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Abstract—Clinical assessment of orofacial muscle tone is of 
interest for differential diagnosis of the dysarthrias, but stan-
dardized procedures and normative data are lacking. In this 
study, perceptual ratings of tone were compared with instru-
mental measures of tissue stiffness for facial, lingual, and mas-
ticatory muscles in 70 individuals with dysarthria. Perceptual 
and instrumental tone data were discordant and failed to dis-
criminate between five dysarthria types. These results raised 
concerns about the validity of Myoton-3 stiffness measures in 
the orofacial muscles. Therefore, a second study evaluated 
contracted and relaxed orofacial muscles in 10 neurotypical 
adults. Results for the cheek, masseter, and lateral tongue sur-
face followed predictions, with significantly higher tissue stiff-
ness during contraction. In contradiction, stiffness measures 
from the superior surface of the tongue were lower during con-
traction. Superior-to-inferior tongue thickness was notably 
increased during contraction. A third study revealed that tissue 
thickness up to ~10 mm significantly affected Myoton-3 mea-
sures. Altered tissue thickness due to neuromuscular conditions 
like spasticity and atrophy may have undermined the detection 
of group differences in the original sample of dysarthric speak-
ers. These experiments underscore the challenges of assessing 
orofacial muscle tone and identify considerations for quantifi-
cation of tone-related differences across dysarthria groups in 
future studies.

Key words: dysarthria, motor speech assessment, muscle tone, 
Myoton, neurological disorders, orofacial muscles, rigidity, spas-
ticity, stiffness, tissue thickness, tongue, viscoelastic properties.

INTRODUCTION

The dysarthrias are a group of motor speech disorders 
with a taxonomy based on clusters of speech characteris-
tics [1–2]. These speech features are manifestations of 
underlying neuropathophysiologies within the lower motor 
neuron (LMN) system (flaccid), upper motor neuron 
(UMN) system (spastic), cerebellar motor control circuit 
(ataxic), and basal ganglia motor control circuit (hypoki-
netic and hyperkinetic). Sensorimotor impairments such as 
muscle weakness, incoordination, reduced or excessive 
movement, involuntary muscle activity, and altered tone 
occur across multiple dysarthria types, so clinicians must 
identify particular configurations of these abnormalities in 
order to differentiate among the disorders [3].

Muscle weakness and incoordination are straightfor-
ward concepts for most clinicians, but the nature of 
abnormal muscle tone may be less familiar and more 
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complex. Muscle tone is the tonic or background activity 
of a resting muscle and arises from both peripheral and 
central mechanisms. Peripherally, muscle tone is modu-
lated by muscle spindles, which are an integral compo-
nent of the stretch reflex and act to maintain posture and 
joint integrity via low-level, relatively static isometric 
contractions [4]. If the LMN system is impaired, volun-
tary muscle contraction and muscle tone are abnormally 
reduced, leading to flaccidity. Centrally, the reticulospi-
nal tract of the motor system [5] and the direct and indi-
rect pathways of the basal ganglia contribute to increased 
tonic muscle activity [6]. Specifically, disruption of 
descending motor signals from indirect UMNs to the 
LMN pools [7] causes muscle spasticity and hyperre-
flexia because of reduced inhibition of peripheral 
reflexes [8]. Disturbances of the direct and indirect path-
ways of the basal ganglia can result in muscle rigidity, 
characterized by heightened tonic activity without hyper-
active stretch reflexes [6,9–11]. To summarize, hypotonia 
is generally associated with flaccid dysarthria and dam-
age to the LMN pathway, whereas hypertonia occurs with 
spastic, hypokinetic (when consistent), and hyperkinetic 
(when fluctuating) disorders, and is associated with dam-
age to the indirect UMN pathway and/or the basal gan-
glia control circuit [3,12–13]. The accurate identification 
and typing of tone abnormalities can be an important 
confirmatory component in differentiating dysarthria 
types.

Compared with other characteristics associated with 
dysarthria, there is less agreement about how to assess 
muscle tone in orofacial musculature [3]. Muscle tone 
status may be reported by speech-language pathologists 
(SLPs) as part of a motor speech evaluation, but there are 
no published standardized procedures for its assessment. 
The few tests that address orofacial tone impairments 
instruct the clinician to passively stretch [14] or palpate 
[15] the muscles of interest and then rate whether resis-
tance to the perturbation is lower or higher than normal. 
A paucity of normative data for perceptual measures of 
tone combined with poor correlation between clinical rat-
ing scale scores and physiologic measures of spasticity 
[16] limits the reliability and clinical utility of perceptual 
ratings of tone.

Several confounds to muscle tone measurement have 
been described. First, although muscle is of primary inter-
est when assessing tone, tissue resistance is also influ-
enced by nonmuscular epithelial, connective, vascular, 
and adipose tissues [4–5,17]. Second, certain components 

of tonic activity are regulated differently in the muscles of 
the orofacial system than in other skeletal muscles [18]. In 
limb musculature, the presence and function of muscle 
spindles and the associated stretch reflexes are consistent 
relative to muscle size [19–21]. In contrast, these features 
vary by site for the orofacial muscles, including the jaw-
closing muscles [22], jaw-opening muscles [23], facial 
and labial musculature [24–31], tongue [32], pharynx and 
larynx [33–34], and soft palate [33–34]. Therefore, it is 
logical to expect tone impairments to manifest differently 
in muscles of the speech production mechanism than in 
limb and truncal muscles.

