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Abstract—Wheelchair tilt and recline functions are two of the 
most desirable features for relieving seating pressure to 
decrease the risk of pressure ulcers. The effective guidance on 
wheelchair tilt and recline usage is therefore critical to pressure 
ulcer prevention. The aim of this study was to demonstrate the 
feasibility of using machine learning techniques to construct an 
intelligent model to provide personalized guidance to individu-
als with spinal cord injury (SCI). The motivation stems from 
the clinical evidence that the requirements of individuals vary 
greatly and that no universal guidance on tilt and recline usage 
could possibly satisfy all individuals with SCI. We explored all 
aspects involved in constructing the intelligent model and pro-
posed approaches tailored to suit the characteristics of this pre-
liminary study, such as modeling research participants, using 
machine learning techniques to construct the intelligent model, 
and evaluating the performance of the intelligent model. We 
further improved the intelligent model’s prediction accuracy by 
developing a two-phase feature selection algorithm to identify 
important attributes. Experimental results demonstrated that 
our approaches showed promise: they could effectively con-
struct the intelligent model, evaluate its performance, and 
refine the participant model so that the intelligent model’s pre-
diction accuracy was significantly improved.

Key words: artificial neural network, C4.5 decision tree, 
machine learning, pressure ulcer, random forest, skin blood 
flow, skin perfusion, spinal cord injury, support vector 
machine, wheelchair tilt and recline.

INTRODUCTION

Pressure ulcers are a significant threat to the quality 
of life for people with spinal cord injury (SCI). The cur-
rent research evidence shows that the majority of individ-
uals with SCI (up to 85%) will develop at least one 
pressure ulcer during their lifetimes [1–2]. Pressure 
ulcers can lead to pain and infection and account for 7 to 
8 percent of deaths in the SCI population [1]. In addition, 
pressure ulcers often result in prolonged hospital stays, 
rehospitalization, and ever increasing treatment costs. 
The United States alone spends about $11 billion annu-
ally on the treatment of pressure ulcers [3]. Among the 
expenditure, 12 percent is attributed to the treatment of 
pressure ulcers for people with SCI.

Abbreviations: 10Fold = 10-fold crossvalidation, ANN = arti-
ficial neural network, CFS = correlation-based feature subset 
selection, LDF = laser Doppler flowmetry, LOO = leave-one-
participant-out, RF = random forest, RSE = resubstitution esti-
mator, SCI = spinal cord injury, SVM = support vector 
machine.
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A key to pressure ulcer prevention is pressure relief 
[4]. Clinical evidence shows that turning patients regu-
larly (e.g., every 2–4 h) can lower the incidence of pres-
sure ulcers [3], and sitting-induced pressure can be 
relieved by performing wheelchair tilt and recline func-
tions [3,5–6]. The wheelchair tilt function refers to the 
adjustment of the seat orientation angle (measured 
against the ground) while keeping the seat-to-back angle 
unchanged. The wheelchair recline function refers to 
changing the seat-to-back angle while maintaining the 
seat orientation angle (measured against the ground). In 
its position paper [4], the Rehabilitation Engineering and 
Assistive Technology Society of North America summa-
rized existing study results and concluded that the best 
pressure reduction effects are achieved if the wheelchair tilt 
and recline functions are used in combination.

In practice, clinicians typically recommend the same 
tilt and recline setting to all patients. Such kinds of uni-
form recommendations may not be effective because the 
clinical evidence clearly illustrates that the requirements 
of individuals with SCI vary greatly [5,7]. Hence, person-
alized guidance for people with SCI can be more desir-
able and beneficial. Although statistical methods are 
commonly used to model biomedical problems, they are 
found less capable of finding patterns, dealing with data 
that may contain noise, or analyzing nonlinear and 
dependent data [8–9]. Machine learning techniques, on 
the other hand, have played an increasingly important 
role in bioinformatics for classifying and mining data. 
Such techniques can capture patterns based on examples 
(i.e., training data) even though the underlying nature, 
principles, and/or probability distributions may not be 
clear [10]. Successful applications have been found in 
genomics and proteomics [11–12], cancer detection [13–
15], heart rate variability (HRV) analysis [16], etc. For 
example, Chou et al. used artificial neural networks to diag-
nose breast cancer and achieved 98 percent accuracy [15].

In our case, we used machine learning techniques to 
investigate skin blood flow response to wheelchair tilt 
and recline usage. The rationale is that skin blood flow 
response to loading pressure has been widely used to 
determine the effectiveness of seating conditions [6,17–
19]. The purpose of periodically performing wheelchair 
tilt and recline is to develop reactive hyperemia to reper-
fuse the ischemic tissues because prolonged tissue isch-
emia has been determined to be critical factor leading to 
pressure ulcers. The reactive hyperemia is a vital 
response to ischemia [20]. Insufficient reactive hyper-

emic responses may cause pressure ulcers to form [20–
22]. Hence, our goal is to build an intelligent model to 
predict whether a given tilt and recline setting would be 
favorable for skin blood flow increase for an individual, 
i.e., personalized guidance.

