
JRRDJRRD Volume 50, Number 7, 2013

Pages 985–996
Effects of 660 nm low-level laser therapy on muscle healing process 
after cryolesion

Natalia C. Rodrigues, PhD;1 Lívia Assis, PhD;2 Kelly R. Fernandes, MSc;2 Angela Magri;2 Daniel A. Ribeiro, 
PhD;2 Roberta Brunelli, MSc;3 Daniela C. C. Abreu, PhD;4 Ana Claudia M. Renno, PhD2*

1Department of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo, Brazil; 2Department of Bio-
sciences, Federal University of São Paulo, Santos, São Paulo, Brazil; 3Department of Surgery, Faculty of Medical Sci-
ences, State University of Campinas, Campinas, São Paulo, Brazil; 4Biomechanics, Medicine and Rehabilitation of 
Locomotor System Department, University of São Paulo, Ribeirão Preto, São Paulo, Brazil

Abstract—The aim of this study was to evaluate the effects of 
660 nm low-level laser therapy (LLLT) on muscle regeneration 
after cryolesion in rat tibialis anterior muscle. Sixty-three Wis-
tar rats were divided into a control group, 10 J/cm2 laser-
treated group, and 50 J/cm2 laser-treated group. Each group 
formed three subgroups (n = 7 per group), and the animals 
were sacrificed 7, 14, or 21 d after lesion. Histopathological 
findings revealed a lower inflammatory process in the laser-
treated groups after 7 d. After 14 d, irradiated animals at both 
fluences showed higher granulation tissue, new muscle fibers, 
and organized muscle structure. After 21 d, full tissue repair 
was observed in all groups. Moreover, irradiated animals at 
both fluences showed smaller necrosis area in the first experi-
mental period evaluated. MyoD immunoexpression was 
observed in both treated groups 7 d postinjury. Myogenin 
immunoexpression was detected after 7 and 14 d. The higher 
fluence increased the number of blood vessels after 14 and 
21 d. These results suggest that LLLT, at both fluences, posi-
tively affects injured skeletal muscle in rats, accelerating the 
muscle-regeneration process.

Key words: animal model, cryolesion, gene expression, histo-
pathological analysis, laser therapy, muscle regeneration, mus-
cle tissue, MyoD, myogenin, rehabilitation.

INTRODUCTION

Skeletal muscle injuries are extremely common in 
rehabilitation centers. They can occur through a variety 
of mechanisms, ranging from direct mechanical deforma-
tion (such as muscle laceration, strain, and contusion) to 
indirect damage related to ischemia and neurologic dys-
function [1–2]. Although muscle tissue can regenerate 
after injury, the process tends to be slow, often resulting 
in functional and structural muscle atrophy, contracture, 
pain, and reinjury [3–4].

Muscle regeneration is a highly orchestrated process 
that ideally leads to complete functional recovery. This 
process is characterized by inflammatory response, acti-
vation of muscle satellite cells, and formation of new 
myofibers [5]. The temporal and spatial interaction of the 
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different kinds of cells is regulated by a series of cell-
signaling molecules and growth factors, which induce 
maturation of muscle cells to create a competent muscle 
structure at the injury site [6].

The family of myogenic regulatory factors (MRFs), 
such as myoD and myogenin, have an important role in 
this event. MyoD is markedly more effective in activa-
tion and differentiation of satellite cells, while myogenin 
is an important factor for terminal differentiation and 
fusion myoblasts in mature muscle fiber, restoring nor-
mal muscle architecture [7]. Furthermore, the formation 
of new vessels is necessary to ensure adequate blood sup-
ply during the healing process. This event is regulated by 
the vascular endothelial growth factor that exerts multi-
ple effects on the vascular endothelium, including stimu-
lation of endothelial cell proliferation, rapid induction of 
microvascular permeability, promotion of endothelial cell 
survival, stimulation of endothelial cell adhesion and 
migration, and subsequent connection between new ves-
sels and the preexisting circulation [8].