Emerging portable and handheld devices for instru-
mental measurement of muscle tone [35] may offer clini-
cally useful alternatives [36–38] to perceptual ratings if 
their reliability and validity across various muscle sites 
and populations can be demonstrated. For applications 
involving the orofacial system, such a tool should isolate 
relatively small muscles and access difficult-to-reach 
areas such as the tongue and the velum. To our knowl-
edge, three instruments have been used to assess orofa-
cial muscle tone. The OroSTIFF (Epic Medical Concepts 
& Innovations; Mission, Kansas) measures resistance to a 
dynamic stretch applied to the perioral tissues by incre-
mentally stretching the corners of the mouth laterally 
[39–41]. Preliminary data support its reliability and 
validity for neurologically normal adults and the pres-
ence of increased stiffness (rigidity) in an adult with 
hypokinesia associated with Parkinson disease [39–40]. 
The Myotonometer (Neurogenic Technologies, Inc; Mis-
soula, Montana) measures tissue compliance in response 
to incrementally depressing muscle tissue [42–43]. Clark 
and Solomon demonstrated differences in compliance 
between relaxed and contracted submental musculature, 
but not with therapeutic interventions that were expected 
to increase (vibration) or decrease (ice) resting tone in 
persons with neurological abnormalities [44]. The latter 
result suggested a lack of therapeutic benefit, insufficient 
sensitivity of the Myotonometer to detect small changes 
in this region, or both. Neither of these instruments can 
be applied to the less accessible tongue or to the smaller 
muscles of the cheeks and jaw.

A third instrument, the Myoton (Müomeetria; Tallinn, 
Estonia), briefly deforms a small tissue site with a narrow 
probe and generates an acceleration curve analyzed 
according to a damped oscillation model [45]. The Myo-
ton was originally developed to measure muscle tone in 
large muscles of the torso and limbs, and recent reports 
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indicate good reliability over time for individuals with 
stroke and healthy older people [46–47]. Investigations 
using an earlier version of the Myoton demonstrated 
greater stiffness and lesser elasticity of the tongue and 
velum in middle-aged adults with obstructive sleep apnea 
than in adults who did not snore [48–50]. The acceleration 
curve, generated via an 8 ms perturbation, yielded two 
outcome variables: frequency of oscillation (in hertz; an 
indicator of stiffness) and logarithmic decrement of 
damped oscillation (reflecting elasticity). Subsequently, 
the instrument was reconfigured to deliver a 25 ms pulse 
perturbation with stiffness as an additional output variable 
[51]. Stiffness (in newtons per meter) was calculated from 
the linear displacement of tissue per force of the perturba-
tion and corresponds, in theory, to the calculated fre-
quency of oscillation from the acceleration curve. 
Solomon and Clark used the Myoton-3 to quantify tissue 
stiffness of the lateral tongue and midcheek in 10 partici-
pants with UMN or LMN disorders and 4 neurologically 
normal adults [51]. Participants with LMN disorders 
exhibited reduced stiffness/decreased tone as predicted, 
but no significant changes in stiffness were identified in 
those with UMN lesions [51]. Investigators and the manu-
facturers of the Myoton-3 subsequently identified con-
cerns with the perturbation setting and internal analysis 
algorithm of the device. Despite acceptable test-retest 
reliability [51], these issues may have negatively affected 
data collection and thus the validity of study findings. The 
Myoton-3 manufacturer modified the analysis algorithm 
for improved outcomes, and preliminary testing on orofa-
cial musculature within the research laboratory indicated 
adequate reliability with a pulse perturbation of 10 ms. 
The present investigation applied the revised instrumenta-
tion to a larger disordered population.

The purpose of the primary study in this report was 
to compare orofacial stiffness (and the associated param-
eters of oscillation frequency and decrement) as an indi-
cator of muscle tone across groups of participants that 
differed based on dysarthria diagnosis. Procedures were 
modified from our previous investigation to achieve clin-
ically feasible and efficient data collection. Orofacial 
stiffness measures were predicted to be lower than nor-
mal in individuals with flaccid, mixed flaccid-spastic, 
and possibly ataxic dysarthrias and higher than normal in 
those with hypokinetic and spastic dysarthrias [3,39,51–
52]. Unanticipated results led to study 2, which was 
designed to validate the ability of the Myoton-3 to detect 
stiffness in the tongue, cheek, and jaw muscles by com-
paring relaxed and contracted muscles in neurotypical 

adults. Finally, study 3 tested the ensuing hypothesis that 
tissue thickness influences Myoton-3 stiffness measures.

