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Classifying prosthetic use via accelerometry in persons with transtibial 
amputations
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Abstract—Knowledge of how persons with amputation use 
their prostheses and how this use changes over time may facili-
tate effective rehabilitation practices and enhance understand-
ing of prosthesis functionality. Perpetual monitoring and 
classification of prosthesis use may also increase the health and 
quality of life for prosthetic users. Existing monitoring and 
classification systems are often limited in that they require the 
subject to manipulate the sensor (e.g., attach, remove, or reset a 
sensor), record data over relatively short time periods, and/or 
classify a limited number of activities and body postures of 
interest. In this study, a commercially available three-axis 
accelerometer (ActiLife ActiGraph GT3X+) was used to char-
acterize the activities and body postures of individuals with 
transtibial amputation. Accelerometers were mounted on pros-
thetic pylons of 10 persons with transtibial amputation as they 
performed a preset routine of actions. Accelerometer data was 
postprocessed using a binary decision tree to identify when the 
prosthesis was being worn and to classify periods of use as 
movement (i.e., leg motion such as walking or stair climbing), 
standing (i.e., standing upright with limited leg motion), or sit-
ting (i.e., seated with limited leg motion). Classifications were 
compared to visual observation by study researchers. The clas-
sifier achieved a mean +/– standard deviation accuracy of 
96.6% +/– 3.0%.

Key words: accelerometry, activity/posture classification, activity 
monitor, ambulatory monitoring, amputees, artificial limbs, pros-
thesis, prosthesis use, rehabilitation, transtibial amputation.

INTRODUCTION

Prosthetists, physicians, and prosthetics researchers 
are challenged to describe how persons with limb loss use 

their prostheses outside the clinic or laboratory [1]. Perfor-
mance tests such as the timed up and go test [2] or the 
6 min walk [3] can be used to measure mobility of a pros-
thetic user in a clinic or laboratory [4–5], but information 
on what prosthesis users do in their daily lives can be diffi-
cult to acquire. Characterizing ways that prostheses are 
used is complicated by the range of situations and environ-
ments users encounter. The characterization of prosthesis 
use could be partially achieved by quantifying prosthetic 
wear (e.g., donning and doffing) and users’ engagement in 
locomotor activities (e.g., walking and stair climbing) and 
fundamental body postures (e.g., standing or sitting). 
Accurate knowledge of prosthetic use in free-living condi-
tions would enhance prosthetic prescriptions, fitting pro-
cesses, and outcomes measurement [6].

Previous methods for measuring prosthetic use outside 
of a gait laboratory or clinic included self-report surveys 
and personal activity monitoring devices (e.g., pedometers 
and step activity monitors). Self-report surveys have been 
used to quantify frequency and duration of prosthetic use 
[7]. However, self-report of activity among persons with 
limb loss has been noted to be unreliable when compared 
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with a step activity monitor [8]. Pedometers and step coun-
ters have been used to objectively measure step activity of 
persons wearing prostheses over extended periods of time 
[6,8–13]. While these sensors accurately measure gait 
activities, they are unable to provide information about 
body postures that may also be part of a person’s habitual 
activity [14]. Differentiation of body postures may be clini-
cally important as sitting and standing can affect changes in 
residual limb volume and alter the fit of a prosthesis [15–
16]. Accurate knowledge of how much a prosthetic user 
sits or stands could thus be useful in determining changes 
in socket fit throughout the day.

Identification of activities and postures has previ-
ously been achieved through classification of data from 
one or more body-mounted sensors [14,17–20]. This 
technique has been applied to characterize the quality of 
gait [21], discriminate activity levels [22], and determine 
body orientations [23] of individuals without amputa-
tions. It has also been used on persons with lower-limb 
amputations to quantify step counts [18], estimate ambu-
lation time [24], and describe gait patterns [25]. Algo-
rithms have also been developed to identify locomotion 
and posture of individuals with an amputation from sen-
sor data obtained over short time periods (i.e., up to sev-
eral hours) [10,26–28].

