
JRRDJRRD Volume 51, Number 4, 2014

Pages 517–534
Reviewing effectiveness of ankle assessment techniques for use in robot-
assisted therapy

Mingming Zhang, Eng MSc;1 T. Claire Davies, PEng, PhD;1–2 Yanxin Zhang, Eng PhD;3 Shane Xie, Prof Eng PhD1*

Departments of 1Mechanical Engineering, 2Surgery, and 3Sport and Exercise Science, University of Auckland, 
Auckland, New Zealand

Abstract—This article provides a comprehensive review of 
studies that investigated ankle assessment techniques to better 
understand those that can be used in the real-time monitoring 
of rehabilitation progress for implementation in conjunction 
with robot-assisted therapy. Seventy-six publications published 
between January 1980 and August 2013 were selected based 
on eight databases. They were divided into two main catego-
ries (16 qualitative and 60 quantitative studies): 13 goniometer 
studies, 18 dynamometer studies, and 29 studies about innova-
tive techniques. A total of 465 subjects participated in the 29 
quantitative studies of innovative measurement techniques that 
may potentially be integrated in a real-time monitoring device, 
of which 19 studies included less than 10 participants. Results 
show that qualitative ankle assessment methods are not suit-
able for real-time monitoring in robot-assisted therapy, though 
they are reliable for certain patients, while the quantitative 
methods show great potential. The majority of quantitative 
techniques are reliable in measuring ankle kinematics and 
kinetics but are usually available only for use in the sagittal 
plane. Limited studies determine kinematics and kinetics in all 
three planes (sagittal, transverse, and frontal) where motions of 
the ankle joint and the subtalar joint actually occur.

Key words: ankle measurement, ankle stiffness, clinical effec-
tiveness, disability assessment, qualitative assessment, quanti-
tative assessment, range of motion, rehabilitation device, 
reliability, robot-assisted therapy.

INTRODUCTION

Ankle injuries are very common both in sports and 
daily life [1–5]. In New Zealand, about 100,000 claims 

related to ankle sprains were made to the Accident Com-
pensation Corporation in 2000 and 2001 at a cost of an 
estimated 31.8 million New Zealand dollars [6]. From 
2002 to 2006, a total of 82,971 ankle sprains were identi-
fied in the National Electronic Injury Surveillance Sys-
tem database, and an estimated 2.15 ankle sprains 
occurred per 1,000 person-years in the United States [7]. 
Neurologic injuries such as stroke and spinal cord inju-
ries also cause various ankle problems [8–9]. Ankle inju-
ries cause complications such as edema, disuse atrophy, 
and arthrosis unless treated properly [10]. Additional 
symptoms usually include chronic pain, reduced range of 
motion (ROM), weak strength, and increased joint stiff-
ness, as well as severe functional limitations [5,11].

Clinicians often use a qualitative assessment method 
to assess ankle impairment based on a predefined scoring 
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potentiometer and torquemeter based method, ROM = range of 
motion.
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system. When quantitative methods are undertaken, these 
most commonly include the use of a goniometer or dyna-
mometer. The goniometer is a tool to assess ankle ROM 
[12–13] and the dynamometer is usually used to assess 
ankle strength [14–15]. Other devices have been devel-
oped for measuring ankle stiffness, for monitoring the 
progress of a rehabilitation program, or for tracking 
changes in joint stiffness [16–17]. These measurement 
tools can guide clinicians in determining the most effec-
tive intervention.

There have also been significant advances in robotic 
rehabilitation in an effort to reduce the strain on the clini-
cian. Various robot-assisted ankle rehabilitation devices 
have been developed in recent years [18–23]. They usu-
ally lack the function of real-time ankle assessment that 
should be included in a robot-assisted ankle rehabilitation 
program to allow the robot to adjust the control strategy 
for a specific rehabilitation stage. Having a better under-
standing of the clinical tools that are most effective in 
providing intervention and how they might provide quan-
titative inputs for robot-assisted ankle rehabilitation is 
necessary to develop a robotic rehabilitation device that 
engages all users.

This review seeks to critically compare various pub-
lished studies in terms of the development, application, 
reliability, and validity of existing ankle measurement 
devices and techniques. It will provide a better under-
standing of the requirements for a real-time assessment 
strategy implementable within a robot-assisted rehabilita-
tion program that can be used throughout the rehabilita-
tion process.

METHODS

Search Strategy
Only English-language articles published from Janu-

ary 1980 to August 2013 were searched in the following 
six databases: Scopus, Web of Science, ScienceDirect, 
Academic Search Premier, Embase, and MEDLINE 
(OvidSP). The search terms were “Ankle*” AND “Per-
formance OR Function OR Disabilit* OR Disorder* OR 
Injur* OR Spastic* OR Stabilit* OR Stiff* OR Torque 
OR Moment OR Strength OR Kine* OR Dynamic* OR 
Dorsiflexion” AND “Evaluat* OR Assess* OR Measur* 
OR Examinat*.” Additional searches in Google Scholar 
and SpringerLink were further conducted for the latest 

studies as an important supplement. Valuable references 
listed in relevant publications were also screened.

A total of 411 articles were identified initially. The 
first two rounds of screenings were conducted based on 
titles and abstracts, respectively. Studies considered to 
meet the predefined inclusion criteria were included in 
the final analysis and the others were excluded. Discus-
sion among authors resulted when inclusion of certain 
articles was questionable. The Figure describes the 
selection process.