Despite the excellent capacity of muscle tissue to 
regenerate after injury, in critical situations such as exten-
sive myofibrilar degeneration or poorly vascularized 
injuries, the process of muscle healing can be delayed [8–
9]. In this context, there is a need to develop treatments 
able to accelerate muscle cell proliferation and prevent 
fibrosis during the healing process, which would 
decrease the rehabilitation time and regenerative pro-
cesses, producing a return to the previous level of func-
tion as quickly and thoroughly as possible [9–10].

In this context, low-level laser therapy (LLLT) seems 
to be an efficient resource for skeletal muscle recovery, 
and its effectiveness has been demonstrated over the 
years [11–12]. Several studies have shown that laser irra-
diation favors the regeneration of skeletal muscle in ani-
mal and human models, increasing the number of muscle 
fibers, mitochondrial density, angiogenesis, and myotube 
formation, thereby shortening the inflammatory phase 
and accelerating the proliferative and maturation phases 
of skeletal muscle regeneration [13–14].

Despite the stimulatory effects of laser on tissue 
repair, investigators have applied it at a wide variety of 
doses, which makes it difficult to compare published 
results and determine the best laser parameters for evok-
ing the best tissue response [15–18]. Therefore, it is 
important to examine the effects of different fluences of 
LLLT to define its safety and efficiency.

These encouraging effects of LLLT on muscle 
metabolism formed the basis for the current in vivo study, 
which aimed to evaluate the biological response to laser 
irradiation in a model of cryolesion in rats. Cryolesion is 
an injury model well recognized to induce necrosis in a 
delimited area of skeletal muscle and regeneration [19–
21]. This lesion produces myonecrosis, tissue disruption, 
edema, hypercontracted fibers, and inflammatory cell 
infiltration (especially neutrophils and macrophages) 
[22]. These characteristics are similar to those found after 
high-intensity eccentric exercise, which is also a valid 
method used to induce muscle damage, leading to muscle 
fiber disruption, infiltration by inflammatory cells, and 
swelling [23–24].

We hypothesized that laser irradiation could modulate 
the inflammatory infiltrate and increase neoangiogenesis, 
stimulating the expression of the myogenic immunoex-
pression responsible for the regeneration process of skele-
tal muscle. In this context, the present study aimed to 
examine the influence of LLLT, comparing two different 
fluences (10 and 50 J/cm2) 7, 14, and 21 d after cryolesion 
on the tibialis anterior (TA) through morphology and mus-
cle tissue structure analysis. Inflammatory process, granu-
lation tissue, tissue structure, number of blood vessels, and 
presence of immunomarkers were evaluated histologically 
and by immunohistochemistry analysis.

METHODS

Experimental Groups
Sixty-three Wistar male rats (weighing 300 ± 20 g) 

were used and maintained under a controlled temperature 
(22°C ± 2°C) and light-dark periods of 12 h and with free 
access to water and a commercial diet.

All animals were divided into a control group (CG) 
with injured animals and no treatment, injured animals 
treated with 10 J/cm2 (G10), and injured animals treated 
with 50 J/cm2 (G50). Each group then formed three differ-
ent subgroups (n = 7 per group) of animals sacrificed 7, 14, 
or 21 d after injury. Treatments started 48 h after surgery 
and were performed every 24 h for 5, 10, and 15 sessions.

Experimental Design

Surgery
Surgical procedures (cryolesion) were performed 

based on those described by Miyabara et al. [20], under 
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anesthesia with 40 mg/kg ketamine (Dopalen, Vetbrands; 
São Paulo, Brazil) and 20 mg/kg xylazine (Anasedan, Vet-
brands). After anesthesia, the skin around the right TA 
muscle was shaved and cleaned. Then, a transversal cut 
(about 1 cm) of the skin over the middle of the muscle 
was carried out, exposing the muscle. A flat top end (0.5 
0.5 cm) of rectangular iron bar, precooled in liquid nitro-
gen, was then kept for 10 s on the center of the muscle. 
The procedure was repeated twice consecutively, with a 
time interval of 30 s. Finally, the skin was sutured, and 
thereafter, animals were kept for several hours on a warm 
plate (37°C) to prevent hypothermia.