While these studies demonstrate potential for activity 
and posture classification based on data from body-
mounted sensors, there remain challenges to clinical use 
such as need for multiple sensors, subject donning 
requirements, low storage capacities, and short battery 
lives. Currently, available sensors are also often restricted 
to short-term applications and/or require adherence to 
specific user protocols. Accordingly, more user-friendly 
and clinically relevant solutions are needed to overcome 
these challenges. Here, we explore the potential for a 
commercially available accelerometer and custom signal 
processing algorithm to identify when prostheses are 
being worn and to classify periods of use as movement, 
standing, or sitting. Use of a single sensor mounted to a 
prosthesis would eliminate the need for the user to attach 
and remove the sensor, improve wear compliance, and 
reduce cost. We believe this strategy is a first step toward 
a prosthesis-integrated sensing system that could be used 
to collect, process, and convey information of interest to 
users, practitioners, and researchers.

In this study, we used commercially available accel-
erometers and a custom software algorithm to classify the 
movements and body postures of persons with transtibial 

amputation. Our hypothesis was that data from a single 
prosthesis-mounted accelerometer could be used to iden-
tify when a prosthetic user was wearing the prosthesis 
and whether the user was sitting, standing, or actively 
moving. An algorithm was designed to identify when the 
prosthesis was being worn and to classify actions as 
movement (i.e., regular leg motion such as walking or 
stair climbing, transitioning from one posture to another, 
or donning or doffing the prosthesis), standing, or sitting.

METHODS AND MATERIALS

Experimental Design
Persons with transtibial amputations were recruited 

to test the developed classification algorithm in a semi-
controlled activity protocol. All subjects were recruited 
from local prosthetic clinics, peer-support groups, and 
hospitals. Inclusion criteria were ages 18 to 75, transtibial 
amputation that occurred at least 2 yr prior to testing, 
Medicare Functional Classification Level (MFCL) 2 
(limited community ambulator) or higher [29], a healthy 
residual limb with intact skin, and ability to walk for at 
least 1 h (with rests as necessary).

ActiLife ActiGraph GT3X+ accelerometers (Pensac-
ola, Florida) were applied to each subject to measure 
limb segment accelerations. The GT3X+ has a  ±6 g
(gravitational acceleration) dynamic range, 0.00293 g
resolution, 100 Hz maximum sampling rate, up to 31 d of 
battery life, and up to 40 d of data storage. A dynamic 
range of ±6 g has previously been found to be acceptable 
for quantifying movement patterns during walking [30–
31]. The ActiGraph accelerometer is packaged in a 4.6 × 
3.3 × 1.5 cm water-resistant enclosure and weighs 19 g. 
One accelerometer was attached to the subject’s prosthe-
sis, proximal to the foot. Positioning the accelerometer at 
this location, instead of a more proximal one, ensured the 
sensor was subjected to high accelerations (i.e., received 
a strong signal) during leg motions. The sensor was ori-
ented with the positive x-axis along the limb axis and the 
positive z-axis in the medial-lateral direction (Figure 1). 
A second accelerometer was affixed to the anterior thigh 
on the same leg as the prosthesis. It was oriented with the 
positive x-axis along the limb axis and the positive y-axis 
facing to the subject’s right. These locations ensured that 
different postures would be easily differentiated using 
anterior-posterior acceleration data. A sheet of Tegaderm 
(3M; St. Paul, Minnesota) was placed on the skin of the 
thigh. Adhesive-backed Velcro was then used to attach 
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Figure 1.
Accelerometer attachments and orientations. One accelerometer 

was connected securely to subject’s pylon with z-axis facing in 

medial-lateral direction and x-axis facing in long direction. Second 

accelerometer was attached securely to subject’s thigh with y-axis 

facing to right and z-axis facing in anterior-posterior direction.

the accelerometer to the Tegaderm (Figure 1). The sec-
ond accelerometer was further secured with an elastic 
strap to minimize local movements. Sampling rates for 
both accelerometers were 40 Hz. A 40 Hz sampling rate 
was deemed acceptable as most of the energy in gait is 
concentrated below the resulting Nyquist frequency of 
20 Hz [32–33]. A sampling rate of 40 Hz rather than a 
higher rate typically used in gait laboratories maximized 
the duration of data collection and still allowed for the 
identification of relevant gait events. At this sampling 
rate, GT3X+ accelerometers are capable of recording 
data for up to 30 d.