We explored all aspects involved in constructing the 
intelligent model and proposed approaches tailored to 
suit the characteristics of this study. The participants with 
SCI were modeled with their demographic information, 
neurological functions, and SCI injury history. Such a 
model suits this preliminary study in that it contains 
important attributes associated with SCI individuals, 
while its information can be obtained easily. Then, the 
participant model together with the wheelchair tilt and 
recline settings served as the input to the intelligent 
model. Based on the inputs, the intelligent model classi-
fied tilt and recline settings into two classes: the positive 
class (that is favorable for increasing a participant’s skin 
blood flow) and the negative class (otherwise). To pre-
pare training data for constructing the intelligent model, 
we designed a threshold-based method to reduce the pos-
sibility of falsely classifying negative/neutral cases as 
positive cases (i.e., false positive).

Based on training data, we investigated four well-
known machine learning techniques (i.e., classification 
algorithms) to construct the intelligent model, namely, 
artificial neural network (ANN) [10], support vector 
machine (SVM) [23], C4.5 decision tree [24], and ran-
dom forest (RF) [25]. ANN is renowned for its learning 
capability, adaptability, and ability to generalize [26]. 
SVM is widely considered one of the best classification 
algorithms that tends to return high-quality results by 
finding the global optimum [23,27]. C4.5 performs clas-
sification by constructing a decision tree. Each node in 
the decision tree selects an attribute (e.g., age > 50) to 
divide the training data. As a result, the classification 
results are more informative because the decision trees 
can explain how the classification works. In contrast, RF 
employs a set of decision trees in its learning process. The
output is the majority vote among all the decision trees.

After an intelligent model is built, a critical issue is 
how to evaluate its performance. The popular approaches,
such as resubstitution estimator (RSE) [11] and 10-fold 
crossvalidation (10Fold) [28], lack the ability to evaluate 
how well the intelligent model performs if a new partici-
pant is given because each research participant is associ-
ated with six data instances in this study. We applied a 
leave-one-participant-out (LOO) approach to estimate 
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the expected error rate for the intelligent model. This 
approach overcomes the weakness of RSE and 10Fold by 
always testing the intelligent model with a new (unseen) 
participant.

To further improve the intelligent model’s prediction 
ability, we developed a two-phase feature selection algo-
rithm for identifying important attributes as input vari-
ables for the intelligent model. The first phase uses a 
well-known feature selection algorithm, correlation-
based feature subset selection (CFS) [29], to determine 
an initial subset of attributes. Then, the second phase iter-
atively enumerates the remaining attributes and adds to 
the subset the ones that can improve the prediction accu-
racy the most. The benefit of this two-phase algorithm is 
that it constantly generates a model that performs better 
than the one generated by using CFS alone.

Experimental results showed that our proposed 
approaches could effectively construct the intelligent 
model, evaluate the intelligent model’s performance, and 
identify a subset of important attributes to significantly 
improve its predication accuracy. This study is an exten-
sion of our previous study [17], which provides informa-
tive guidance on wheelchair tilt and recline usage using 
statistical methods on the mean skin perfusion data for 
clinically recommended tilt and recline settings. This 
study complements our previous study by providing per-
sonalized guidance to individuals with SCI and paves the 
way to a more comprehensive model in the subsequent 
study. To the best of our knowledge, no such intelligent 
models are currently available. The experience learned 
from this study will lay the groundwork for future inves-
tigators in this new research direction.

METHODS

Participants and Procedures
We performed a study to investigate skin blood flow 

response to seating conditions by means of wheelchair 
tilt and recline. Eleven adult wheelchair users with SCI 
participated in the study. Consent forms were collected 
prior to the experiments. The protocol consisted of six 
clinically recommended testing conditions, the combina-
tion of three tilt angles at 15°, 25°, and 35°, and two 
recline angles at 100° and 120°. Each testing condition 
was divided into three equal periods starting with a 5 min 
sitting-induced ischemic period without performing tilt 
or recline, followed by a 5 min pressure reduction period 

by means of tilt and recline, and concluding with a 5 min 
washout period, which was designed to allow participants 
to fully recover skin blood flow and reduce the carryover 
effect [6]. The details of protocols are described in our 
previous study [17]. Laser Doppler flowmetry (LDF) 
(Periflux System 5001, Perimed; Järfälla, Sweden) was 
used to measure skin blood flow (mLLDF/min/100 g tis-
sue) over the skin on the right ischial tuberosity. Ischial 
tuberosity was chosen because it is the most common site 
for sitting-induced pressure ulcers [5]. The data for skin 
blood flow are reported in our previous study [17].

