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Abstract—This article presents a single case study on the feasi-
bility of using a low-cost and portable vision-based system (a 
Microsoft Kinect sensor) to monitor changes in movement pat-
terns before and after a total hip replacement surgery. The pri-
mary subject was an older male adult with total hip replacement 
who performed two different functional tasks: walking and sit-
to-stand. The tasks were recorded with a Kinect multiple times, 
starting from 1 d before the surgery until 9 wk after the surgery. 
An automated algorithm has been developed to extract the 
important spatiotemporal characteristics from the video recorded 
functional tasks (walking and sit-to-stand). Statistical analysis 
was then performed by Tryon C statistic to study changes in spa-
tiotemporal characteristics between different stages before and 
after the surgery. The statistical analysis indicated significant 
difference and slight improvement between all measures from 
the presurgery to each postsurgery date. The study confirmed 
that the Kinect sensor and an automated algorithm have the 
potential to be integrated into a patient’s home to monitor 
changes in mobility during the recovery period.

Key words: balance, feasibility study, long-term monitoring, 
markerless vision-based system, Microsoft Kinect sensor, mobil-
ity, naturalistic follow-up, rehabilitation, sit-to-stand, spatiotem-
poral kinematics, total hip replacement, walking.

INTRODUCTION

Due to an aging global population, balance disorders 
are becoming more prevalent. These disorders can result 

from normal changes associated with aging or from more 
acute events such as a stroke or musculoskeletal injuries 
(e.g., hip fractures or orthopedic surgeries). To cut health-
care costs, it is common to discharge older adults early after 
such events and attempt to make rehabilitation more home-
based. However, rehabilitation at home may have risks. For 
instance, a majority of these groups of older adults experi-
ence long-term balance disorders, which result in a high 
incident of falls and mobility deficits [1–2].

There is little detailed information about balance and 
mobility issues that this population faces once discharged 
from the hospital because of limited availability of reha-
bilitation services. One solution would be finding spe-
cialists (i.e., clinicians or physical therapists) willing to 
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travel to clients’ homes in order to monitor their motor 
progress after early discharge from a hospital or a reha-
bilitation facility. But this strategy is costly [3]. There-
fore, for cost reduction, most clinicians have to rely on 
self-reports from clients and intermittent follow-up
assessments to assist them with the long-term rehabilita-
tion and assessment. However, balance outcome mea-
sures derived from self-reports often do not conform to 
clinical assessments [4]. Moreover, follow-up assess-
ments made in the clinic or gait laboratory cannot reflect 
long-term changes in mobility functionalities since bal-
ance failures often take place in homes, where standard-
ized assessment cannot be directly applied [5]. In 
addition, tasks performed in the gait laboratory or clinics 
do not always simulate normal daily activities of older 
adults because people may feel more distracted at home 
than in the laboratory.

A gait laboratory typically uses different tools,
including force platform, pressure-sensing walkway, and 
three-dimensional (3D) motion analysis to evaluate the bio-
mechanics of gait [6–7]. However, despite their high preci-
sion, these laboratory tools are less appropriate for home use 
because of their high cost and elaborate setup requirements.

Monitoring the functional change during the recov-
ery period at home helps clinicians better understand bal-
ance failures and better target effective rehabilitation 
treatments [8]. These facts motivate the assessment of 
mobility and balance in an older adult’s own home 
through monitoring functional mobility parameters. This 
case study aimed to fill a gap in the current understanding 
of mobility and balance failures at home. Recent techno-
logical advances in motion sensing and in computer 
vision algorithms have opened new possibilities for long-
term home monitoring and automatically computing 
objective measures of mobility and balance.