Figure.
Flow diagram of selection process for final review.

Inclusion and Exclusion Criteria
This study aims to review existing ankle assessment 

techniques that can provide necessary information to 
allow for an evaluation of improvement during ankle 
exercises that are implemented using robot-assisted reha-
bilitation. The review attempts to better understand all 
methods of evaluation, including qualitative and quanti-
tative assessment of ankle recovery level. Articles 
involving ankle performance or functional qualitative 
assessment methods such as the Foot Function Index 
(FFI) and Foot and Ankle Disability Index (FADI) were 
included. All quantitative studies assessing ankle perfor-
mance or function (including ankle disability level, kine-
matics, and kinetics) were included. All articles had to 
include trials involving either normal ankle or injured 
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ankle. Trials assessing animal ankle performance or func-
tion were excluded due to significant differences between 
the animal ankle and the human ankle. Studies involving 
management or identification of ankle injuries and those 
related to emergencies were excluded, as were invasive 
ankle measurement techniques. Observation-based physi-
ological assessment techniques were excluded due to 
unreliable accuracy [24]. Image-based methods were also 
excluded because they cannot be used to evaluate func-
tional improvement in ankle injury in combination with 
robot-assisted therapy. Image-based techniques that 
examine kinematics in vivo such as magnetic resonance 
imaging, computed tomography, and X-ray tend to be 
expensive and not implementable in a typical robotic sys-
tem, though they can be used for identification of ankle 
injury [25–26]. In this review, we do not seek to com-
ment on the ability to detect ligament tears (it is assumed 
that the correct identification of ankle injury has already 
occurred) but rather to examine the functional improve-
ment before, during, and after rehabilitation interven-
tions. The data extraction was applied in a similar way as 
another review conducted by Zhang et al. [27].

RESULTS

After excluding studies involving invasive measure-
ment techniques [28–30], animal-based methods [31–
32], image-based methods [25–26,33–35], diagnosis of 
ankle injuries [2,36–39], and management of ankle inju-
ries [3,40–44], there were a total of 76 publications iden-
tified for further analysis. These were divided into two 
main categories: 16 qualitative studies [45–60] and 61 
quantitative studies. These 60 studies were further 
grouped into 13 studies using goniometers to measure 
ankle joint ROM [12–13,61–71], 18 studies involving 
dynamometers to measure ankle strength (4 studies about 
handheld dynamometers [15,72–74] and 14 studies about 
isokinetic dynamometers [14,75–87]), and 29 studies 
with innovative ankle measurement techniques devel-
oped to measure various ankle parameters, including 
ankle ROM, strength, torque, and stiffness that may be 
used for real-time assessment of patient improvement 
[16–17,88–114].

Assessment techniques requiring specialist training 
were included in 16 qualitative studies. An additional 31 
quantitative studies involving goniometers or dynamom-
eters were also found that mainly measure either ROM or 

strength—both parameters easily measured by a robot. 
Additional studies that provide information about param-
eters that can potentially be implemented in robot-
assisted training were the main focus of this article and 
included 29 quantitative studies. A total of 465 subjects 
participated in these 29 quantitative studies, of which 19 
studies were conducted on less than 20 participants 
(Table 1). These participants comprised both healthy vol-
unteers and patients with diverse ankle injuries.

DISCUSSION

Qualitative Ankle Assessment Techniques
With a view to understanding the clinical functional 

scales and how an assessment of improvement is con-
ducted (and to better understand the accuracy require-
ments for measurement by robot-assisted techniques), the 
following sections describe the qualitative measurement 
techniques.

Scoring Systems
The traditional method of describing ankle injuries 

was to group the assessment results: good, fair, and poor 
[115]. In recent years, more accurate scoring systems 
have been developed for ankle performance or function 
assessment. SooHoo et al. demonstrated that the FFI (a 
self-administered index consisting of 23 items) was a rea-
sonable measure to monitor ankle status by examining its 
level of correlation to the Medical Outcomes Study Short 
Form-36 on 73 patients [50]. Karlsson and Peterson pre-
sented a scoring scale based on the subjective assessment 
of the patient’s symptoms and level of function, and the 
evidence on 148 patients demonstrated that this system 
could be used to evaluate ankle function before and after 
treatment of ankle joint [45]. More sophisticated, Kaik-
konen et al. proposed a performance test protocol and 
scoring scale for functional evaluation of ankle injuries 
based on both subjective patient feedback and clinical 
ankle examinations, including the measurement of ROM, 
laxity of ankle joint, and muscle strength [48]. This 
method showed excellent reproducibility and the total 
score correlated obviously with isokinetic ankle strength, 
subjective opinion of recovery, and subjective functional 
assessment on 148 patients. All these systems involve sub-
jective assessment from either physiotherapists or patients.

Niki et al. proposed new scales with improved expres-
sions for Japanese people based on the clinical rating
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Table 1. 
Reviewed studies of quantitative ankle measurement techniques.