STUDY 1

Methods

Participants
Participants with dysarthria were recruited from 

patients referred to the Speech Pathology Division at the 
Mayo Clinic (Rochester, Minnesota) for a diagnostic 
motor speech assessment from December 2010 to June 
2011. Speech and speech-like tasks within a standard 
motor speech assessment included spontaneous speech, 
oral reading, sustained phonation, and fast syllable repe-
titions (alternating and sequential motion rates) [3]. SLPs 
from the Mayo Clinic (authors J. D., E. S., or H. C.), each 
of whom had at least 14 yr of clinical experience in motor 
speech diagnostics and participated in ongoing intra- and 
interrater reliability testing for such evaluations, per-
formed these assessments and determined the presence, 
type, and severity (mild, moderate, marked, or severe) of 
motor speech disorders. Ninety-seven patients agreed to 
participate in additional tasks for the study and provided 
written informed consent in accordance with the Mayo 
Clinic Institutional Review Board. Of these, 70 individu-
als were diagnosed with flaccid, mixed flaccid-spastic, 
ataxic, hypokinetic, or spastic dysarthria and therefore 
were included in this analysis. Summary demographic 
information for participants is shown in Table 1.

Instrumentation
Tissue stiffness was assessed with the Müomeetria 

Myoton-3 (V6.7, 2005). A 7 cm cylindrical probe (3 mm 
diameter) was lowered slowly to the surface of each tissue 
site at approximately a right angle until the instrument 
triggered a 10 ms pulse perturbation. An accelerometer 
sensed the tissue’s response and generated an acceleration 
curve. Using the Myoton-3’s “triplescan” option, three tri-
als yielding curves each with two positive phases were 
obtained from each site. If a curve failed to meet measure-
ment parameters, an error message cued the examiner to 
repeat the trial. A liquid-crystal screen displayed numeric 
values for the three outcome variables. Oscillation fre-
quency correlates to tissue stiffness such that higher fre-
quency of oscillation is associated with stiffer tissue. 
Logarithmic decrement is a damping ratio reflecting the 
ability of the tissue to return to its original shape after 
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Group n
Sex

(Female:Male)
Age, yr

(Mean ± SD)
BMI

(Mean ± SD)
Dysarthria Severity*

(Mean ± SD)
Flaccid 13 5:8 56.5 ± 22.8 27.3 ± 3.9 1.0 ± 0.0
Flaccid-Spastic 25 13:12 57.9 ± 12.4 30.2 ± 8.0 1.9 ± 1.2
Ataxic 11 4:7 56.6 ± 10.8 31.4 ± 5.8 1.4 ± 0.6
Hypokinetic 14 2:12 63.5 ± 11.3 26.2 ± 5.7 1.6 ± 0.6
Spastic   7 3:4 64.9 ± 8.23 25.7 ± 3.8 2.3 ± 1.1
Total 70 27:43 59.3 ± 14.2 28.7 ± 6.25 1.6 ± 0.9

deformation as demonstrated by the reduction in ampli-
tude of an oscillation from one wave peak to the next 
(e.g., if the second peak was half the size of the first, ln(2/
1) = 0.693). Decrement is inversely proportional to elas-
ticity. The magnitude of the stiffness coefficient (also 
described in the “Introduction” section) correlates with 
tissue tension relative to the Myoton-3’s known deforma-
tion force. For each site of data acquisition, an internal 
algorithm determined which trial was closest to the arith-
metic mean of the three pulse perturbations. The data 
from that trial were internally saved and downloaded to a 
laboratory computer.

Procedures
In addition to any tone-related impressions recorded 

by the treating clinician as part of the motor speech 
assessment, participants underwent a perceptual evalua-
tion of muscle tone by an experienced research SLP (H. 
C.) at the Mayo Clinic. The appearance of facial muscles 
at rest (droop and lip retraction) was rated on a scale of 0 
to 4 (normal to severe). In addition, tissue bulk and resis-
tance to passive stretch were rated on a scale of –4 to 4 
(severely low to severely high). The investigator rated 
tongue and cheek bulk (thickness) by palpating the tissue 
between the forefinger and thumb, and passive resistance 
of the tongue, cheeks, and upper and lower lips by grasp-
ing the tissue and slowly elongating it. To confirm reli-
ability of these perceptual ratings, they were compared 
with those reported in the medical record by the Mayo 
Clinic SLP conducting the motor speech evaluation (e.g., 
facial droop, dystonic jaw, abnormal resting tongue pos-
ture or movement).