Two experiments were performed to assess the accu-
racy of a novel algorithm designed to classify use of 
prostheses as (1) movement (e.g., walking, using stairs, 
or transitioning from one posture to another), (2) standing 
(i.e., upright standing posture with minimal movement), 
(3) sitting (i.e., seated posture with minimal movement), 
or (4) doffed (i.e., prosthesis not being worn) based on 

data from the pylon-mounted accelerometer. The thigh-
mounted accelerometer was used in both experiments to 
enhance accuracy of activity and posture recognition so 
as to validate classifications derived by an algorithm run 
only on the single accelerometer data. Two algorithms 
were developed to classify movement, posture, and wear. 
One algorithm made use of data from the pylon-mounted 
accelerometer only, and the other algorithm made use of 
data from both accelerometers.

The purpose of the first experiment was to assess the 
accuracy of single- and dual-accelerometer classifica-
tions of activities performed in a laboratory setting com-
pared with visual observation. Subjects were asked to 
perform a predefined activity protocol that included 
walking over level ground (i.e., an indoor hallway); sit-
ting on office chairs, sofas, or benches; standing; ascend-
ing and descending stairs; and doffing and donning the 
prosthesis. These activities were deemed to be most rep-
resentative of the activities of clinical interest to prosthe-
tists. Subjects were asked to sit in each type of seat at 
least three times, stand and walk the hallway at least five 
times, use the stairs at least once, and doff/don their pros-
thesis once. Each time the subject performed an activity 
in the test sequence, he or she was asked to perform it for 
at least 60 s. Subjects were asked to perform the 
sequence in a set order, but were asked to engage in each 
activity, posture, or don/doffing action as they normally 
would (i.e., no instructions were given for walking speed, 
sitting posture, etc.). Subjects were visually monitored 
while they performed the test sequence. A researcher fol-
lowed and timed each subject with a stopwatch to capture 
when subjects started and stopped each type of move-
ment, posture, or don/doffing action. This record was 
used for ground-truth comparisons.

The purpose of the second experiment was to assess 
differences between single- and dual-accelerometer clas-
sifications of activities performed in free-living settings. 
In the second experiment, two subjects were asked to 
wear both accelerometers for 2 d outside of the labora-
tory. Subjects were asked to go about their days normally. 
When they doffed their prosthesis, they were to remove 
the thigh-mounted accelerometer and set it on a flat sur-
face. Use of Velcro and an elastic band for accelerometer 
attachment allowed the subject to easily reattach the 
thigh-mounted accelerometer.

Classification Algorithm
Raw acceleration data, such as those shown in Fig-

ure 2, obtained from the GT3X+ accelerometers were 



1204

JRRD, Volume 50, Number 9, 2013
Figure 2.
Plots of (a) signal magnitude area (SMA) and (b) pylon acceleration signals for different activities and postures. If SMA was higher 

than upper threshold, subject was considered engaged in movement. If SMA was between thresholds, subject was considered sta-

tionary. If SMA was below lower threshold for more than 320 s, prosthesis was considered doffed. Plot shows SMA in decibels to 

accurately show difference between thresholds. Lower threshold, set to 0.01 g, corresponds to 40 dB and upper threshold of 0.1 g

corresponds to 20 dB.

postprocessed using custom algorithms written in MAT-
LAB, version 7.12.0, software (MathWorks Inc; Natick, 
Massachusetts). No filtering was performed on the data. 
Data were buffered into short windows with an overlap of 
50 percent. Window length was experimentally determined 
as described here and set to 45 samples (i.e., 1.125 s).