Study
Subjects 

(n)
Subject 

Characteristics
Subject 
Age (yr)

Methods Measures Reliability

Schepers and 
Veltink, 2006 
[101]

1 Healthy subject Not stated Instrumented shoes Ankle moment RMS difference of GRF: 
19.1 N; RMS difference for 
CoP: 17.9 N

Schepers et al., 
2007 [104]

1 Healthy subject Not stated Instrumented shoes Foot and ankle dynamics RMS difference of GRF: 
0.012 ± 0.001 N/N; CoP 
estimation RMS difference: 
5.1 ± 0.7 mm; RMS differ-
ence of heel position esti-
mates: 18 ± 6 mm; ankle 
moment RMS difference: 
0.004 ± 0.001 Nm/N; RMS 
difference of estimated 
power: 0.02 ± 0.005 W/N

Rouhani et al., 
2011 [109]

22 12 patients with 
ankle osteoarthri-
tis, 10 healthy 
subjects

Patients: 58 ± 
13; healthy sub-
jects: 61 ± 13

Ambulatory system con-
sisting of plantar pres-
sure insole and inertial 
sensors

Ankle force, moment, 
and power

High repeatability (CMC > 
0.7)

Keating et al., 
2000 [93]

31 10 unimpaired 
physiotherapy stu-
dents, 21 subjects 
with stroke

Impaired group: 
75.4 ± 8.0; 
healthy group: 
24.3 ± 3.9

Lidcombe Template Magnitude and direction 
of force applied to dorsi-
flex foot

Highly reliable for both 
groups (r > 0.92)

Moseley and 
Adams, 1991 
[91]

15 5 staff members, 
5 people with CVA, 
5 adults with head 
injury

Not stated Lidcombe Template Angle and force in ankle 
dorsiflexion

ICC for combined group 
data: 0.97; intertester 
agreement: 77%

Wilken et al., 
2004 [97]

29 17 subjects (repeat-
ability), 12 physical 
therapy graduate 
students with no 
history of lower-
limb pathology 
(validity)

Repeatability 
group: 53 ± 14; 
validity group: 
not stated

IAROM device Ankle dorsiflexion ROM Average ICC: 0.92; mean 
correlation: 0.96

Wilken et al., 
2011 [110]

29 Validity testing: 
12 participants (6 M, 
6 F; height: 1.7 ± 
0.1 m; body mass: 
72 ± 12 kg); Inter-
tester reliability: 
17 participants (7 M, 
10 F; height: 1.7 ± 
0.1 m; body mass: 
88 ± 21 kg)

Validity group: 
23 ± 3; Inter-
tester reliability 
group: 52 ± 15

IAROM device Ankle dorsiflexion 
motion and stiffness

Validity testing ICC values: 
0.95–0.98; reliability test-
ing ICC values: 0.90–0.95; 
ICCs for ankle joint dorsi-
flexion stiffness: 0.71 (knee 
in extended position) and 
0.85 (knee in flexed 
position)

Peng et al., 
2004 [99]

11 6 children with CP, 
5 healthy children

Children with 
CP: 619

MSE Ankle ROM, elastic 
stiffness, and Tardieu R1 
catch angle

Not stated
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Study
Subjects 

(n)
Subject 

Characteristics
Subject 
Age (yr)

Methods Measures Reliability

Peng et al., 
2011 [108]

22 12 children with CP 
with ankle spastic-
ity, 5 healthy chil-
dren, 5 healthy 
adults

Children with 
CP: 4–19; 
healthy chil-
dren: 12–14; 
healthy adults: 
21–31

MSE Ankle ROM, elastic 
stiffness, and Tardieu R1 
catch angle at different 
velocities

High reproducibility with 
ICC = 0.82; Pearson r = 
0.81; p = 0.002

Roy et al., 
2007 [103]

4 2 M and 2 F 
(height: 147.3–
177.8 cm, weight: 
45–74 kg, passive 
ROM: 64–94)

24–40 Anklebot Ankle stiffness Errors dorsiflexion: 0.75; 
errors plantar flexion: 
0.89; correlation coeffi-
cient: 99.61

Zinder et al., 
2007 [105]

20 Healthy subjects 
(10 M, 10 F; height: 
177.16 ± 6.01 cm 
[M], 167.15 ± 
5.98 cm [F], 
weight: 80.79 ± 
13.53 kg [M], 71.10 
± 11.87 kg [F])

M: 28.97 ± 
5.66; F: 25.67 ± 
3.48

Unique ML swaying cra-
dle device

Inversion/eversion ankle 
stiffness

Trial-to-trial reliability ICC 
coefficient: 0.96 (SEM of 
2.05 Nm/rad); day-to-day 
reliability ICC coefficient: 
0.93 (SEM of 3.00 Nm/rad)

Kobayashi et 
al., 2010 [16]

2 Patients with stroke 49 and 34 Manual ankle assess-
ment device

Ankle stiffness Not stated

Kobayashi et 
al., 2011 [107]

10 Subjects with hemi-
plegia (all M)

54.3 ± 8.4 Manual ankle assess-
ment device

Ankle stiffness and 
ROM

High reliability, with ICC 
values >0.97

Sung et al., 
2010 [106]

46 Sex-matched 
healthy subjects

20 Intelligent stretching 
device

Ankle stiffness Reliability ICC coefficient 
of ankle stiffness between-
day for both examiners: 
0.77 (SEM of 0.05) for 
right ankle and 0.76 (SEM 
of 0.04) for left ankle