Low-Level Laser Therapy Protocol
A 660 nm laser (Ga-Al-As) (MM Optics, São Carlos 

Equipment; São Paulo, Brazil) was used in this study. 
The following parameters were used: continuous wave-
length, 4.0 mm2 beam diameter, with 10 J/cm2 (20 mW, 
20s, 0.4 J total energy per point) and 50 J/cm2 (40 mW, 
50 s, 2 J energy per point). Irradiation was performed 
through the punctual contact technique on one point 
above the area of the injury. The treatments started 48 h 
postsurgery and were performed 5 times/wk (each 24 h), 
followed by an interval of 48 h. Rats were sacrificed by 
CO2 suffocation on days 7, 14, and 21 postinjury.

Histopathological Analysis
Muscles were submitted to a standard protocol. Mus-

cle samples were fixed in 10 percent buffered formalin 
(Merck; Darmstadt, Germany) and embedded in paraffin. 
Longitudinal axis sections (5 µm) were cut using a micro-
tome (Leica Microsystems SP 1600; Nussloch, Germany). 
Five sections of each sample were stained with hematoxy-
lin and eosin (HE stain, Merck) and analyzed. Histopatho-
logical evaluation was performed through a light 
microscope (Olympus, Optical Co Ltd; Tokyo, Japan) 
with 40 magnification by a pathologist who was blinded 
to the treatment. Inflammatory process, granulation tissue, 
necrosis area, focal or diffuse myofibrillary degeneration, 
and tissue structure were considered [10].

Morphometry of Injured Area
For morphometric evaluation, one histological cross-

section of each TA muscle located in the central region of 
muscle injury was chosen to measure the cross-sectional 
area of both injured and uninjured muscle, using software 
for morphometry (Axiovision 3.0.6 SP4, Carl Zeiss; 
Jena, Germany). Images were used to reconstruct the 
total muscle cross-sectional area, allowing the identifica-

tion and measurement of both injured and uninjured 
areas. A double-blind procedure was used for both mus-
cle cross-section image selection and injured and unin-
jured muscle area measurements.

Number of Blood Vessels
For determination of the number of blood vessels at 

the injured area, five fields from different regions follow-
ing the injured area were obtained by light microscope 
(Olympus, Optical Co Ltd) at a magnification of 40. 
The number of blood vessels was counted in each field 
by morphometric software (Axiovision 3.0.6 SP4). This 
was performed in five histological sections for each ani-
mal, and then the mean number of blood vessels per ani-
mal and per group was calculated [25].

Immunohistochemistry
Serial longitudinal muscle sections of 4 µm were 

deparaffinated in xylene, rehydrated in graded ethanol, 
and then pretreated by microwave (Brastemp; São Paulo, 
Brazil) with 10 mM citric acid buffer (pH = 6) for 
3 cycles of 5 min each at 850 W for antigen retrieval. The 
material was preincubated with 0.3 percent hydrogen per-
oxide in phosphate buffered saline (PBS) for 5 min for 
inactivation of endogenous peroxidase and then blocked 
with 5 percent normal goat serum in PBS solution for 
10 min. The specimens were then incubated with anti-
MyoD and antimyogenin antibodies (Santa Cruz Biotech-
nology, Inc; Dallas, Texas) at a concentration of 1:400. 
Incubation was carried out overnight at 4°C within the 
refrigerator and followed by two washes in PBS for 10 
min. The sections were then incubated with biotin-conju-
gated secondary antibody (anti-rabbit immunoglobulin G 
[IgG]) (Vector Laboratories; Burlingame, California) at a 
concentration of 1:200 in PBS for 1 h. The sections were 
washed twice with PBS before the application of pre-
formed avidin biotin complex conjugated to peroxidase 
(Vector Laboratories) for 45 min. The bound complexes 
were visualized by the application of a 0.05 percent solu-
tion of 3–3-diaminobenzidine and counterstained with 
Harris hematoxylin. For control studies of antibodies, the 
serial sections were treated with rabbit IgG (Vector Labo-
ratories) at a concentration of 1:200 in place of the pri-
mary antibody. Additionally, internal positive controls 
were performed with each staining bath.