Problem Modeling
Personalized guidance on wheelchair usage relies on 

the ability to determine whether a given tilt and recline 
setting will result in skin blood flow increase for individ-
ual wheelchair users with SCI. This ability is empowered 
by an intelligent model that was constructed to establish 
the relationship between wheelchair tilt and recline set-
tings and the resulting skin perfusion response for indi-
viduals. Specifically, it takes as input an individual’s 
personal information and a tilt and recline setting and 
determines whether the given tilt and recline setting will 
be favorable for increasing the individual’s skin blood 
flow.

Formally, the functionality of the intelligent model 
can be represented by a function f (Equation 1):

                             f(p, t, r)  {0, 1} ,                           (1)

where p is a person with SCI and t and r are tilt and 
recline angles, respectively. Given a person p, the goal of 
function f is to determine whether the tilt and recline set-
ting t, r will result in skin perfusion increase (denoted 
by 1; otherwise, 0). Therefore, to determine f, we need to 
address three issues, namely, (1) how to define skin per-
fusion increase/decrease, (2) how to model a research 
participant, and (3) how to prepare the training data, 
based on which we can use machine learning techniques 
to induce the function f.

Threshold-Based Definition of Skin Perfusion Changes
To address the first issue listed in the “Problem Mod-

eling” section, i.e., how to define skin perfusion increase/
decrease, we use Equation 2 as follows:

                                    β = b1 / b0 ,                                 (2)
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where b0 was the skin perfusion measured during the sit-
ting-induced ischemic period (i.e., the first 5 min in a 
testing condition) and b1 was the skin perfusion mea-
sured during the following pressure reduction period (i.e., 
the next 5 min in the testing condition) caused by per-
forming wheelchair tilt and recline functions. Therefore, 
if β > 1.00, it means that the skin perfusion is increased as 
a result of performing wheelchair tilt and recline. The use 
of 1.00 as the threshold, however, may result in false posi-
tives. For example, if β is only slightly over 1.00 (e.g., 
1.01), then it is uncertain whether this is a true positive 
result because noise or measurement precision may play 
a role in such marginally positive cases. In this study, 
besides 1.00, we also tested two other thresholds, namely, 
1.10 and 1.15. When the threshold becomes bigger, the 
positive cases should have relatively larger b1 to make β
greater than the threshold (see Equation 2). Hence, big-
ger thresholds can help reduce the possibility of false 
positives.

Modeling Research Participants
To address the second issue listed in the “Problem 

Modeling” section, we modeled a research participant 
with attributes listed in Table 1. The information was 
obtained from the information forms, which were filled 
out by research participants prior to enrolling in this 
study. We attempted to model research participants with 
these “handy” attributes so that the intelligent model 
would be easy to use. Among these attributes, the body 
mass index (b) and age at onset of SCI (ã) are derived 
attributes. Body mass index (b) is calculated by b = w / h2

and age at onset of SCI (ã) is calculated by ã = a – d. 
Attributes of smoking (s), alcohol (o), exercise

Table 1.
Attributes of research participant.

Category Attributes

Basic Attributes Age (a), gender (g), Height (h), 
Weight (w), Body mass index (b)

Neurological Attributes Level of injury (l), Completeness (c)
Spinal Injury History Duration of injury (d), Age at onset 

of SCI (ã)
Social/Behavioral Attri-

butes
Smoking (s), Alcohol (o), 

Exercise (e),
Skin/Wound History Pressure Ulcer (u)

 (e), and 

pressure ulcer history (u) have binary values, namely 
“yes” or “no.” Combining all these attributes, we obtain a 
model for a participant as Equation 3:

a, g, h, w, b, l, c, d, ã, s, o, e, u  P ,               (3)

where P is the set of participants.

Preparing Training Data
In this section, we address the third issue listed in the 

“Problem Modeling” section, i.e., how to prepare training 
data. As shown in Equation 1, the function f(p, t, r) 
{0, 1} can map an input p, t, r into one of the two 
classes, i.e., either 1 or 0 representing whether the skin 
perfusion increases or not. Correspondingly, we organized
the training data into a set of input-output pairs with each 
pair being in the form of (p, t, r, opt), where opt is the 
output that is either 1 or 0. Then, we used this set of 
input-output pairs to train machine learning algorithms to 
discover the relationship between the inputs and outputs. 
In Equation 3, a person p is modeled with a, g, h, w, b, l, 
c, d, ã, s, o, e, u. Therefore, an input instance p, t, r is 
modeled as a, g, h, w, b, l, c, d, ã, s, o, e, u, t, r. The out-
put is either 1 or 0. Since βi in Equation 2 is available in 
each testing condition ti, ri for a participant p, we 
labeled an input instance ai, gi, hi, wi, bi, li, ci, di, ãi, si, 
oi, ei, ui, ti, ri as 1 if and only if the corresponding βi > τ, 
where τ is the threshold, whose value can be 1.00, 1.10, 
or 1.15; otherwise, we labeled it as 0. Formally, the train-
ing data were organized in a set DT of input-output pairs 
(Equation 4):

DT = {(xi, yi) | xi = ai, gi, hi, wi, bi, li, ci, di, ãi, si, oi, ei, ui,   
ti, ri, yi  {0, 1}, and 1  i  N } , (4)

where xi is the input, yi is the output (i.e., class), and N is 
the total number of instances of training data.