Lorentzen et 
al., 2012 [113]

83 46 healthy volun-
teers (16 F), 14 vol-
unteers with SCI 
(1 F), 23 volunteers 
with MS (14 F)

Healthy volun-
teers: 32 ± 7; 
volunteers with 
SCI: 48 ± 12; 
volunteers with 
MS: 53.3 ± 12.0

Portable Neurokinetics 
RA1 Ridgidity Analyzer

Ankle joint stiffness High intrarater reliability 
(ICC for volunteers with 
SCI: 0.60–0.89; ICC for 
controls: 0.63–0.67); inter-
rater reliability (ICC for 
volunteers with SCI: 0.70–
0.73; ICC for controls: 
0.61–0.77)

Loram and 
Lakie, 2002 
[94]

15 Healthy subjects 
(8 M, 7 F)

20–68 Ankle stiffness measur-
ing apparatus

Ankle stiffness Coefficient of variation: 
5%

Casadio et al., 
2005 [100]

18 Healthy subjects 
(9 M, 9 F)

21–31 Force platform and 
motorized footplate 
apparatus

Intrinsic ankle stiffness 
during quiet standing

Not stated

Ji et al., 2004 
[98]

4 Healthy subjects 
(2 M, 2 F)

29–70 Computational method 
with MATLAB

Ankle postural stiffness High coefficient values of 
determination

Table 1. (cont)
Reviewed studies of quantitative ankle measurement techniques.
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Study
Subjects 

(n)
Subject 

Characteristics
Subject 
Age (yr)

Methods Measures Reliability

Mirbagheri et 
al., 1996 [17]

11 8 M, 3 F Not stated Parallel-cascade system 
identification method

Ankle dynamic stiffness 
and separation of intrinsic 
and reflex components

High intrasubject reliabil-
ity (r > 0.8) but high inter-
subject variability

Forster, 2003 
[95]

1 Normal subject Not stated Bilateral electro-hydraulic 
actuator system

Dynamic ankle joint 
stiffness during standing

Not stated

Kearney et al., 
1990 [89]

15 Healthy subjects 23–39 System identification 
technique

Ankle dynamics Intrasubject reliability was 
as good as or better than 
most clinical measures, and 
intersubject variability was 
somewhat larger

Weiss et al., 
1990 [90]

3 Patients recovering 
from fractures of 
lower leg (2 M, 1 F)

28, 28, and 50 System identification 
technique

Ankle dynamics Ankle dynamics measures 
were qualitatively similar to 
those of normals: stiffness 
was low in region near mid-
range and increased obvi-
ously near limits of 
movement

Chesworth and 
Vandervoort, 
1988 [88]

10 Healthy subjects 
(all F)

26–46 Ankle torque measure-
ment system

Passive ankle mechani-
cal stiffness

High reproducibility

Nordquist and 
Hull, 2007 
[102]

1 Experienced snow-
boarder (height: 
185 cm; weight: 
74.8 kg)

Not stated “Elbow-type” ISL Dynamic ankle motion 
in field environment

RMS errors: 0.59 for ori-
entation, 1.00 mm for posi-
tion; maximum 
measurement deviations: 
0.05 in orientation, 
0.10 mm in position

Fong et al., 
2012 [111]

12 6 cadaveric speci-
mens, 6 subjects 
(all F; height: 1.60 ± 
0.04 m; body mass: 
54.8 ± 5.8 kg)

25.8 ± 2.7 Mechanical jig Ankle supination and 
pronation torque

Good internal consistency 
of trials was obtained with 
typical errors of 0.3 (stand-
ing position) and 0.1 (sit-
ting position)

Winegard et 
al., 1998 [92]

10 5 M, 5 F 73–92 Footplate apparatus Voluntary isometric 
strength and evoked iso-
metric twitch properties, 
M-wave amplitude, and 
passive tension

Mean reliability coefficient 
of all measurements on the 
dorsiflexion and plantar 
flexor muscle groups was 
0.91 ± 0.05

Naito et al., 
2012 [114]

4 Healthy subjects 
(all M; height: 
170.3 ± 5.2 cm; 
weight: 61.5 ± 
15.4 kg)

30 ± 11.5 Estimation of muscle 
length parameters based 
on measurement data

Passive ankle joint 
moment vs ankle angle; 
ankle muscle length

Predicted data are consis-
tent with measured data

Table 1. (cont)
Reviewed studies of quantitative ankle measurement techniques.
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systems established by the American Orthopedic Foot 
and Ankle Society and the Japanese Orthopedic Associa-
tion’s foot rating scale (JOA scale) [54]. Reliability anal-
ysis on 65 clinicians and 610 patients was further 
conducted by Niki et al. [55], and the results showed that 
this newly established standard rating scale and the JOA 
scale are highly reliable, to some extent, which demon-
strated its population-specific characteristic.

In contrast, two studies did not show positive effects 
for a certain group of people. Ansari et al. found that reli-
ability of the Modified Tardieu Scale in the assessment of 
poststroke ankle plantar flexor spasticity was not high [46], 
and Campanini et al. demonstrated that the treatment of 
ankle spasticity for patients with cerebral vascular accident 
could not rely on the Ashworth score completely [47].