Instrumental measures of tissue stiffness were 
obtained from all participants by using the Myoton-3 in 
the following sequence: left cheek, left masseter, left 
superior surface of tongue, right cheek, right masseter, 

right superior surface of tongue, right upper lip, right 
lower lip, left upper lip, and left lower lip. Participants 
were seated upright in a comfortable chair with feet flat 
on the ground and remained relaxed throughout data col-
lection. The head was in a neutral position for lip and 
tongue measures; for cheek and masseter measures, the 
head was tilted to the left or right so that the Myoton-3 
probe was angled no more than 45° toward the ground as 
it approached the tissue surface. During data acquisition, 
a wooden tongue blade was positioned under the relevant 
area of tissue, excluding masseter and lower lip. Mea-
surements from the superior surface of the tongue were 
obtained with the mouth open and the Myoton-3 probe 
tip placed ~5–7 mm posterior to the tongue tip and ~3–4 
mm lateral to midline (Figure 1(a)). For the upper lip, 
the probe tip was placed on the vermillion border ~5–7 
mm lateral to midline (Figure 1(b)). Lower lip measures 
were taken from the middle of the vermillion, ~5–7 mm 
lateral to midline (Figure 1(c)). The probe tip was placed 
on the cheek ~10–15 mm lateral to the lip angle, avoiding 
natural creases in the skin when the underlying muscles 
(risorius, buccinator, platysma) contracted (Figure 1(d)). 
The masseter test site was selected by identifying the 
center of the most prominent palpable bulge during con-
traction (Figure 1(e)).

Data Analysis
Perceptual data were categorized for abnormally low 

tone, normal tone, and abnormally high tone. Ratings of 
–1, 0, and 1 were considered to be within normal limits. 
Facial droop from 2 to 4 and tissue bulk and passive 
resistance from –2 to –4 were considered indicative of 
low muscle tone. Resting lip retraction of 2 to 4 and bulk 
and passive resistance of 2 to 4 were interpreted as high 
muscle tone. Cheek tissue bulk was removed from 
consideration because ratings appeared to reflect assessment 

Table 1.
Demographic information for participants in study 1.

*Dysarthria severity ranged from 0 (normal speech) to 4 (severely deviant).
BMI = body mass index, SD = standard deviation
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Figure 1.
Procedures for Myoton-3 data collection from (a) superior surface of tongue, (b) upper lip, (c) lower lip, (d) cheek, and (e) masseter.

of adipose tissue (fat pads) more so than muscle. Percep-
tual ratings for five tasks (resting appearance, tongue 
thickness, cheek resistance, upper-lip resistance, lower-
lip resistance) were analyzed descriptively.

Instrumental determination of stiffness, frequency, 
and decrement from each tissue site were downloaded 
from the Myoton-3 and imported to SPSS (version 21, 
IBM Corporation; Armonk, New York) for further analy-
sis. After testing the requisite assumptions, analyses of 
variance (ANOVAs) with diagnostic category as a 
between-subjects factor were calculated to assess partici-
pant characteristics and for Myoton-3 measures by side, 
site, and outcome variable. For any significant main 
effects pertaining to the instrumental data, pairwise com-
parisons were assessed with post hoc Fisher least signifi-
cant difference (LSD) tests. An alpha level of 0.05 was 
established for statistical significance.

Results and Interpretation

Preliminary Analysis
Participant characteristics across groups were com-

pared using one-way ANOVAs. Neither age (F4,65 = 
0.851, p = 0.50) nor body mass index (F4,58 = 1.893, p = 
0.12) differed across groups. For dysarthria severity, post 

hoc tests indicated that the statistically significant 
ANOVA result (F4,64 = 3.357, p = 0.02) was attributable 
to differences between the mixed flaccid-spastic and flac-
cid groups (p = 0.003) and between the spastic and flac-
cid groups (p = 0.005), wherein individuals with flaccid 
dysarthria had significantly lower severity scores than 
either of these groups. Additionally, the spastic group had 
significantly more severe dysarthria than the ataxic group 
(p = 0.049).

Perceptual Ratings
A summary of the perceptual evaluation of muscle 

tone is provided in Table 2. Muscle tone was judged to 
be abnormal for at least one rating for 13 (19%) of all 
participants, with the highest prevalence in the flaccid 
(31%) followed by the flaccid-spastic (24%) and hypoki-
netic (21%) dysarthria groups. No participants in the 
ataxic or spastic groups had discernible muscle tone 
abnormalities. Ratings indicated abnormally low tone, 
but only for a single task, for two participants in the flac-
cid group (unilateral), three in the flaccid-spastic group 
(bilateral), and one in the hypokinetic dysarthria group 
(bilateral). Muscle tone was judged to be abnormally 
high, again only for a single task, for one participant in 
the flaccid group (unilateral), three in the flaccid-spastic 
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Dysarthria
Group n

1* Abnormal
Rating, n (%)

Resting Facial
Posture, n

Cheek
Resistance, n

Upper-Lip
Resistance, n

Lower-Lip
Resistance, n

Tongue 
Thickness, n

Flaccid 13 4 (31)  2  1  1  2  1
Flaccid-Spastic 25 6 (24) 2,  3  1 — — —
Ataxic 11 0 — — — — —
Hypokinetic 14 3 (21) —  1  1  1 —
Spastic  7 0 — — — — —

group (bilateral), and two in the hypokinetic (bilateral) 
dysarthria group. Only one participant in the study had 
ratings of abnormal muscle tone for more than one task: 
an 18 yr-old female with mild flaccid dysarthria due to 
myotonic dystrophy received 4 out of 5 abnormally low 
tone ratings, all bilaterally. Given the low number of 
abnormal ratings, these data were inappropriate for infer-
ential statistical evaluation or for correlational analysis 
with the instrumental results.