Constructing the Intelligent Model
Based on the problem model, we tackled three criti-

cal issues that were involved in constructing the intelli-
gent model. First, we evaluated four popular machine 
learning algorithms to construct the model, namely, ANN 
[10], SVM [23], C4.5 decision tree [24], and RF [25]. 
Second, we used an LOO approach to estimate the 
expected error rate when using the intelligent model to 
predict new (unseen) data. This approach overcomes the 
weakness of the popular approaches, such as RSE [11] 
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and 10Fold [28], which lack the ability to organize testing
data meaningfully into unseen research participants. Third, 
we developed a two-phase feature selection algorithm to 
determine a subset of important attributes that enables a 
classifier to significantly improve its prediction accuracy.

Machine Learning Algorithms Used in This Study
As shown in Equation 1, the function f(p, t, r)  {0, 

1} classifies an input instance as either 1 or 0. Hence, we 
use classification algorithms (i.e., classifiers) to deter-
mine the function f because a classifier can be trained to 
determine the membership of an input instance, i.e., to 
which class the instance belongs. With Weka [30], we 
could use four widely used classifiers to determine the 
function f and determine which algorithm provided the 
best classification accuracy and generalization ability.

ANN is known for its excellent capability to learn 
functions from examples (training data) [10]. An ANN 
has a layered network structure, in which the processing 
units (i.e., neurons) are arranged in layers. Neurons in 
adjacent layers can communicate with each other by 
sending and receiving signals through the weighted con-
nections. The input/output behavior of a neuron is 
defined by its internal activation function, which accu-
mulates the input signals and then calculates the outputs. 
Once the network structure is determined, the learning 
process proceeds in iterations by tuning the weights of 
the connections using a training algorithm, such as the 
best-known back-propagation algorithm [31] that applies 
the gradient descendent rule to tune weights as shown in 
Equation 5:

                    
ij ij

ij

E
w w

w
 

 
  ,                       (5)

where wij is the weight associated with the connection 
between neurons i and j; η > 0 is a constant learning rate; 
and 2( )

Tv D v vE l o    is the output error with v being 
the input data, lv being the expected output (i.e., label), 
and ov being the actual output from ANN.

SVM is a powerful machine learning algorithm, 
which models each piece of sample data as a point in a 
space. It then employs hyperplanes to separate positive 
data from the negative ones. The hyperplane can be rep-
resented with Equation 6:

                                    w  x – b = 0 ,                              (6)

where w is a normal vector, x is a data point, “” is the dot 
product between two vectors, and b / |w| is the offset of 
the hyperplane. In case data are linearly inseparable, 
SVM maps data into a higher dimensional space by using 
a kernel function, i.e., replacing the dot products with a 
kernel function. As a result, the data may become separa-
ble in the higher dimensional space. In our study, we used 
the polynomial kernel function as shown in Equation 7, 
which is known for improving the classification accuracy.

                                 K(x, y) = (x  y + 1)  p ,                         (7)

where p is the parameter to be set by the users. SVM usu-
ally returns the global optimal result, which is a big 
advantage over ANN since ANN is prone to being stuck 
at local optima.

C4.5 is another well-known classification algorithm 
that generates a decision tree for classification. It uses 
Entropy

1
( ) log1/

n

i ii
S p p


  to measure whether an attri-

bute can effectively split data. Here, S is a partition of sam-
ple data into subsets: s1, s2 . . . sn. pi represents the 
probability that a data instance belongs to si. Intuitively, the 
decision is difficult to make if an attribute splits data 
equally, i.e., 50 percent vs 50 percent, which has the highest 
entropy, 1. Hence, C4.5 splits data by selecting the attribute 
that has the smallest entropy so that the information gain is 
biggest, i.e., decisions can be easily made. The advantage 
of C4.5 over ANN and SVM is that the decision tree 
explains how the classification works and, therefore, pro-
vides a better understanding of the underlying process that 
generates the results.

RF is a newer classification algorithm, which con-
sists of a number of decision trees (i.e., forest). When a 
decision tree attempts to select an attribute to split data, it 
chooses from a random subset of the attributes. The ran-
domness is controlled by RF such that all trees share the 
same distribution in the forest [25]. The output is a 
majority vote among the outputs of individual decision 
trees. RF is widely used because it is efficient and accu-
rate. Unlike C4.5, the output of RF does not provide 
information explaining how the classification works.

Estimating Expected Prediction Accuracy
We first used two popular approaches, RSE [11] and 

10Fold [28], to estimate the prediction error rate for the 
intelligent model. RSE uses all the training data to train 
the classification algorithms and then uses the same set of 
data to test how well the classification algorithms classify 
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these data. Although RSE is easy to use, it may suffer 
from serious overfitting problems [11]. Overfitting occurs
when a classification algorithm can only classify existing 
data well but fails to predict new data correctly.