Other studies investigated and compared various 
qualitative ankle assessment systems. Haywood et al. 
summarized seven disease-specific assessment methods 
of ankle performance (Ankle Joint Functional Assess-
ment Tool, Clinical Trauma Severity Score, Composite 
Inversion Injury Scale, Kaikkonen Functional Scale, 
Karlsson Ankle Function Score, Olerud and Molander 
Ankle Score, and the Point System) and concluded that 
any measure should be used with caution until appropri-
ate evidence is provided [49]. However, further investi-

gation into the effectiveness of functional outcome scores 
specific to patients was necessary, which was also sup-
ported by Farrugia et al. [53].

Foot and Ankle Disability Index and Foot and Ankle 
Ability Measure

Although the FADI and Foot and Ankle Ability Mea-
sure (FAAM) belong to the category of scoring systems, 
they were discussed independently since a systematic 
review [56] identified them as the most appropriate out-
come instruments to quantify functional limitations in 
patients with chronic ankle instability (CAI).

Hale and Hertel advocated the use of the FADI and 
FADI Sport self-report instruments in clinical care and 
research applications in young adults with CAI [57], and 
these instruments appeared to be reliable in assessing 
functional limitations. Further, Wikstrom et al. concluded 
that self-assessed disability got from these systems was 
greater in subjects with CAI than uninjured groups, 
which showed their patient-specific characteristic [60]. 
More advanced, the FAAM (as the later version of the 
FADI) showed satisfactory validity and reliability on 
groups with various ankle injuries [51]. Martin et al. 
developed the FAAM for measuring region-specific and 
non–disease-specific function of the foot and ankle and 

Study
Subjects 

(n)
Subject 

Characteristics
Subject 
Age (yr)

Methods Measures Reliability

Giacomozzi et 
al., 2003 [96]

21 Healthy volunteer 
(1 M; height: 185 
cm; weight: 75 kg) 
assessing experi-
mental setup, 20 
healthy volunteers 
(height: 168.6 ± 
8.8 cm; weight: 
71.0 ± 11.3 kg) for 
investigating ankle 
muscular 
functionality

Setup volun-
teer: 28; experi-
mental group: 
50.4 ± 14.6

Measurement device for 
obtaining kinematic 
characterization and iso-
metric loading of ankle 
under different working 
conditions

Ankle kinematic and 
dynamic characterization

High linearity and overall 
accuracy are found in 
desired torque ranges, and 
inaccuracies are found in 
kinematic measurements

Knight and 
Weimar, 2012 
[112]

26 13 subjects (5 M, 
8 F) with history of 
single lateral ankle 
sprain, 13 healthy 
subjects (9 M, 4 F)

21.46 ± 1.17 Fulcrum device Dynamic inversion 
speed

High reliability was found 
for time to maximum inver-
sion (ICC = 0.81) and mean 
inversion speed (ICC = 0.79)

CMC = coefficient of multiple correlations, CoP = center of pressure, CP = cerebral palsy, CVA = cerebral vascular accident, F = female, GRF = ground reaction 
force, IAROM = Iowa Ankle ROM, ICC = intraclass correlation coefficient, ISL = instrumented spatial linkage, M = male, ML = medial/lateral, MS = multiple 
sclerosis, MSE = manual spasticity evaluator, RMS = root-mean-square, ROM = range of motion, SCI = spinal cord injury, SEM = standard error of measurement.

Table 1. (cont)
Reviewed studies of quantitative ankle measurement techniques.
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concluded that it was a reliable and valid measure of 
physical function for individuals with a wide array of 
musculoskeletal foot and ankle disorders [58]. Further, 
Carcia et al. concluded that the FAAM may be used to 
detect self-reported functional deficits related to CAI 
[59], and Cosby and Hertel verified its reliability and 
validity on a male basketball player with inversion ankle 
sprain [52]. As for the region-specific attribute, direct 
comparison among different populations is quite neces-
sary, although some versions have proved to be reliable. 
For example, Mazaheri et al. conducted tests on 93 Per-
sian patients and found that the FAAM was a reliable and 
valid measure to quantify physical function [51]. There-
fore, it can be summarized that the FADI and FAAM are 
usually reliable, but larger sample sizes with a greater 
diversity of populations and various ankle injuries should 
be investigated in future research.

Taking all studies into consideration, it can be con-
cluded that these scoring systems are usually region-
specific and disease-specific; thus, a universally designed 
method with convincing validity and reliability is essen-
tial. Further, these currently available systems usually 
require participants to conduct a series of functional 
activities and answer subjective questionnaires and then 
rate function on a prespecified scale based on ankle per-
formance. This assessment, which usually lasts a few 
minutes or longer, makes it difficult for the realization of 
real-time evaluation when used in robot-assisted therapy, 
though some of the techniques and questions may be valu-
able in engaging the user in understanding the therapy being
undertaken, especially during a robot-assisted program.

Quantitative Ankle Assessment Techniques
To better be able to quantify functional improvement 

using robot-assisted therapy, quantitative measures are 
required. These should incorporate all aspects of ankle 
control, including ankle kinematics and kinetics such as 
ROM, muscle strength, and joint stiffness. This section 
discusses the tools (standard techniques and innovative 
techniques) to measure these aspects of functional control.