Instrumental Measures
Instrumental measures of stiffness, frequency, and 

decrement also failed to reveal significant differences 
between diagnostic categories. ANOVAs for each tissue 
site and outcome measure yielded p-values ranging from 
0.06 to 0.78. Summary descriptive statistics for instru-
mental measures of stiffness, frequency, and decrement 
are presented in Appendices 1, 2, and 3, respectively 
(available online only). Tissue stiffness values tended to 
be higher in individuals with flaccid dysarthria than in 
those with spastic or hypokinetic dysarthria. For exam-
ple, Figure 2 illustrates actual stiffness measures 
obtained from the superior surface of the tongue, as well 
as predicted values based on diagnostic criteria for the 
various dysarthrias and what is known of their neurologi-
cal underpinnings. Left-right differences were observed 
for virtually all structures and diagnostic groups across 
outcome measures (p-values ranged from <0.001 to 0.03, 
with two exceptions: masseter decrement [p = 0.72] and 
upper-lip stiffness [p = 0.07]).

Interpretation of Study 1 Results
Results of the perceptual assessment of orofacial 

muscle tone did not detect the abnormalities expected 
based on previous literature and classification systems 
for the dysarthrias [3,39,51–53]. Furthermore, there was 

no clear relationship between 

Figure 2.
Predicted and actual Myoton-3 stiffness measures from right 

and left superior tongue surfaces by dysarthria type in study 1. 

Predicted values were developed using presumed neuromus-

cular characteristics associated with neuropathophysiology for 

each dysarthria type. Error bars: ±1 standard deviation.

dysarthria type and orofa-
cial muscle stiffness as assessed with the Myoton-3 and 
some results were contradictory.

Perceptual tone abnormalities were difficult to 
ascribe with confidence and were recorded in a small 
minority of participants from all groups and structures. 
Only one participant, with myotonic dystrophy and mild 
flaccid dysarthria, had clear and consistent ratings of 
abnormal muscle tone, including bilateral facial droop 
and lower than normal cheek and lip resistance. Inciden-
tally, assessment of tongue and lip strength also yielded 
abnormally low values for this participant (13 and 7 kPa, 
respectively, using the Iowa Oral Performance Instrument 
[IOPI Medical; Redmond, Washington]; normal averages 
for young women are 55.8 and 27.5 kPa, respectively 

Table 2.
Number of participants with perceptual ratings of abnormal muscle tone by dysarthria type.

*One participant with flaccid dysarthria had >1 abnormal rating.
 = higher than normal,  = lower than normal.

http://www.rehab.research.va.gov/jour/2014/517/pdf/jrrd-2013-07-0167appn.pdf
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[54]). Instrumental assessment of muscle tone (stiffness at 
rest) for this participant did not correspond with the per-
ceptual ratings or the differences in tone that would be 
expected based on this participant’s medical diagnosis, 
except perhaps for the tongue. Stiffness values from Myo-
ton-3 testing fell within ~25 percent of the mean for the 
flaccid dysarthria group for all measures except the supe-
rior surface of the tongue, which was 2.5 times lower. As 
described in studies 2 and 3, however, this assessment for 
the tongue is suspect.

By definition, spasticity is associated with higher 
contractile properties within muscle tissue while at rest 
and therefore should yield higher stiffness and lower 
compliance values, whereas flaccidity is associated with 
lower resting muscle activity, lower tissue stiffness, and 
higher tissue compliance. In the present study, Myoton-3 
results were contrary to predictions and exhibited unex-
plainable asymmetries. In particular, measurements taken 
from the superior surface of the tongue revealed stiffness 
values that were highest for the flaccid and flaccid-
spastic dysarthria groups and lowest for the hypokinetic 
and spastic dysarthria groups. This is opposite the 
expected pattern and begs explanation. Previous studies 
using instrumental measures of muscle tension have con-
firmed lower than normal tissue compliance in spastic 
muscles as well as in volitionally contracted muscles. 
The Myotonometer identified statistically significantly 
increased resistance to stretch in the involved versus 
uninvolved biceps brachii muscles of individuals with 
spasticity due to UMN disorders [43] and in contracted 
versus relaxed biceps of healthy adults [43,55]. In orofa-
cial musculature, the Myotonometer also detected signif-
icantly lower tissue compliance in contracted versus 
relaxed submental musculature [44].

A second study was developed to establish whether 
the unexpected results from study 1 were related to the 
Myoton-3’s ability to detect orofacial stiffness, con-
founds associated with the complex nature of a dysarthric 
population, or both. On the basis of previous studies that 
demonstrated predictable differences in muscle stiffness 
for contracted versus relaxed musculature, investigators 
evaluated orofacial muscle stiffness in the masseter, 
cheek, and tongue. Stiffness measures were anticipated to 
be greater during contraction than relaxation.