10Fold is widely used to mitigate the overfitting 
effects [28]. In 10Fold, data are equally partitioned into 
10 mutually exclusive sets. One set is chosen as the test-
ing set, and the remaining 9 sets are used as training data. 
This process repeats 10 times with each time being for 
one fold. Then, the averaged classification accuracy over 
the 10 folds is used as the final classification accuracy.

However, because of the randomness of partitioning 
data into 10 folds, 10Fold cannot estimate how well the 
intelligent model works if an unseen participant is given. 
Based on the characteristics of our training data, we 
applied an LOO approach. Specifically, we left out data 
(in 6 tilt and recline testing conditions) associated with a 
participant as testing data and used data of the remaining 
10 participants as training data. The major advantage of 
LOO over 10Fold is that the testing data belong to the 
same participant and, therefore, the intelligent model is 
always tested by a new (unseen) participant. Hence, this 
approach is more meaningful and more accurate in evalu-
ating the generalization ability of the intelligent model.

Two-Phase Feature Selection Algorithm for Identifying 
Important Attributes

We proposed a two-phase feature selection algorithm 
in an attempt to remove irrelevant or redundant attributes. 
The rationale is that irrelevant or redundant attributes 
may negatively affect the learning quality [32]. It took 
two phases to determine a subset of attributes from the 
training data set DT (see Equation 4). In the first phase, 
we used a well-known feature selection algorithm, CFS 
[29], to select a subset of the attributes that are important 
predictor variables to the intelligent model. This subset is 
called the initial core attributes set.

Then, the second phase tried to add more attributes to 
the core attribute set to further improve the intelligent 
model’s prediction accuracy, as shown in Figure 1. The 
inputs include a classifier (clf), the current core attribute 
set (Score), the remaining attribute set (Scandidates), and the 
current maximum prediction accuracy (max) achieved by 
clf on Score. The algorithm iteratively adds the remaining 
attributes to the core attributes set, one attribute at a time 
(lines 2 and 3). The function Evaluate(clf, Score  {v}) 
returns the prediction accuracy rate by performing the 
LOO experiment with classifier clf on the subset of attri-

butes Score  {v} (line 3). If the accuracy rate is 
increased (line 4), the candidate attribute vcandidate and 
accuracy 

Figure 1.
Second phase algorithm.

rate acc_rate are updated (lines 5 and 6). After 
all the remaining attributes are tested, the attribute that 
results in the most significant improvement on prediction 
accuracy is added to the core attributes set (lines 9–11). 
Then, the algorithm repeats the same process by recur-
sively calling Second-Phase-Feature-Selection algorithm 
(line 12). The algorithm terminates when no attributes can 
be added to improve the prediction accuracy (line 14). We 
chose this recursive approach because an attribute appear-
ing irrelevant in the current iteration may become rele-
vant in the next iteration by combining with other 
attributes [32].

RESULTS

Resubstitution Estimator
Table 2(a) shows the results on the experiment with 

the resubstitution estimator. All the classification algo-
rithms performed well on all three categories (corre-
sponding to the three thresholds). The lowest accuracy 
was still above 87 percent made by C4.5 with the thresh-
old of 1.10. SVM correctly classified the whole training 
set in all three categories. ANN and RF also achieved 
accuracies above 93 percent. The network structure for 
ANN was 15–8-2, i.e., the network consisted of 3 layers 
with 15 neurons in the input layer, 8 neurons in the hid-
den layer, and 2 neurons in the output layer.
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Table 2.
Experimental results with all attributes (percent accuracy).

(a) Resubstitution Estimator

Algorithm
Threshold

1.00 1.10 1.15
ANN 100.00 95.31 93.75
SVM 100.00 100.00 100.00
C4.5 95.31 87.50 93.75
RF 98.44 100.00 100.00

(b) 10-Fold Crossvalidation

Algorithm
Threshold

1.00 1.10 1.15
ANN 78.13 76.56 68.75
SVM 78.13 64.06 73.44
C4.5 82.81 70.31 73.44
RF 87.50 79.69 79.69

(c) Leave-One-Participant-Out

Algorithm
Threshold

1.00 1.10 1.15
ANN 53.79 41.66 42.42
SVM 56.82 39.39 47.73
C4.5 35.61 41.66 57.58
RF 37.12 52.27 50.76
ANN = artificial neural network, RF = random forest, SVM = support vector 
machine.