Standard Techniques
Ankle range of motion. The ankle ROM is an impor-

tant functional parameter that relates to the efficiency of 
gait. An effective measurement of ankle ROM in all three 
planes is important to better understand functional 
improvement. For this reason, ankle ROM is frequently 
assessed clinically. This section discusses devices that 

can be used for determining ankle ROM and provides 
important information about requirements in the develop-
ment of an assessment method implementable with a 
robot to assist ankle therapy.

Goniometers have been considered as the standard 
method of ankle ROM measurement with a satisfactory 
reliability, especially for ankle dorsiflexion [12–13,61–
66,68–71]. One study showed its poor interrater reliabil-
ity in ankle joint dorsiflexion [67], and measures using 
goniometry have been shown to be tester dependent 
[110]. However, Wilken et al. reported that the validity 
and repeatability can be problematic due to goniometer 
alignment, as well as potential variations in location and 
magnitude of forces applied to the foot [97]. To address 
these limitations, the Iowa Ankle ROM (IAROM) device 
allows angular measurements at predetermined force lev-
els using a digital inclinometer and a handheld force 
gauge to measure ankle dorsiflexion ROM in a clinically 
friendly and cost-effective way [97,110]. The clinical test 
on 29 participants proved its repeatability and validity, 
but the application combined with robot-assisted therapy 
is restricted due to the manual operation of a handheld 
force gauge.

Ankle strength. Ankle strength is the amount of 
force ankle muscles can generate. The ability to generate 
force is necessary for all types of movement.

A hand dynamometer is usually used to measure grip 
and pinch strength and to perform muscle fatigue studies. 
Some studies have demonstrated that handheld dyna-
mometers can be reliably used for measurement of ankle 
strength [15,72–74]. Different from the normal applica-
tion, there is an innovative handheld dynamometer using 
a torque wrench and a goniometer that can measure static 
ankle angle and moment reliably and precisely [74]. 
Unfortunately, for the same reasons as the IAROM 
device, the manual operation of handheld dynamometer 
impedes its adoption when combined with robot-assisted 
therapy.

The isokinetic dynamometer is widely used during 
the various phases of rehabilitation. It is a precision-
based electrical instrument that measures the perfor-
mance of various muscle groups in the body. Isokinetic 
dynamometers including the Biodex dynamometer, the 
Cybex Norm, and the Kin Com II dynamometer in some 
studies have been demonstrated as the gold standard for 
measurement of ankle strength [14,75–79,81–87]. One 
study, however, showed that the validity of ankle inversion
and eversion torque measurement using a manufactured 
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prototype ankle inversion and eversion attachment device 
on the Kin Com II dynamometer was questionable [80]. 
In addition, there are two studies [79,86] that assessed 
passive ankle stiffness with the isokinetic dynamometer 
by calculation [86] that presented satisfactory validity 
and reliability by clinical tests on 15 subjects. Although 
isokinetic dynamometers can be used for measuring 
ankle ROM, strength, and even stiffness, the main limita-
tion is that ankle measurement and assessment is usually 
available only in the sagittal plane.

Innovative Techniques
Ankle torque and stiffness. Ankle stiffness is an 

important mechanical parameter that indicates the 
moment required for rotation and the resistance to an 
external perturbation [116–117]. Devices and techniques 
specifically to assess ankle stiffness have been developed. 
The working principles of most of these systems are sim-
ilar. The system normally includes an actuator to generate 
rotation torque, a potentiometer to measure the angular 
displacement, and torque sensors to measure ankle 
moment. During tests, patients are usually required to 
move their ankles with different speeds, and the ankle 
stiffness will be calculated as the derivative of torque 
over angular displacement. Several of these systems have 
been evaluated in clinical settings, and the results showed 
that these types of devices can be a useful tool in the clin-
ical assessment of ankle stiffness.

The Lidcombe template consisting of a spring bal-
ance and a perspex sheet ruled with parallel lines was 
adopted in Moseley and Adams and Keating et al. to 
measure the angle and force in ankle dorsiflexion, show-
ing high reliability between testers [91,93]. Lorentzen et 
al. investigated the accuracy and reliability of a portable 
Neurokinetics RA1 Ridgidity analyzer used for measur-
ing ankle stiffness on 83 participants [113]. Results 
showed that it could potentially be a useful diagnostic 
tool for measuring ankle stiffness, although it was origi-
nally developed to test elbow rigidity. These devices 
require manual operation from physiotherapists; thus, 
their applications when combined with robot-assisted 
therapy are restricted.

Direct ankle assessment techniques using the potenti-
ometer and torquemeter are easier to apply during robot-
assisted therapy. Two studies constructed a manual 
device to measure ankle joint ROM and stiffness in 
patients with stroke and showed promise for clinical 
application [16,107], of which Kobayashi et al. [107] pre-

sented an improved design based on the device in Saleh 
and Murdoch [24]. The manual spasticity evaluator 
(MSE) was used for the quantitative evaluation of ankle 
spasticity and stiffness in two studies that conducted clin-
ical trials on six children with cerebral palsy, five typically 
developed children, and five typically developed adults 
[99,108]. The results showed that ankle spasticity assess-
ment could be more accurately performed using MSE. 
These two devices also need manual drive when measur-
ing ankle stiffness, but this limitation can be easily over-
come using a motor or other actuators.