Immunohistochemical data were evaluated by an 
experienced pathologist (DAR) under subjective mor-
phologic analysis as established in previous studies con-
ducted by our group [10].
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Statistical Analysis
The results are given as means and standard devia-

tions. Data for the morphometry of the injured area and 
number of blood vessels analysis were evaluated by two-
way analysis of variance, followed by the post hoc Stu-
dent-Newman-Keuls method. Level of statistical signifi-
cance was defined as p < 0.05. Statistical evaluation was 
carried out using STATISTICA 7 (StatSoft, Inc; Tulsa, 
Oklahoma).

RESULTS

Histopathological Analysis
In the CG, there was an intense inflammatory reaction 

7 d postinjury composed mainly of mononuclear inflam-
matory cells (Figure 1(a)). After 14 d postinjury, the his-
tological analysis revealed the presence of granulation 
tissue and newly formed muscle fibers (Figure 1(b)). 
After 21 d, full tissue repair was observed (Figure 1(c)).

In the experimental groups exposed to LLLT, some 
remarkable differences were detected at both fluences 
(10 J/cm2 and 50 J/cm2) when compared with the CG. 
However, no histological differences were found between 
the two fluences. After 7 d, inflammatory infiltrate was 
observed but less intense than in the CG (Figure 1(d) and
1(g)). In addition, granulation tissue and some newly 
muscle fibers were noticed in this period (Figure 1(d) 
and 1(g)). Following 14 d postinjury, muscle tissue pre-
sented a higher amount of granulation tissue, newly 
formed muscle fibers, and an organized muscle structure 
at the area of injury (Figure 1(e) and 1(h)). At 21 d 
postinjury, full tissue repair was noticed in both groups 
(Figure 1(f) and 1(i)).

Immunohistochemistry

Myogenin Expression
Immunohistochemical data for myogenin and MyoD 

are summarized in Figures 2 and 3, respectively. Immu-
nostaining for both markers was detected in the nucleus 
of muscle cells and circumjacent areas.

In the CG, no immunoexpression of myogenin was 
detected in any experimental period, indicating a nega-
tive expression for this group (Figures 2(a)–(c)). Never-
theless, in the group exposed to LLLT at 10 J/cm2, a 
positive myogenin immunoexpression was noticed 7 and 
14 d postinjury (Figure 2(d) and 2(e), respectively). Fol-

lowing 21 d, a negative immunoexpression was detected 
(Figure 2(f)). Regarding animals treated at 50 J/cm2, the 
same picture was observed; i.e., myogenin was detected 7 
and 14 d postinjury (Figures 2(g) and 2(h), respectively). 
Negative immunoexpression was observed in the last 
period evaluated (Figure 2(i)).

MyoD Expression
In the CG , myoD immunoexpression was not detected 

in any experimental analyzed in this study (7, 14, and 21 d 
postinjury) (Figure 3(a)–3(c)), indicating negative immu-
nostaining in this group for all periods evaluated in this set-
ting. Nevertheless, a positive myoD immunoexpression 
was noticed in the group exposed to LLLT at 10 J/cm2 only 
at 14 d postinjury (Figure 3(e)). A negative immunoex-
pression was observed 7 and 21 d postsurgery in this flu-
ence (Figure 3(d) and 3(f), respectively). Regarding laser 
therapy at 50 J/cm2, the same picture was observed; i.e., 
myogenin was detected 14 d postinjury (Figure 3(h)) and 
negative immunoexpression was observed at 7 and 21 d 
(Figure 3(g) and 3(i), respectively).