Although there is a growing demand for comprehen-
sive, cost-effective, long-term mobility monitoring at
home, there are not enough investigations on the use of 
such technologies as a means to deliver rehabilitation ser-
vices at home. Consequently, there is a need for feasibility 
studies to address a series of questions regarding the 
demand and preliminary implementation of such technolo-
gies to provide effective home rehabilitation for individu-
als after discharge from the hospital. The purpose of this 
study was therefore to investigate the use of a vision-based 
motion capture system to provide long-term rehabilitation 
monitoring at home. To this end, we studied the technical 
feasibility of capturing mobility measures in the home and 

inferring the kinematics of functional activity recorded 
over time via an affordable vision-based system. A natu-
ralistic follow-up of one participant recovering from a total 
hip replacement (THR) surgery is presented in this study.

To meet the objectives of this feasibility study, we
deployed a Microsoft Kinect sensor (Redmond, Washing-
ton) in the home of a THR participant and aimed to auto-
matically analyze performance of two functional activities—
walking and sit-to-stand (STS)—to determine whether we 
can capture the balance and mobility parameters in the 
home, developed custom-made automated algorithms to 
determine whether we can infer the kinematics of func-
tional activity recorded over time, and carried out statistical 
analysis on the measured kinematics to determine whether 
we can recognize balance and mobility changes throughout 
rehabilitation recovery at home. In the end, the feasibility 
questions regarding the demand and implementation—both 
the key area of focus for feasibility studies [9]—were 
addressed by this study.

The single case study is a valuable research approach 
to investigate scientific practice [10]. The case study con-
ducted here was targeted to provide a useful, powerful, and 
practical methodology for defining basic principles on test-
ing this type of system (specifically, a Microsoft Kinect 
sensor and custom-developed automated algorithms) in 
analyzing balance. This approach has been used within the 
clinical, technical, and social studies and introduced as a 
robust approach to define basic principles [11–12].

The major contribution of this case study is the quanti-
tative analysis of changes in mobility using a vision-based 
system over several weeks in the home. The functional 
activities evaluated included walking and STS. While the 
study focused on THR surgery, results may extend to the 
analysis of balance in the home for other target popula-
tions, e.g., people with neurological movement disorders 
or poststroke patients.

PREVIOUS WORK

Several studies have developed gait assessment tools 
using wearable sensors, including accelerometers and gyro-
scopes (e.g., Najafi et al. [13]). Although such systems are 
small and portable, they suffer from limitations, including 
short battery life, trouble capturing information about the 
environment and context of activities, and sensitivity to 
sensor placement. e.g., foot versus ankle. In addition, they 
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require the person having to remember to wear the device 
to capture real-world data, which is not practical.

Over the past decade, vision-based human gait analy-
sis has been a thriving area of research. Markerless motion 
capture systems (e.g., using a simple webcam) offer an 
opportunity to reconstruct kinematic features comparable 
to gait laboratory tools and motion sensors [14]. Computer 
vision approaches have also been employed in video-based 
systems to assist older adults to age-in-place [15–16]. 
These systems do not require the placement of additional 
sensors or markers on or around the person’s body. How-
ever, they sometimes require a controlled environment and 
complicated algorithms in order to track people, find their 
body parts, and analyze their behavior.

Depth sensors such as the Kinect offer several advan-
tages over webcams, including the capacity to work in 
low light or dark environments and also simplified sil-
houette extraction and human tracking. By processing 
captured depth information, the Kinect provides real-time 
tracking of people within its field of view. It also fits a 
skeletal model to each person to track his or her major 
body parts (head, shoulders, elbows, hands, etc.) in real 
time, i.e., 30 frames per second.

The accuracy of using the Kinect for joint estimation 
in comparison with 3D motion capture systems, webcams, 
and wearable sensor has been evaluated by several 
research groups [17–18]. Their results confirmed the good 
accuracy of the Kinect to be used for motion tracking 
applications. However, the majority of previous studies 
that used the Kinect for quantitative walking and balance 
evaluation were either limited to preliminary trials with 
nondisabled subjects or focused only on measuring the gait 
parameters in a clinical or laboratory setting [19–20].