STUDY 2

Methods

Participants
Ten adults (5 women, 5 men; age: range 26–58 yr, 

mean 42.1 yr) were recruited from volunteers at the Wal-
ter Reed National Military Medical Center. Participants 
in study 2 were at least 18 yr of age with no history of 
neurological insult or disease, speech or swallowing dis-
orders, or structural anomalies of the mouth.

Procedures
Stiffness assessment was conducted on the tongue 

(superior and lateral aspects), cheek, and jaw muscles 
bilaterally in relaxed and contracted states. With the par-
ticipant seated and a wooden tongue blade positioned 
under the tongue for support, the superior aspect of the 
tongue was tested in a relaxed state as described in study 
1 and illustrated in Figure 1(a). Subsequently, measures 
were taken while the participant contracted the tongue by 
pressing downward against the blade. For the remaining 
measures, the participant assumed a sidelying position on 
a fully reclined examination chair, as described and illus-
trated previously [51]. Each structure was assessed in the 
relaxed followed by the contracted state in this order: 
tongue, cheek, masseter; left then right sides. The 
sequence was fixed to facilitate data-collection efficiency 
with the Myoton-3, and the relaxed condition was always 
conducted first to avoid residual tension from the con-
tracted trials. The wooden blade was positioned vertically 
between the teeth on the opposite side to support the 
tongue body during relaxation and to provide a stable sur-
face to press the tongue against during contraction. Myo-
ton-3 measures were obtained from the thickest part of the 
lateral aspect of the tongue, taking care to avoid contact-
ing the teeth or lips with the probe. The target sites for the 
cheek and jaw were determined by palpating the con-
tracted muscles and marking the overlying skin with a 
washable skin pen. For the cheek, the wooden tongue 
blade was placed between the cheek and lateral teeth, and 
the target site was 15–30 mm lateral to the lip angle, 
avoiding natural creases during contraction. For the mas-
seter, the target site was in the center of the most promi-
nent bulge during contraction. The probe approached the 
tissue as perpendicularly as possible at all sites.
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Data Analysis
Stiffness, frequency, and decrement values from the 

Myoton-3 were imported to SPSS. A two-way repeated-
measures ANOVA, with contraction status (relaxed, con-
tracted) and side (left, right) as the within-subjects fac-
tors, tested for differences in each of the three Myoton-3 
outcome measures.

Results and Interpretation
No significant right-left differences or interaction 

effects between side and contraction status were observed 
for any of the measurement sites (p > 0.05). Each site 
exhibited statistically significant differences in stiffness, 
frequency, and decrement across contraction status 
(ranges of F1,36 = 6.056 to 62.166 and p < 0.001 to 0.02). 
Figure 3 illustrates mean values by structure and contrac-
tion status. Post hoc pairwise comparisons revealed sig-
nificant differences (p < 0.05) across contraction status 
for each of the 12 pairs. For the lateral tongue, cheek, and 
masseter, stiffness and frequency were significantly 
greater during contraction than in the relaxed condition. 
In contrast, superior tongue surface values for stiffness 
and frequency were greater during relaxation versus con-
traction. Decrement measures were significantly smaller 
in the contracted condition for all four sites.

Stiffness, frequency, and decrement values for the 
lateral tongue, cheek, and masseter changed in the 
expected manner, with increased stiffness and frequency 
and decreased decrement during observable contraction 
of the target muscles. In contrast, measures of stiffness 
and frequency from the superior tongue surface were sig-
nificantly smaller during contraction, even though mus-
cle contraction was obvious per observation and 
palpation by experienced clinicians. This paradoxical 
result supported methodological considerations as a 
potential cause for the unpredicted results in study 1.

During data collection, tongue thickness in the lateral 
plane appeared to be minimally affected by contraction 
state on visual inspection, but changed perceptibly in the 
superior-inferior plane. To confirm these observations, 
digital calipers (CP9806-TF, Carrera Precision; Padova, 
Italy) were positioned at the thickest portions of the 
tongue and cheek during relaxed and contracted states in a 
subgroup of three participants. Tissue thickness increased 
116 percent from the relaxed to the contracted state for 
the superior-to-inferior tongue dimension (mean = 6 and 
13 mm, respectively) and 25 percent for the external-to-
internal dimension of the cheek (mean = 8 and 10 mm, 

respectively). 

Figure 3.
Myoton-3 (a) stiffness, (b) frequency, and (c) decrement mea-

sures at each tissue site from neurotypical adults during con-

traction and relaxation in study 2. Each pairwise comparison 

was statistically significant at p < 0.05. Error bars: ±1 standard 

deviation.

The thickness of the tongue across the lat-
eral dimension did not differ substantially between the 
relaxed and contracted conditions (mean = 36 and 33 mm, 
respectively, an 8% decrease).