Morphometry of Injured Area
Figure 4 shows the morphometry of the injured area 

in the three experimental periods. At the first experimen-
tal period, the 660 nm laser at both fluences produced a 
significant decrease in the injury area compared with the 
CG (CG vs G10: p < 0.001; CG vs G50: p < 0.001). Sim-
ilar injury area results were found for all the groups in the 
other two experimental periods.

Number of Blood Vessels
Seven days postsurgery no statistical difference was 

found between the CG and treated groups. At the second 
experimental period, a statistically higher number of 
blood vessels was found in G50 (p < 0.02) than in CG 
and G10. Similarly, 21 d after surgery, the number of 
blood vessels was also significantly increased in G50 
(p < 0.03) compared with CG and G10 (Figure 5).

DISCUSSION

The present study evaluated the in vivo response of 
the application of LLLT in a rat TA cryolesion model. We 
hypothesized that laser therapy would enhance muscle 
metabolism, accelerating the process of healing. The main 
findings demonstrated that the irradiated groups, at both 
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Figure 1.
Histological sections of injured muscle. (a)–(c) Control group 7, 14, and 21 d after surgery, respectively. (d)–(f) 10 J/cm2 laser-

treated animals 7, 14, and 21 d after surgery, respectively. (g)–(i) 50 J/cm2 laser-treated animals 7, 14 and 21 d after surgery, 

respectively. Asterisks indicate inflammatory infiltrate and granulation tissue. Arrows indicate new muscle fiber. Hematoxylin and 

eosin stain. 10.

fluences, presented a better histological pattern, with ear-
lier recruitment of cell infiltrate, higher amount of newly 
formed muscle fiber, and a more organized muscle tissue 
structure at the lesion. Furthermore, our results demon-
strated a smaller necrosis area in the laser-treated groups 
7 d postsurgery. The immunohistochemical analysis 
revealed an upregulated expression of myogenin in both 

irradiated groups at 7 and 14 d and an upregulated expres-
sion of myoD at 14 d. In addition, LLLT at 50 J/cm2 pro-
duced a significant increase in the number of blood 
vessels at the site of the injury.

Laser phototherapy is based on the photobiostimula-
tion of cells and tissues [11]. Furthermore, many studies 
have investigated the effects of LLLT in a series of different 
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Figure 2.
Immunohistochemical staining for myogenin. (a)–(c) Control group 7, 14, and 21 d after surgery, respectively. (d)–(f) 10 J/cm2 laser-

treated animals 7, 14, and 21 d after surgery, respectively. (g)–(i) 50 J/cm2 laser-treated animals 7, 14 and 21 d after surgery, respec-

tively. Arrows indicate myogenin immunoexpression. 10.

pathological conditions to stimulate tissue repair [26–28]. 
Pires et al. showed that laser therapy (780 nm; 7.7 J/cm2; 
75 s) reduced interleukin 6, COX-2, and transforming 
growth factor beta in an experimental model of tendinitis in 
rats [26]. Demidova-Rice et al. demonstrated that a single 
laser exposure stimulated the healing of wounds in mice 
[27]. In addition, Pallotta et al. demonstrated that LLLT 
(810 nm) reduced the inflammatory process in an experi-
mental model of knee osteoarthritis in rats [28].

The histological and morphometric analysis showed 
that laser therapy attenuated the pathological features 
induced by cryolesion. Such findings may reflect the posi-
tive effects of laser irradiation on muscle regeneration, evi-
dencing its myogenic potential and capacity to activate 
satellite and myogenic cells, culminating in better muscle 
fiber organization at the site of the injury. This is in agree-
ment with Melo et al. [29], who affirmed that laser therapy 
decreased the number of inflammatory cells and increased 