A binary decision tree (BDT) algorithm [17] was 
designed to classify the windowed data. Data from all 
three axes of the pylon-mounted accelerometer were used 
to determine whether the subject was active, was station-
ary (i.e., sitting or standing), or had doffed the prosthesis. 
Determination of posture was performed using only the 
anterior-posterior data of one accelerometer. For the algo-
rithm that used data from only the pylon-mounted acceler-
ometer, data from the anterior-posterior axis of that 
accelerometer was used. For the algorithm that used data 
from both accelerometers, data from the anterior-posterior 
axis of the thigh-mounted accelerometer was used.

The BDT (Figure 3) used signal magnitude area 
(SMA) to determine whether the prosthesis was moving 
or stationary within each window. SMA was calculated 
by subtracting the mean (μ) of the window from each of 
the accelerometer axes, integrating the absolute value of 

the result over a full window, and dividing by the window 
size (T). This method has previously been used to detect 
activity levels [20,23]. SMA was evaluated using the 
Equation:

         (1)

where X(t), Y(t), and Z(t) are the acceleration readings at 
time (t) for each axis X, Y, and Z. The developed algorithm 
required several subject-specific parameters for calibra-
tion. First, the accelerometers’ locations (i.e., left or right 
leg) were required to correctly orient the pylon-mounted 
accelerometer’s anterior-posterior axis; the axial direction 
did not change, and the y-axis of the accelerometer rotated 
with leg change to remain pointing in the lateral direction. 
Second, the pylon accelerometer’s inclination while the 
prosthesis was doffed and standing upright with the foot 
on the floor was required. This doffed position served as a 
reference to differentiate sitting and standing postures. 
This strategy was effective because the anterior-posterior 
inclination angle (with respect to the vertical axis) was 
found to be greater than the doffed reference angle for sit-
ting and less for standing (Figure 4).

SMA
1
T
--- X t  x– + Y t  y + Z t  z––  t,d

0

T
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Figure 3.
Binary decision tree algorithm used for activity and posture 

classification. Thigh acceleration signals (dashed line) were 

considered only in cases where two accelerometers were used. 

SMA = signal magnitude area.

Two activity thresholds were used to guide classifica-
tions. The lower and upper activity thresholds were 
experimentally determined via a sensitivity analysis using 
the laboratory-based experiment data as described here. 
These thresholds were set to 0.01 g and 0.1 g, respec-
tively (Figure 2). When SMA was below the lower 
threshold, the subject was deemed either to be stationary 
or to have doffed his or her prosthesis. When SMA 
remained below the lower threshold for more than 320 s, 
the prosthesis was considered doffed. The 320 s parame-
ter was chosen based on the observation that subjects in 
stationary postures during the first experiment were not 
completely immobile for the full length of time they were 
in the posture, but further research will be needed to vali-
date it. Otherwise, the prosthesis was assumed to be 
donned and windows were classified as a stationary pos-
ture (i.e., standing or sitting). When SMA was between 
the lower and upper thresholds, the accelerometer data 
from that window were averaged to find the inclination 

[34]. Inclination was then compared to the subject’s refer-
ence inclination to determine whether the subject was sit-
ting, was standing, or had doffed the prosthesis (Figure 
2). If the prosthesis was oriented in a way that did not cor-
respond to one of those postures, indicated by the inclina-
tion being outside of a range that could be obtained by a 
sitting or standing individual, the window was classified 
as unknown. Lastly, when SMA exceeded the upper 
threshold, the subject was considered to be engaged in 
movement.