We speculated that the marked difference in tissue 
thicknesses for the tongue in the sagittal plane might 
account for the unexpected results from the superior 
tongue site in study 1, as well as in study 2. Specifically, 
thinner tissues might allow interference from the wooden 
tongue blade used as a platform for the tissue during 
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measurement. This would explain greater stiffness values 
than expected in persons with neurological disorders 
associated with low muscle tone and atrophied muscles 
and from the superior surface of the tongue despite an 
obviously softer (more compliant) structure when relaxed 
than when contracted. This suspicion led to a third exper-
iment designed to assess the effects of tissue thickness on 
stiffness, frequency, and decrement measures obtained 
with the Myoton-3 using a surrogate for in vivo muscle 
tissue.

STUDY 3

Methods

Procedures
Sliced roast beef from a delicatessen was selected as 

an experimental material because of similarities between 
bovine and human muscle tissue [56], relatively consis-
tent thickness (mean = 1.8 mm/slice), and an absence of 
neuromuscular innervation or vascularization. The elas-
ticity and shear resistance properties of heat-exposed 
meat are more similar to those of in vivo muscle tissue 
because of the communal aggregation induced by the 
cooking process [57], whereas raw meat was unable to 
maintain its structure during thin slicing and repeated 
poking from the Myoton-3 probe. The beef slices were 
laid flat on a table and stacked/removed individually to 
achieve eight different thicknesses of material six times 
each in a variety of orders. Myoton-3 measures of stiff-
ness, frequency, and decrement were obtained with each 
replication of each stack thickness.

Data Analysis
Tissue thickness and mean stiffness, frequency, and 

decrement values from the Myoton-3 were imported to 
SPSS. Differences in each of the outcome variables 
across material thicknesses were assessed via one-way 
ANOVA and post hoc LSD tests.

Results and Interpretation
Stiffness differed significantly across thickness (F7,48

= 29.123, p < 0.001). As illustrated in Figure 4, stiffness 
generally decreased as thickness increased. Post hoc tests 
confirmed that stiffness differed significantly from incre-
ments between 

Figure 4. 
Myoton-3 stiffness measures of sliced roast beef by tissue 

thickness in study 3. Stiffness was tested for six trials, plotted 

individually, at eight thicknesses.

1.8 mm (one slice) to 9.1 mm (five slices) 
(Table 3), but failed to reach significance for thicker 

stacks. Frequency (F7,48 = 41.040, p < 0.001) and decre-
ment (F7,48 = 3.887, p = 0.002) also differed significantly. 
Post hoc testing (Tables 4 and 5) revealed that frequency 
values differed significantly for 1–4 slices (up to 7.3 mm) 
and decrement values did not exhibit a clear pattern of dif-
ferences across tissue thickness.

Trials using sliced roast beef enabled researchers to 
isolate muscle tissue thickness from other factors such as 
changes in vascularity and innervation that could influ-
ence tissue stiffness. Results from this experiment sup-
ported the hypothesis that tissue thickness directly 
affected Myoton-3 results. For the tested material, 
stacked tissue that totaled less than 10 mm exhibited sig-
nificantly different stiffness values that could only be 
attributed to the hardness of the supporting table. The 
results for the stiffness and frequency parameters stabi-
lized for tissue thickness exceeding 10 mm.

DISCUSSION

The Myoton instrument was originally designed for 
assessing tone in larger limb and truncal muscles. Indeed, 
studies have reported high reliability, symmetry, and 
validity for Myoton measures in the rectus femoris, 
biceps femoris, and gastrocnemius muscles [58–60]. 
Additionally, the Myoton-3 has successfully discrimi-
nated between on-off responses to medication and subtha-
lamic stimulation in individuals with Parkinson disease 
for relaxed arm and hand muscles [61–62] and compared 
with healthy, matched controls [12,63]. Based on this 
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Thickness (mm) Thickness (mm)
3.6 5.5 7.3 9.1 10.9 12.7 14.6

previous work, we hypothesized that measures of tissue 
stiffness obtained with the Myoton-3 would reflect differ-
ences in orofacial muscle tone typically associated with 
specific dysarthria types. Instead, the data from study 1 

suggested the opposite; individuals with spastic and hypo-
kinetic dysarthria, typically considered to have abnor-
mally high tone, had lower orofacial stiffness values on 
average than did individuals with flaccid dysarthria, 

Table 3.
Post hoc comparisons (Fisher least significant difference) of stiffness by tissue thickness from study 3. Statistically significant results (p < 0.05) 
are italicized.

1.8 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
3.6  0.07    0.004 <0.001 <0.001 <0.001 <0.001

5.5  0.24  0.03 <0.001 <0.001 <0.001

7.3  0.32  0.01    0.001 <0.001

9.1  0.11  0.01    0.003
10.9  0.29  0.14
12.7  0.67
14.6

Table 4.
Post hoc comparisons (Fisher least significant difference) of frequency by tissue thickness from study 3. Statistically significant results (p < 0.05) 
are italicized.