By contrast, our study explored the understanding of 
changes in walking and STS over an extended period of 
time to investigate the integration of assessment and rehabil-
itation programs in the home. The methodology used in this 
study was developed based on analysis of data taken from a 
real patient following early discharge from the hospital.

To the best of our knowledge, the only published study 
to date that has employed the Kinect for gait monitoring in 
the homes of real patients or older adults is the work of 
Stone and Skubic [21–22], in which the depth sensing (and 
not the skeletal tracking) capabilities of the sensor were 
used in the analysis of spatiotemporal gait parameters and 
the Timed “Up and Go” test. More recently, the viability of 
using the Kinect to evaluate the static foot posture has also 
been successfully studied [23].

Our study differed from the previous works in two 
ways: (1) we took advantage of the real-time skeletal 
tracking information, and (2) we quantitatively evaluated 
how the recovery period could be monitored by extract-
ing kinematic features from the skeletal data and investi-
gating how those features correspond with balance.

METHODS

Study Description

Participant
Our participant was a 64 yr old male with THR surgery 

on his right side (height 193 cm, weight 63 kg). He was dis-
charged from the hospital 2 d after the surgery and received 
postsurgery physical therapy at home. We began the 
research study at 1 d before the surgery and resumed it sub-
sequently 1 wk after the surgery as soon as minimum recov-
ery had taken place, continuing until 9 wk after the surgery 
[24]. The study was deemed as research exempt by the Uni-
versity Health Network-Research Ethics Board review.

Measuring Device
The system included a Microsoft Kinect sensor, con-

nected to a laptop, which captured walking (Figure 1(a)) 
and STS sequences (Figure 1(b)). The accuracy and feasi-
bility of using the Kinect for mobility assessment and reha-
bilitation in comparison with 3D motion capture (VICON; 
Centennial, Colorado) and webcam have been studied by 
different research groups. One of the foremost validation 
studies has been carried out by Dutta [17]. Based on these 
findings, as compared with a VICON system, the Kinect 
sensor was able to estimate the 3D relative positions of 
markers with root mean square errors (standard deviation) 
of less than 0.005 m in the x, y, and z directions.

A skeletal tracking application based on the Microsoft 
Software Development Kit was developed and used to 
detect, track, and record the human pose and motion for 
postanalysis [25].* The application tracked and recorded 
the 3D locations, i.e., the x, y, and z coordinate relative to 
the depth sensor, of 20 body joints (Figure 1). The pro-
gram also recorded depth and color video streams for 
visual postanalysis. All recorded skeletal information and 

*Our software tool for saving Kinect streams is available for free 
download at https://kinectstreamsaver.codeplex.com/.

https://kinectstreamsaver.codeplex.com/
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Figure 1.
Sample video frames from (a) walking and (b) sit-to-stand 

sequences taken from nondisabled male adult.

video frames were time stamped. This enabled us to fol-
low the displacement of each 3D joint location over time 
in order to extract primary kinematic features to under-
stand changes in mobility parameters.

Protocol
Walking and STS are the two important functional 

tasks usually considered to reveal balance failures and 
abnormalities [8,26–27]. The THR recovery period is 
generally fast, and patients typically resume normal light 
activities of daily living within 3 to 4 wk after surgery 
[28]. This means that gait and balance improve rapidly 
over a few weeks, making the population ideal for a case 
study concerning the monitoring of changes in mobility 
parameters.

Data Collection
Data collection from the THR participant began 1 d 

before the surgery (baseline) and continued over multiple 
points in time after the surgery, specifically 1 d before, 1 
wk after, 2 wk after, 4 wk after, 6 wk after, 7 wk after, and 
9 wk after the surgery. During each recording session, the 
participant was asked to (1) walk and (2) perform an STS 
action in front of the sensor. Recording sessions were car-
ried out at two different locations depending on the func-

tionality level of the participant with THR, i.e., whether 
the THR participant was able to leave his home and come 
to the Homelab. The two locations included (1) the THR 
participant’s home for the first two postsurgery sessions of 
recording and (2) the HomeLab in the iDAPT facility at 
the Toronto Rehabilitation Institute [29] during the presur-
gery session and the remaining postsurgery sessions.