10-Fold Crossvalidation
Table 2(b) shows the results for the experiment of 

10Fold. The accuracy rates of all the

Figure 2.
Accuracy comparisons among resubstitution estimator (RSE), 10-fold cross-validation (10Fold), and leave-one-participant-out 

(LOO) for thresholds (a) 1.00, (b) 1.10, and (c) 1.15. ANN = artificial neural network, RF = random forest, SVM = support vector 

machine.

 classifiers dropped 

in all three categories compared with the results in Table 
2(a). The decrease in classification accuracy suggests 
that overfitting did occur. Among all the classifiers, RF 
achieved the best performance in all three categories. Its 
classification accuracies dropped below 90 percent. Mean-
while, C4.5 performed relatively better than SVM and ANN.

Leave-One-Participant-Out
Table 2(c) shows the results for the experiment of 

LOO. The accuracy rates of all classifiers dropped 
sharply compared with the results in Table 2(a) and (b). 
With the threshold of 1.00, SVM performed the best with 
an accuracy of 56.82 percent. In the category of 1.10, RF 
achieved the highest classification accuracy: 52.27 per-
cent. In the category of 1.15, C4.5 achieved the best per-
formance with an accuracy of 57.58 percent. Figure 2
presents an intuitive illustration of how overfitting affected
the classification algorithms. In the sequence of RSE, 
10Fold, and LOO, the classification accuracies dropped for 
all classification algorithms in all three categories.

In fact, if we look into the outputs of C4.5, we find 
that not all attributes were used in its decision trees. Fig-
ure 3 shows one of the decision trees generated in the 
experiment of LOO. Besides tilt and recline, it only took 
four other attributes, namely, smoking, exercise, alcohol, 
and height. This observation suggested that only a subset 
of the attributes may be useful in constructing the intelli-
gent model.
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Two-Phase Feature Selection 

Figure 3.
Sample output of C4.5 decision free.

Algorithm for Identifying 
Important Attributes

After running the CFS algorithm in the first phase, 
we obtained two attributes, level of injury and smoking, 
as the core attributes. Hence, the core attributes set was 
initialized to be {level of injury, smoking}.

In the second phase, our algorithm automatically ran 
each classifier by following the steps specified in Figure 1.

The results are shown in Table 3. Comparing Table 3
with Table 2(c), we can see that all the classifiers signifi-
cantly improved their classification accuracy. Especially, 
SVM achieved the highest classification accuracy, i.e., 
78.79 percent when the threshold 1.15 was applied. Fig-
ure 4 presents an intuitive illustration regarding how 
much the classification accuracy was improved when a sub-
set of the attributes (i.e., core attributes) was used as 
opposed to the entire attributes. The improvement was sig-
nificant for all the algorithms in all three categories.

DISCUSSION

This study demonstrated the feasibility of using 
machine learning techniques to construct an intelligent 
model that can provide personalized guidance on wheel-
chair tilt and recline usage for individual wheelchair 
users with SCI. Based on the characteristics of our study, 
we proposed approaches to model human participants, 
process training data, construct the intelligent model, 
estimate expected prediction error rates, and refine the 
participant model 

Table 3.
Classification accuracy based on subsets of attributes.

Algorithm

Threshold

1.00 1.10 1.15

Core Set Accuracy (%) Core Set Accuracy (%) Core Set Accuracy (%)

ANN Level of injury, 
smoking, alcohol, 
weight, BMI

62.12 Level of injury, 
smoking, duration 
of injury, pressure 
ulcer history

65.91 Level of injury, 
smoking, duration 
of injury, gender

66.67

SVM Level of injury, 
smoking, gender, 
alcohol

72.73 Level of injury, 
smoking, age, 
BMI

78.03 Level of injury, 
smoking, age, 
alcohol, BMI

78.79

C4.5 Level of injury, 
smoking, exercise

56.82 Level of injury, 
smoking, duration 
of injury

50.76 Level of injury, 
smoking, duration 
of injury, BMI, 
age

69.70

RF Level of injury, 
smoking

58.33 Level of injury, 
smoking, exer-
cise, pressure ulcer 
history

56.82 Level of injury, 
smoking, BMI, 
pressure ulcer his-
tory, alcohol

62.12

ANN = artificial neural network, BMI = body mass index, RF = random forest, SVM = support vector machine.

by identifying a subset of important 
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attributes to further improve the intelligent model’s pre-
diction accuracy.

Specifically, we modeled research participants with 
their demographic information, neurological functions, 
and SCI injury history, which were important to depict 
individuals with SCI while the values could be easily 
obtained. We attempted to build the intelligent model 
with these “handy” attributes. The advantages are to 
enable people with SCI to 

Figure 4.
Accuracy comparisons between use of all attributes and of core attributes for thresholds (a) 1.00, (b) 1.10, and (c) 1.15. ANN = arti-

ficial neural network, RF = random forest, SVM = support vector machine.

easily use the intelligent model 
and to leave room for this model to be upgraded in future 
studies. Experimental results showed that the intelligent 
model built upon these handy attributes held the promise 
and achieved satisfying accuracy.