When data from only the pylon-mounted accelerom-
eter were used for classification, sitting or standing was 
calculated based on the inclination of the prosthesis as 
determined by anterior-posterior accelerometer measure-
ments. When data from both the pylon-mounted acceler-
ometer and the thigh-mounted accelerometer were used 
for classification, the pylon-mounted accelerometer data 
were used to determine movement, and data from the 
anterior-posterior axis of the thigh-mounted accelerome-
ter were used to determine posture (Figure 4).

A sensitivity analysis was performed on the three 
experimentally determined parameters of the classifica-
tion algorithm. Window size, upper activity threshold, 
and lower activity threshold were varied to determine the 
optimal values described previously and to assess the 
sensitivity of the results to changes in those parameters.

Accuracy Evaluation
Classification accuracy for each experiment was calcu-

lated by comparing (on a window-by-window basis) the 
predicted activity or body posture to that which was 
recorded by the researcher during the experiment. The 
accuracy was computed as the ratio of the number of cor-
rectly classified windows to the total number of windows 
that were evaluated. Accuracy was calculated for both sin-
gle- and dual-accelerometer classification algorithms. Con-
fusion matrices, a method of describing which postures and 
activities were misclassified and as what posture or activity 
they were misclassified, were calculated for each subject 
[35]. A mean confusion matrix was also calculated using 
classifications from all subjects. For the second experi-
ment, accuracy in differentiating sit and stand postures and 
activities was quantified by comparing the prediction of the 
BDT algorithm using only data from the pylon-mounted 
accelerometer to that from both accelerometers.
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RESULTS

Eight subjects (six male and two female) were 
recruited to participate in the first (i.e., laboratory-based test 
sequence) experiment and two subjects (both male) were 
recruited to participate in the second (i.e., multiple day vali-
dation) experiment (Table 1). All subjects had a unilateral 
transtibial amputation. Subjects’ mean ± standard deviation 
(SD) age was 53.0 ± 11.6 yr, weight was 90.4 ± 11.6 kg, 
height was 178.0 ± 7.2 cm, and time since amputation was 
19.6 ± 13.9 yr. Subjects were classified as MFCL-2 (n = 3), 
MFCL-3 (n = 3), or MFCL-4 (n = 4) by the study prosthe-
tist based on interview and clinical evaluation.

Window lengths from 20 to 80 samples were tested 
to determine the effect of window length on classification 
accuracy. The sensitivity of both classification algorithms 
to window length was similar. Both algorithms had a 
maximum classification accuracy at approximately 
45 samples per window (Figure 5).

Accuracies for classifications derived using lower 
activity thresholds between 0.001 and 0.02 g and upper 
activity thresholds between 0.01 and 0.2 g were com-
puted. It was found that if the activity thresholds were 
low, accuracy decreased substantially because stationary 
postures (e.g., standing or sitting) were classified as 
active use (Figure 6). As thresholds increased from their 

Figure 4.
Pylon and thigh acceleration signals over 60 s period when subject was sitting, had doffed prosthesis and placed foot flat on floor in 

reference position, or was standing.
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Subject
Limb
Side

Sex
Age
(yr)

Etiology
Time Since
Amputation

(yr)

Residuum
Length

(cm)

Weight
(kg)

Height
(cm)

MFCL

1 R M 69 Trauma 47 15 99.5 182.9 3
2 R M 58 Trauma 5 17 80.9 177.8 4
3 L F 56 Trauma 9 17 100.0 167.6 2
4 R M 31 Infection 2 16 88.7 170.2 3
5 L M 49 Tumor 12 19 108.5 177.8 2
6 L M 49 Trauma 22 10 100.0 182.9 4
7 L M 36 Trauma 2 23 98.2 190.5 3
8 R F 65 Trauma 58 10 78.4 167.0 2
9 R M 65 Trauma 11 17 72.7 175.3 4
10 R M 52 Trauma 28 19 77.3 188.0 4
Mean — — 53 — 19.6 16.2 90.4 178.0 3.10
SD — — 12 — 18.4 3.7 11.7 7.8 0.83

Figure 5. 
Sensitivity of classification accuracy to window length. Classifi-

cation accuracy reached maximum at 45 samples per window 

for both algorithms that were tested.

optimal value, accuracy dropped off because of periods 
of activity being misclassified as sitting, standing, or 
doffed. Maximum accuracy was achieved for the pylon 
data classification algorithm using a 0.01 g lower thresh-
old and a 0.1 g upper threshold. Maximum accuracy was 
achieved for the pylon and thigh data classification algo-
rithm using a 0.008 g lower threshold and a 0.1 g upper 
threshold. These optimal thresholds were used in all sub-
sequent analyses.

