 0.155
Pmax 0.37 ± 0.17 0.10 0.83* 0.071 0.197 0.10 ± 0.06 0.11 0.80* 0.025 0.069
Pmean 0.18 ± 0.09 0.30 0.81* 0.038 0.106 0.05 ± 0.03 0.20 0.78* 0.015 0.043
Note: p-values from ANOVA; MDD at 95 percent confidence.
*Indicates ICCs >0.75.
ANOVA = analysis of variance, ICC = intraclass correlation coefficient, MDD = minimum detectable difference, RFD = rate of force development, SD = standard 
deviation, SEM = standard error of measurement, VAcc = vertical acceleration, VGRF = vertical ground reaction force.

Table 3.
Validity calculations for force (Fmax) and average and peak power 
(Pmean, Pmax) variables. All variables presented were significant at p < 
0.001.

Variable
Pearson

Correlation (r)

Absolute Difference
VGRF to VAcc (%)

(Mean ± SD)
Fmax 0.98 –12.76 ± 4.51
Pmax 0.96 –72.75 ± 5.22
Pmean 0.95 –71.58 ± 8.87
SD = standard deviation, VAcc = vertical acceleration, VGRF = vertical 
ground reaction force.
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this could be use of a belt to attach the accelerometer. In 
contrast, Hartmann et al. attached the accelerometer 
using sport tape [14]. Attachment with the belt might 
have caused a temporal distortion between the accelera-
tion signals measured by the accelerometer and derived 
from the force plate measurements. On the other hand, 
Henriksen et al. also used a belt to attach the device and 
found high reliability for temporal parameters [15].

Other reasons for the low reproducibility of the tem-
poral variables could be the number of test trials. Janssen 
et al., for example, tested six trials and found the acceler-
ometer to be a valid tool for the measurement of the dura-
tion of the sit-to-stand movement [24].

The uncorrected inclination of the device, use of the 
belt to attach the device to the lower back, as well as the 
number of test trials were considered limitations of the 
current study design. Future research should therefore 
focus on correcting the inclination angle and attaching 
the device in a way that prevents temporal distortions, 
e.g., attaching the accelerometer to the skin with sport 
tape. In addition, more test trials (e.g., up to five) should 
be performed.

CONCLUSIONS

Trunk accelerometry has been found to be a reliable 
and valid tool for the measurement of peak force and a 
reliable tool for monitoring peak and average P generated 
during a double-legged HR test in the elderly population. 
We believe that the significantly lower accelerometry-
derived absolute values were mainly due to the uncor-
rected sagittal inclination of the accelerometer. Further 
limitations include attachment of the device with a belt as 
well as an insufficient number of test trials. Therefore, 
the protocol should only be used in a test-retest situation.
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