To ensure the quality of training data, i.e., to reduce 
the chances of false positives, we introduced two more 
thresholds for the skin perfusion increase ratio β (see 
Equation (2)), namely, 1.10 and 1.15. The greater the 
threshold is, the more confidence we have when labeling 
the training data. The reason is that the noise or measure-
ment precision may affect β such that its value may be 
only marginally greater than 1. Such marginal cases are 
more likely labeled as negative if we use thresholds of 
1.10 or 1.15. In other words, we only labeled positive for 
true positive cases. Table 3 and Figure 5 show that all 
the classifiers achieved their highest classification accu-
racy when using the threshold of 1.15. Such results fur-
ther affirmed that the intelligent model could produce 
reliable outputs if a bigger threshold was used. In addi-
tion, the use of thresholds can bring another benefit: if we 
continue to increase the threshold value, we can interpret 

the positive cases as the favorable tilt and recline settings 
that can result in significant skin blood flow increase.

To construct the intelligent model, we investigated 
four popular classifiers, namely, ANN, SVM, C4.5, and 
RF. As a critical part of the modeling, we applied an 
approach, LOO, to evaluate the performance of the intel-
ligent models built by these classifiers. This approach 
was more meaningful and effective than the popular RSE 
and 10Fold approaches because the induced intelligent 
model was always

Figure 5.
Comparisons of classification accuracies in three categories 

when subset of attributes was used. ANN = artificial neural net-

work, RF = random forest, SVM = support vector machine.

 tested with a new (unseen) human par-
ticipant. Figure 2 illustrates the effectiveness of using the 
LOO approach to reveal the overfitting effect. All the 
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classifiers sharply dropped their prediction accuracy in 
the experiment of LOO when all the attributes were used 
to model the research participants.

Then, a question naturally arises: are all the attributes 
useful in modeling the participants [11]? Existing 
research shows that (1) people with certain attributes are 
more vulnerable to pressure ulcers [33] and (2) irrelevant 
or redundant attributes may negatively affect the learning 
quality [32]. To answer this question in our study, we 
proposed a two-phase feature selection algorithm. In the 
first phase, a well-known feature selection algorithm, 
CFS [29], was used to identify the initial core attributes. 
Then, the second phase algorithm iteratively added to the 
core attribute set the attributes that could significantly 
improve the prediction accuracy by performing the LOO 
experiment. The advantages of this two-phase feature 
selection algorithm are manyfold. First, as the second 
phase attempts to improve the prediction accuracy based 
on the result of CFS, the performance of the final model 
would be at least as good as the one generated by CFS. 
Table 3 shows that only RF used the initial core attribute 
set (generated by CFS) in its final model in the category 
of 1.00. All other experiments expanded the core attri-
bute set and achieved higher prediction accuracy. Sec-
ond, we used the actual classifiers (i.e., ANN, SVM, 
C4.5, and RF) in the second phase to identify the impor-
tant attributes. Hence, when the second phase was over, 
the intelligent models were also constructed. Third, the 
cost of acquiring training data will be lowered when 
using a subset of attributes; meanwhile, all the classifiers 
significantly improved their prediction accuracy in all 
three categories as shown in Table 3 and Figure 4. 
Fourth, this approach makes it possible to study the rela-
tionship among participant’s attributes, wheelchair tilt 
and recline settings, and the skin blood flow response. 
Future research along this direction will enable clinicians 
to understand how individual’s attributes may relate to 

the efficacy of tilt and recline usage and consequently 
provide effective guidelines to their patients.

With the subset of attributes obtained by using our 
two-phase feature selection algorithm, SVM outper-
formed all other classifiers in all three categories. It 
achieved the highest accuracy (78.79%) when using the 
threshold of 1.15, as shown in Table 3. This result con-
firmed Vapnik’s claim that SVM often returns global 
optimal results [23]. ANN also demonstrated stable clas-
sification and generalization ability. Its overall perfor-
mance could be ranked second. However, when all the 
attributes were used, C4.5 and RF performed relatively 
better in LOO: RF achieved the highest accuracy in the 
category of 1.10 and C4.5 achieved the highest accuracy 
in the category of 1.15 (Table 2(c)). Part of the reason is 
that RF and C4.5 only used a subset of the attributes to 
classify data. Hence, they may be affected less seriously 
by irrelevant attributes.

Besides accuracy, we also employed the metrics of 
precision and recall to evaluate the classifiers’ perfor-
mance on LOO with a subset of attributes (Table 4). Pre-
cision can be defined as tc / pc, where pc is the number of 
examples that a classifier predicts to be in class c (e.g., c =
0 or 1) and tc is the number of examples that the classifier 
correctly predicts in class c. Recall can be defined as tc / | c |,
where | c | denotes the total number of examples truly 
belonging to class c. Hence, the higher the precision and 
recall the better. Table 4 shows the evaluation results, 
which are consistent with the results on the accuracy 
evaluation in Table 3. SVM had high precision and recall 
in all three categories. ANN had the highest precision in 
the category of 1.00 and second best recall in 1.00 and 
1.10. It also outperformed RF in most of the experiments. 
Combining all the evaluations, it is clear that we should 
focus on SVM and ANN in the future study. Especially, 
research has shown that ANN can induce arbitrary func-
tions approximating to arbitrary accuracy with up to two 
hidden

Table 4.
Precision and recall based on subsets of attributes.