Ankle stiffness can also be determined by measuring 
torque and joint angles in a more sophisticated way. A 
bilateral electro-hydraulic actuator system with position 
and torque transducers was used in Forster to measure 
dynamic ankle joint stiffness during upright human 
stance [95]. Sung et al. used an intelligent stretching 
device for ankle stiffness measurement [106]. They 
applied system identification techniques to characterize 
dynamic joint properties, including joint stiffness, vis-
cous damping, and foot inertia properties during small-
amplitude perturbations. Forty-six sex-matched healthy 
subjects participated in the trial, and results showed that 
this method was reproducible and consistent in ankle dor-
siflexion and plantar flexion measurements. Chesworth 
and Vandervoort demonstrated that the proposed ankle 
torque measurement unit consisting of a potentiometer 
and a strain gauge could be a useful tool in the clinical 
assessment of passive ankle stiffness [88].

Different from single-plane assessment, Giacomozzi 
et al. developed a device for ankle kinematic and kinetics 
characteristics in three planes [96]. This device measured 
the three-dimensional (3D) movement of the foot with 
respect to the shank and evaluated torques around the 
three articular axes based on the measured position and 
moment information from transducers. Some studies also 
focus on ankle stiffness in quiet standing or postural con-
trol. Loram and Lackie used an inverted pendulum with a 
position transducer and a torque cell to measure ankle 
stiffness in quiet standing [94]. Casadio et al. used a 
device consisting of a motorized footplate mounted on a 
force platform for the direct of intrinsic ankle stiffness in 
quiet standing [100]. Ji et al. proposed a computational 
method to evaluate postural stiffness through ground 
reaction forces [98].

From a biomechanical perspective, quantitative 
assessment of ankle muscles and ligaments based on 
measured joint kinematics and kinetics is also necessary. 
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Ankle stiffness is mainly determined by grouping all 
muscles and ligaments surrounding the joint in which the 
passive component is the result of their viscoelastic prop-
erties [118]. Unfortunately, there have only been a few 
studies in which the muscular-skeletal properties of the 
ankle complex are considered. Naito et al. [114] applied a 
musculo-skeletal structure with a Hill-type muscle model 
for calculating individual muscle length based on the data 
from the device used in Kobayashi et al., and the results 
from four healthy subjects suggested its success [16,107]. 
A kinematics-based ankle model with major muscles and 
ligaments can be a promising approach to study passive 
ankle torque or stiffness, and comparisons with tradi-
tional methods in terms of accuracy should be conducted.

These ankle stiffness measurement methods applied 
different measuring techniques and thus the applicable 
scopes varied. The majority of these studies were able to 
assess ankle stiffness only in the sagittal plane, while a 
unique medial/lateral swaying cradle device in Zinder et 
al. was developed to measure inversion and eversion 
ankle stiffness with a satisfactory validity and reliability 
[105]. More directly related to robot-assisted therapy, the 
anklebot showed its potential to estimate ankle stiffness 
in three planes, although only tests in dorsiflexion and 
plantar flexion have been conducted [103]. Another two 
limitations of these studies are the small sample sizes and 
the lack of reaction forces acting on the device.

In summary, ankle stiffness assessment techniques 
mainly consist of direct measurement using the potenti-
ometer and torquemeter based method (PT-BM) and an 
inverse dynamics based method (ID-BM) to determine 
the kinematics using reaction forces as the inputs. Some 
studies used the handheld dynamometer to estimate ankle 
stiffness [74,86]. Table 2 is presented to analyze their 
prospects when used in robot-assisted therapy. The hand-

held dynamometer based method is subject to manual 
operation, to some extent, which affects the measurement 
accuracy. PT-BM cannot be used in parallel robots due to 
the use of the torquemeter that is usually installed 
between the power producer and the load. In other words, 
three potentiometers as well as three torquemeters for 3D 
ankle assessment are required. By contrast, the ID-BM is 
promising when combined with robot-assisted therapy. 
3D ankle assessment using a 6-axis load cell will be 
available, but the validity and reliability need to be ana-
lyzed prior to use.

Other ankle kinematics and kinetics. Although 
ankle ROM, strength, torque, or stiffness have been mea-
sured quantitatively based on various devices and tech-
niques, there are still some devices developed that can 
measure certain parameters not common in clinical appli-
cation. For example, Knight and Weimar developed a ful-
crum device to measure dynamic inversion speed, and the 
data from 26 participants showed high reliability for assess-
ing maximum inversion and mean inversion speed [112].

In addition to these devices commonly used in the 
laboratory setting, three studies [101,104,109] developed 
ambulatory measurement systems of foot and ankle kine-
matics and kinetics in the sagittal plane, of which two 
studies [101,104] assessed instrumented shoes on healthy 
subjects. Results showed good correspondence between 
the proposed system and the reference, and another study 
also showed good reliability but with a different ambula-
tory ankle kinetics measurement system on 12 patients 
and 10 healthy subjects [109]. Additionally, a new instru-
mented spatial linkage was used in Norquist and Hull to 
measure dynamic ankle joint motion, and data from an 
experienced snowboarder demonstrated its utility in a 
field environment [102]. These ambulatory measuring 
techniques showed their potential

Table 2.
Prospect analysis of handheld dynamometer based method (HD-BM), potentiometer and torquemeter based method (PT-BM), and inverse 
dynamics based method (ID-BM) when used in robot-assisted therapy.