Thickness (mm) Thickness (mm)
3.6 5.5 7.3 9.1 10.9 12.7 14.6

1.8 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
3.6 0.08   0.004 <0.001 <0.001 <0.001 <0.001

5.5 0.24  0.04    0.001 <0.001 <0.001

7.3  0.37  0.03  0.01    0.006

9.1  0.17  0.08  0.05
10.9  0.72  0.57
12.7  0.83
14.6

Table 5.
Post hoc comparisons (Fisher least significant difference) of decrement by tissue thickness from study 3. Statistically significant results (p < 0.05) 
are italicized.

Thickness (mm) Thickness (mm)
3.6 5.5 7.3 9.1 10.9 12.7 14.6

1.8 <0.006 <0.001 <0.001   0.003   0.001 0.06 0.17
3.6  0.35  0.25 0.76 0.49 0.33 0.15
5.5  0.83 0.53 0.81 0.06 0.02

7.3 0.40 0.65 0.04  0.01

9.1 0.70 0.20  0.08
10.9 0.10  0.04
12.7  0.62
14.6
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which is characterized by abnormally low tone. Individu-
als with mixed flaccid-spastic dysarthria also had higher-
than-predicted stiffness values, given that all but two of 
them had a medical diagnosis of amyotrophic lateral scle-
rosis, a disease that often presents with markedly weak, 
atrophied tongue muscle.

Two additional studies were developed to explore 
possible causes for these perplexing results. Study 2 com-
pared stiffness during muscle relaxation and contraction 
in neurotypical individuals. The cheeks, masseters, and 
tongue when measured in the lateral aspect exhibited the 
predicted pattern of higher stiffness measures during con-
traction, whereas the tongue when measured from the 
superior surface did not. A paradoxical finding was that 
contraction of the tongue yielded lower values when stiff-
ness was measured in the lateral dimension, but higher 
values when measured in the superior-inferior dimension. 
The apparent difference was that of tissue thickness, 
which led to study 3. This study used nonviable (bovine) 
muscle tissue and identified a tissue thickness threshold 
of approximately 10 mm above which Myoton-3 
measures stabilized. The results of study 3 facilitate a 
reasonable interpretation of study 2’s results (contraction 
vs relaxation), particularly with regard to differences 
across measurement sites. For the cheek, stiffness mea-
sures differed in the anticipated direction during contrac-
tion. Although cheek thickness during relaxation fell 
below the 10 mm threshold for three neurotypical adults, 
it increased by only 2 mm on average during contraction 
and then only averaged 10 mm. It is possible that because 
there was relatively little contraction-related difference in 
thickness at the cheek site, any contribution to the stiff-
ness measures that was attributed to the underlying 
wooden tongue blade affected the relaxation and contrac-
tion stiffness measures similarly. Thus, the thickness-
related confound identified during study 3 may not have 
affected Myoton-3 stiffness measures for the cheek. On 
the other hand, tongue thickness in the superior-inferior 
plane more than doubled during contraction, straddling 
the 10 mm cutoff. Thus, measures taken during relaxation 
were probably contaminated by the underlying stick, 
whereas stiffness data obtained from the superior tongue 
while contracted likely reflected muscle tissue properties 
alone.

The implications from studies 2 and 3 lend further 
insights to the interpretation of the results from study 1. 
Spastic and hypokinetic dysarthria are presumably char-
acterized by spasticity and rigidity, respectively, both of 

which are considered to involve abnormally high muscle 
contraction/tone at rest. Caliper measures for a few par-
ticipants and visual observation for all participants in 
study 2 confirmed that orofacial tissue is thicker when 
contracted. If, as expected, the resting state contractile 
properties of orofacial muscles in individuals with spas-
ticity and rigidity are greater than normal, then their mus-
cles might be thicker than in neurologically normal 
individuals and in people with lower muscle tone. Thus, 
Myoton-3 measures from the orofacial tissues of these 
dysarthria groups may experience less interference due to 
tissue thickness confounds. Flaccid dysarthria is linked to 
LMN damage, which can lead to abnormally low resting 
muscle tension (“floppiness”) and eventually muscle 
atrophy; therefore, those in the flaccid dysarthria group 
may have thinner tissue than the other cohorts [64] and 
thus stiffness measures may be artificially inflated at 
some thin muscle sites. Individual variation in age-
related sarcopenia, general body composition, and dis-
ease severity may also have affected stiffness values in 
these relatively small diagnostic cohorts. The SLP’s per-
ceptual judgments of tongue thickness from participants 
in study 1 were not predictive of Myoton-3 results, but 
calipers or ultrasound could be used in future studies to 
better quantify tissue differences.

CONCLUSIONS

Taken together, this series of experiments highlights 
challenges in obtaining reliable and clinically meaningful 
subjective and objective data about tissue stiffness as a 
correlate of muscle tone and offers a potential explana-
tion for the unexpected stiffness measures obtained with 
the Myoton-3 from groups of dysarthric speakers. Stiff-
ness measurements from the superior tongue surface 
appear to be vulnerable to thickness-related confounds, 
so future investigations of tongue stiffness would benefit 
from a lateral approach. Using the principles outlined 
here, further assessment of orofacial muscle tone in clini-
cal populations may help guide the eventual quantifica-
tion of orofacial muscle tone across diagnostic groups.
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