Algorithm

Threshold

1.00 1.10 1.15

Precision Recall Precision Recall Precision Recall

ANN 0.768 0.599 0.634 0.659 0.735 0.667
SVM 0.730 0.727 0.854 0.780 0.876 0.788
C4.5 0.531 0.568 0.516 0.507 0.780 0.697
RF 0.670 0.583 0.724 0.568 0.674 0.621

ANN = artificial neural network, RF = random forest, SVM = support vector machine.

 layers [10].
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Table 5.
Example of personalized guidance for one research participant, including participant’s attributes, skin perfusion ration for six testing conditions, 
expected classification of skin perfusion ratios, and actual predicted classification.

Personal Information (p)

Level of Injury Smoking Age Alcohol BMI

C6 No xxx* No 24.46

Skin Perfusion Information and Predictions
Measure (15°, 100°) (25°, 100°) (35°, 100°) (15°, 120°) (25°, 120°) (35°, 120°)

Skin Perfusion Increase Ratio 1.03 1.22 1.09 1.43 1.63 1.31
Expected Classification (τ = 1.15) 0 1 0 1 1 1
Actual Predicted Classification: 

f (p, t, r) =
0 0 0 1 1 1

*Age is not shown for purpose of de-identification.
r = recline, t = tilt.

Personalized Guidance on Wheelchair Tilt and 
Recline Usage

The personalized guidance is achieved by using the 
function f (Equation (1)), which can determine whether a 
given tilt and recline setting is favorable for increasing a 
person’s skin perfusion. If we apply the function f to clini-
cally recommended tilt and recline settings, we will be able
to know which settings are favorable for a particular per-
son. Table 5 shows an example of personalized guidance.
The top portion of the table displays the person’s infor-
mation (p). The bottom portion of the table illustrates the 
skin perfusion ratios, the expected classification for the 
skin perfusion ratios, and the predictions made by func-
tion f. According to function f, the set of favorable tilt and 
recline settings for person p is {(15°, 120°), (25°, 120°), 
(35°, 120°)}. Although function f misclassified (25°, 
100°), it correctly classified all other positive cases, 
which are more favorable than the misclassified one 
because they have larger skin perfusion ratios.

Formally, the personalized guidance is achieved 
through obtaining a set of favorable tilt and recline settings
for a person p, which is shown as follows (Equation 8):

                  {t, r | f(p, t, r) = 1 and t, r Γ },              (8)

where Γ is the set of clinically recommended tilt and 
recline settings.

Study Limitations
First, we considered 13 attributes in this study, 

including demographic, neurological, and spinal injury 
history attributes. Other attributes, such as medication 
and biological attributes, may affect the results as well. 

We will consider more attributes that may affect the 
learning quality in the subsequent study. Second, the 
function f constructed by the classification algorithms 
can classify whether a tilt and recline setting is favorable 
for skin perfusion increase. It cannot predict the extent of 
skin perfusion increase, i.e., the value of β defined in 
Equation 2. In the subsequent study, we will develop a 
learning algorithm to obtain another function g that can 
predict the value of β. Then, we will be able to use func-
tions f and g to crossvalidate the outputs of each other, 
i.e., a tilt and recline setting t, r is predicted to be posi-
tive for a patient with SCI a1, a2, …, ak  if and only if 
f(a1, a2, …, ak, t, r) = 1 and g(a1, a2 . . . ak, t, r) > τ, 
where τ is the threshold (e.g., 1.10, 1.15, etc.). Therefore, 
the prediction quality will be further improved.

CONCLUSIONS

Our study demonstrated that it is feasible to use 
machine learning techniques to construct an intelligent 
model to provide personalized guidance on wheelchair 
tilt and recline usage to individuals with SCI. The intelli-
gent model achieved satisfactory accuracy by consider-
ing handy attributes of the research participants, which 
do not require using advanced clinical devices to obtain 
the values. Our two-phase feature selection algorithm 
could effectively refine the participant model through 
identifying a subset of important attributes. As a result, 
the intelligent model’s predication accuracy was further 
improved. Among the classifiers we used, SVM and 
ANN demonstrated stable performance and will be used 
in the future study.
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Our long-term goal is to construct an intelligent sys-
tem that models SCI individuals with their demographic, 
neurological, biological, medical attributes, etc. In addition
to classifying favorable wheelchair tilt and recline set-
tings, the intelligent system will also predict (1) the best 
tilt and recline settings that can result in the most signifi-
cant skin perfusion increase and (2) the optimal duration 
and frequency to perform wheelchair tilt and recline to 
effectively reduce pressure ulcer risks.
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