Method Advantages Disadvantages
Prospect in 

Robot-Assisted Therapy

HD-BM Simple Manual operation Poor

PT-BM Reliable Restricted by robot structure 
and usually only measures in 
single plane

Reasonable

ID-BM 3D ankle assessment Validity and reliability of 3D 
ankle assessment are not clear

Good

3D = three-dimensional.

 in certain activities.
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Identification methods are commonly used to esti-
mate ankle mechanics (passive and active stiffness) based
on measured information. Kearney et al. used a system 
identification method to estimate ankle mechanics based 
on measured information from a potentiometer and a 
torquemeter [89]. Tests on 15 young adults showed that it 
had a good intrasubject variability and a somewhat larger 
intersubject variability. Mirbagheri et al. [17] described a 
parallel-cascade system identification method that had 
similar variability with Kearney et al. [89] when used to 
determine the intrinsic and reflex contributions to 
dynamic ankle stiffness. Further, Weiss et al. tried to 
monitor the mechanical consequences of soft tissue injury 
based on joint dynamics, and tests on three patients dem-
onstrated its promise in clinical application [90].

To summarize, while Rome concluded that ankle 
joint dorsiflexion assessment was controversial in terms 
of measurement accuracies due to different study designs 
[119], most quantitative ankle measuring techniques have 
proved to be reliable for a certain individual or group. 
However, they were usually available for only ankle dor-
siflexion and plantar flexion under passive motion in 
terms of kinematics and kinetics. Studies involving direct 
comparison in terms of reliability and validity among
different devices and techniques are also lacking. Studies 
with less than 10 participants should be further validated 
with a larger sample size in the future.

Ideal Measurement Device for Use with 
Robot-Assisted Therapy

An ideal system to evaluate functional improvement 
using robotic assessment would include 3D assessment in 
terms of kinematics and kinetics.

In general, goniometers and dynamometers have 
been used commercially and can be considered standard 
tools for measuring ankle joint ROM and muscle strength 
but are not used to measure other attributes of functional 
improvement after ankle injury. Both ROM and strength 
can readily be measured using robotic techniques. Dyna-
mometers and goniometers should be used as the gold 
standard with which to compare when testing reliability 
and reproducibility of robot measurement techniques. For 
torque or stiffness measurements, a combination of a 6-
axis load cell and a parallel robot shows great potential 
for 3D ankle assessment during robot-assisted therapy. 
Further, a kinematics-based ankle model with major mus-
cles and ligaments looks promising when used to study 
the passive components. A combination of 3D measure-

ment and the model-based method allows for differentia-
tion between the active and passive components.

Kinematic and kinetic parameters of measurement 
are diverse, with no consensus as to device, technique, 
clinician expertise, or even whether to test passive or 
active motion. Studies involving direct comparison in 
terms of reliability and validity among different devices 
and techniques are important to better understand how 
these can predict function in the future. Further research 
should also focus on analyzing real-time ankle muscle 
and ligaments parameters in all three planes based on 
measured ankle kinematics and kinetics information. A 
robot assessment technique can be developed that is con-
sistent in all aspects of kinematic and kinetic measure-
ment, allowing for consistency for both before and after 
intervention and additionally among different patients.

Limitations of Robot Assessment
Robots are actuated manually or through the use of 

motors, linear actuators, and/or rotary actuators, which 
influence measuring accuracy. One study shows that dif-
ficulty existed in controlling the velocity applied to the 
ankle and the applied force during manual assessments, 
especially during high velocity or high ankle resistance 
conditions [120]. Comparisons among other actuators are 
lacking. Another study suggests that accurate movement 
control can lead to more reliable measurement outcomes 
[16]. Therefore, an accurate motion control system is 
necessary for developing a reliable and repeatable ankle 
assessment device.

Limitations of Search Strategy
An attempt was made to include all studies related to 

ankle measuring techniques. It is assumed that these 
selected studies used different participants. Other publi-
cations may exist where “foot,” “lower extremity,” or 
“lower limb” are identified as a key term instead of 
ankle. However, these may lead to potential incomplete 
searches, as well as some constraints like publication 
dates and languages.

CONCLUSIONS

While most qualitative ankle assessment systems 
have been shown to be reliable, they are usually region-
specific and disease-specific; thus, a universally designed 
method with convincing validity and reliability is essential.
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Further, the assessment items usually involve functional 
ankle tests, questionnaire answers, and clinical ankle 
examination, which make the generation of immediate 
evaluation results (real-time monitoring from a robotic 
perspective) difficult.

Most quantitative ankle assessment techniques are 
reliable in measuring ankle kinematics and kinetics but 
are usually only available for the sagittal plane. Limited 
studies determine kinematics and kinetics in all three 
planes, where motions of the ankle joint and the subtalar 
joint actually occur [5]. Once these kinematics and kinet-
ics are better understood, online modeling may allow for 
alteration of interventions or control strategies during 
robot-assisted therapy based on real-time ankle charac-
teristics. In addition, these innovative ankle assessment 
devices were usually evaluated with no more than 30 par-
ticipants and should be further validated with a larger 
sample size. Direct comparison among different devices 
and techniques for a specific ankle parameter should also 
be conducted to determine what could be the ideal effec-
tive ankle assessment tools in a clinical environment.
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