991

RODRIGUES et al. LLLT on muscle healing process
Figure 3.
Immunohistochemical staining of MyoD. (a)–(c) Control group 7, 14, and 21 d after surgery, respectively. (d)–(f) 10 J/cm2 laser-

treated animals 7, 14, and 21 d after surgery, respectively. (g)–(i) 50 J/cm2 laser-treated animals 7, 14 and 21 d after surgery, 

respectively. Arrows indicate MyoD immunoexpression. 10.

the amount of elastic fibers in the wound-healing process, 
which could explain the positive effect of laser on accelerat-
ing tissue repair. Also, our group, comparing the effects of 
830 nm laser therapy and low-intensity pulsed ultrasound 
(US) on muscle healing, observed that the laser-irradiated 
animals presented minor degenerative changes of muscle 
tissue when compared with control and US-treated animals 

[10]. The same results were found by Demir et al. [30], who 
observed that laser irradiation (904 nm; 1 J/cm2; 6 mW) 
was more effective than US in accelerating wound healing.

In addition, immunohistochemistry analysis showed 
that laser therapy, at both fluences, produced an upregu-
lation of myogenin and MyoD expression during the pro-
cess of muscle healing. Interestingly, this analysis 
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Figure 4.
Mean and standard deviation of injury area. CG = control group, 

G10 =10 J/cm2 laser-treated animals, G50 = 50 J/cm2 laser-

treated animals.

Figure 5.
Mean and standard deviation of number of blood vessels. CG = 

control group, G10 = 10 J/cm2 laser-treated animals, G50 = 50 J/

cm2 laser-treated animals. 

demonstrated a negative expression in the CG. MyoD and 
myogenin play a key role during neonatal myogenesis 
and have a regulatory function in the processes of muscle 
plasticity, adaptation, and regeneration in adult muscle 
[31–33]. Both myogenin and MyoD are responsible for 
satellite cell differentiation [34]. The arrival of satellite 
cells is crucial during muscle regeneration, because these 
cells can transform into myoblasts to substitute for the 
damaged muscle fibers [33–34]. When LLLT is applied 

to tissue, the light is absorbed and can modulate cell bio-
chemical reactions, increasing the synthesis of DNA, 
RNA, and cell-cycle regulatory proteins [35–36]. There-
fore, the cited effects of LLLT may have induced 
increased myogenin and myoD gene expression, which 
culminated in upregulated expression of both MRFs. 
Therefore, the better organization of the muscle fibers 
and minor levels of inflammatory cells during the first 
periods after irradiation may be related to the higher lev-
els of MyoD and myogenin expression.

Furthermore, the present study demonstrated a stimu-
latory effect of LLLT, mainly at the higher fluence, on 
blood vessel growth. An adequate blood perfusion is 
essential to guarantee injured tissue regeneration and, con-
sequently, the success of the repair procedure [37]. Vascu-
lar photomodulation can be associated with the reduction 
of inflammatory cells and stimulation of macrophages, T-
lymphocytes, endothelial cells, and fibroblast migration 
during the healing process, resulting in accelerated tissue 
healing [38]. Gonçalves et al. showed that the GaAsAl 
laser applied with an energy density of 60 J/cm2 was more 
effective in stimulating neoangiogenesis than 30 J/cm2 

[37]. Furthermore, Corazza et al. reported that a dose of 
20 J/cm2 effectively increased fibroblast proliferation and 
neoangiogenesis in skin wounds [39].

The parameters of LLLT for optimal stimulation still 
need to be determined, and the molecular details involved in 
tissue repair have to be investigated [10]. These affirmations 
highlight the importance of studies exploring the effects of 
different parameters. Interestingly, in the present study simi-
lar beneficial effects were observed at both dosages.

CONCLUSIONS

This study demonstrates that the LLLT had positive 
effects on injured skeletal muscle in rats, accelerating the 
muscle regeneration process by increasing the number of 
blood vessels and upregulation of myogenin and MyoD 
immunoexpression, which may have resulted in better 
tissue organization at the site of the injury. Although fur-
ther clinical studies using functional tests are required, 
the findings of this work point to a promising utilization 
of such therapeutic modalities for tissue repair.
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