In experiment 1, overall classification accuracy for 
each subject ranged from 90.1 percent to 99.6 percent 
when using data from only the pylon-mounted acceler-
ometer (Table 2). Mean ± SD classification accuracy was 
96.6 ± 3.0 percent. The most commonly misclassified 
body posture was sitting, which was typically misclassi-
fied as standing. The confusion matrix shows the percent-
age of actions that were classified correctly or 
misclassified as other activities (Table 3).

The algorithm that used data from both accelerometers 
had classification accuracy equal to or better than the algo-
rithm that used only data from the pylon-mounted acceler-
ometer. Mean ± SD classification accuracy using both 
accelerometers was 98.5 ± 2.5 percent, 1.9 percent greater 
than that obtained using a single accelerometer (Table 2).

In experiment 2, mean ± SD agreement between clas-
sification with one and both accelerometers was 90.3 ± 
5.2 percent. Classification of activities for one subject 
(Subject 9) was 84.7 percent, while for the other subject 
(Subject 10) it was 95.8 percent.

DISCUSSION

We demonstrated that a prosthesis-mounted ActiLife 
ActiGraph GT3X+ three-axis accelerometer can be used 
to identify the postures and movement of persons with 
transtibial amputation. We also showed that differentia-
tion of sit and stand postures is possible using knowledge 
of the prosthesis doffed with the foot flat on the floor. A 

Table 1.
Subject demographics.

F = female, L = left, M = male, MFCL = Medicare Functional Classification Level, R = right, SD = standard deviation.
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custom algorithm classified data gathered from users as 
they performed actions in a free-living situation. In a 
laboratory-based experiment, use of a pylon-mounted 
accelerometer alone or in conjunction with a thigh-
mounted accelerometer allowed for classification of 
movement and posture with accuracy equal to or greater 
than 90.1 percent, which may be deemed acceptable for 
clinical and/or scientific applications.

Although the developed algorithm accurately classi-
fied movements and postures in general (Table 2), it was 
challenged in select situations. For example, the algo-
rithm commonly misclassified sitting as standing when 
subjects were seated on a high bench. Although sitting 
accuracy was above 98.2 percent for low chairs, subjects 
often oriented their prosthesis at a right angle to the 
ground in higher chairs rather than extending their pros-
thetic leg forward as they did in a lower seat. As such, 
standing may be overestimated (and sitting underesti-
mated) if users sit with their knees flexed at 90 degrees. 
Use of a second accelerometer may eliminate this issue, 
but may introduce other problems, such as compliance or 
improper attachment and removal. It may be possible to 
reduce the number of single-accelerometer misclassifica-
tions by using a probabilistic model to account for transi-
tions between activities.

The classification algorithm achieved a comparatively 
low accuracy of 90.1 percent for one test subject in experi-
ment 1. This subject wore a brace on her contralateral 
limb, which may have been a factor in the observed low 
classification accuracy. Further research may be required 
to investigate the effects of braces and other walking aids 
(e.g., canes and walkers) on the classification algorithm.

This movement and posture classification algorithm 
was capable of identifying the specified behaviors with 
accuracies of 94.0 percent with only a single accelerometer 
for all but one prosthesis user (Table 2). It also appears 
that using a second accelerometer may not be necessary 
for accurate classification, as it increased classification 
accuracy by an average of only about 1.9 percent during 
the laboratory-based experiment. Agreement between sin-
gle- and dual-accelerometer classification in the second 
(free living) experiment was 84.7 to 95.8 percent. The 
large difference in results between the two subjects is most 
likely due to the subjects standing or sitting in different 
ways, but more research must be done to investigate.   

This activity monitoring method may therefore avoid 
the need for multiple monitors as used in other studies 
[18,23,27,36]. The developed system appears to meet or 
exceed classification accuracies reported in related studies 
on nondisabled and elderly populations [17–18,23,36]. 

Figure 6.
Sensitivity of classification accuracy to activity thresholds. Classification accuracy reached maximum when lower threshold was 

0.01 g and upper threshold was 0.1 g. Accuracy decreases significantly if lower thresholds are chosen, but higher thresholds result 

in smaller losses in accuracy.
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Subject 1 2 3 4 5 6 7 8 Mean ± SD
Ankle Only 0.996 0.968 0.901 0.991 0.962 0.975 0.993 0.940 0.966 ± 0.030
Ankle and Thigh 0.996 0.997 0.920 0.994 0.987 0.998 0.993 0.996 0.985 ± 0.025

Known\Predicted Doffed Sit Stand Active
Doffed 0.987 0.005 0.005 0.003
Sit 0.017 0.919 0.054 0.010
Stand 0.003 0.025 0.967 0.005
Active 0.000 0.001 0.002 0.997

Our system also used fewer sensors than other systems 
[14,19,36]. Our classification system is designed to detect 
sitting and standing postures as well as movement, unlike 
monitors such as the StepWatch3 (Orthocare Innovations, 
Mountlake Terrace, Washington) and the Patient Activity 
Monitor (Össur; Reykjavik, Iceland) [18].

Additional research is needed before this classifica-
tion strategy can be recommended for clinical use. The 
system must be validated more thoroughly while prosthe-
sis users move through their free-living environments. The 
choice of classification parameters, including the upper 
and lower SMA thresholds and the 320 s stationary period, 
must also be validated. One potential limitation in use of 
the developed posture and activity classification strategy 
is the unknown effect of riding in a motorized vehicle. 
Further research is required to isolate or account for exter-
nal accelerations to which a user may be subjected while 
riding in vehicles. Additionally, postures (e.g., lying 
down) or specific activities (e.g., stair climbing) of interest 
to researchers should be explored to ensure they can be 
appropriately classified with this system.

Clinical uses of this technology (e.g., rehabilitation 
training, componentry evaluation) should be explored to 
determine whether the accuracy of which this system is 
capable is sufficient for such applications. The long bat-
tery life and large storage capacity of the ActiGraph 
GT3X+ accelerometer suggest that this sensor may be 
suitable for long-term data collection. Anticipated 
advances in battery and storage technologies will also 
likely extend the length of time such sensors can be used 

to monitor subjects. Such research will help to determine 
whether prosthesis-integrated monitoring systems can 
enhance clinical care and improve quality of life for pros-
thesis users.

CONCLUSIONS

A classification algorithm was developed to identify 
periods of prosthesis use and to discriminate activities 
and body postures of individuals with a lower-limb 
amputation. Periods of movement, standing, sitting, or a 
doffed prosthesis were accurately classified in a labora-
tory-based experiment more than 92.0 percent of the time 
when using data from two body-mounted accelerometers 
and more than 90.1 percent of the time when using data 
from a single accelerometer. These data suggest that 
activities and body postures can be well classified using 
this classification algorithm and data from a single, com-
mercially available accelerometer. More research is 
required to validate the system in situations where the 
activity duration and type are not controlled. We believe 
that the information derived from this system will pro-
vide valuable clinical insight into how persons with 
transtibial amputation use their prostheses in their free-
living environments and that such evidence can be used 
to facilitate prosthetic treatment and rehabilitation of per-
sons with limb loss. It may also be useful for automatic 
feedback control to adjust prosthesis mechanisms based 
on activity and posture.
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