For the walking task, we followed the protocols used 
at the Balance Mobility and Falls Clinic at the Toronto 
Rehabilitation Institute to measure gait conditions [30]. 
At the clinic, the walking task is done on a pressure sen-
sitive mat (GAITRite System, CIR Systems; Clifton,
New Jersey), which is 5.25 m long and 0.88 m wide. 
However, in our study, the gait parameters were mea-
sured via tracks of body skeleton and the participant was 
not asked to walk along the mat. The beginning and end 
of each walking test sequence were selected to be at 
0.2 m and 5.5 m away from the sensor, respectively, and 
marked on the floor. In order to capture enough steps for 
each set of walking, the participant was asked to com-
plete nine sequences of walks between the beginning and 
end points toward the Kinect sensor at his preferred 
speed. This resulted in recording a total of 63 walking 
sequences, during both pre- and postsurgery phases. The 
average number of steps collected and analyzed per ses-
sion was 27 (3 steps at each sequence of walk). For each 
session, spatiotemporal measures of gait have been calcu-
lated. For the STS task, the participant was instructed to 
rise from a wooden, armless chair at a comfortable rising 
speed. During each session of postsurgery recording, seat 
cushions had to be used to adjust the height of the chair in 
order for the subject to perform the task of STS more 
comfortably after the surgery. The subject completed 
9 STS sequences at each session, resulting in 63 STS 
sequences in total. The chair was located at 2 m away 
from the sensor so the entire STS motion could be 
recorded for postprocessing.

Since we were interested in naturalistically following 
the participant during his rehabilitation with poststroke 
motor recovery, we avoided interfering with his recovery 
in terms of using assistive devices: crutches and cane for 
walking and cushions for STS. So, for all sessions, the 
subject wore his own shoes and also used crutches for 1 
wk and a cane for the following 2 wk after the surgery. 
Moreover, during each session of postsurgery recording, 
seat cushions had to be used to adjust the height of the 
chair in order for the subject to perform the task of STS 
more comfortably after the surgery.
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Data Analysis

Preprocessing
As a first step, the center of mass (CoM) was com-

puted as the average 3D location of the hip, shoulders, 
and spine joints at each frame [31]. The frames in the 
beginning and at the end of each test sequence were 
excluded if the computed CoM was beyond the practical 
viewing range of the Kinect (0.8–4 m). This process 
cleaned up the data by discarding potentially erroneous 
skeletal tracking information recorded when the subject 
was outside the working range of the sensor.

The skeletal information (i.e., the x, y, and z values of 
each joint at each frame) is provided in the coordinate 
frame of the sensor. Analyzing the data in this coordinate 
frame was dependent on the placement of the sensor 
(position and orientation) relative to the room and also 
relative to the seating position and walking direction of 
the subject. It was therefore necessary to perform a pre-
processing step to express the joint information in world 
coordinates, independent of the mounting position and 
orientation of the sensor and its relative placement with 
respect to the subject.

Similar to Parra-Dominguez et al. [32], a 3 × 3 rota-
tion matrix and a 3 × 1 translation vector were formed 
and applied to transform sensor coordinates to world 
coordinates. Under the transformed world coordinates, 
the y-axis is aligned with the room vertical pointing 
upward; the subject’s walking direction is along the z-
axis; and the x-axis, which defines the left and right 
direction, is computed as a cross product of the y- and z-
axes to form a right-handed frame. The transformation 
also ensures that the floor is height y = 0 m.

Feature Extraction
Several movement features were computed by pro-

cessing the recorded 3D skeletal motion sequences. The 
analysis of walking balance typically involves the parti-
tioning of a temporal sequence into subsequence stance 
and swing phases, as shown in Figure 2(a). Here, the 
stance and swing phases were identified automatically 
from the inspection of lower-limb 3D joint motions (spe-
cifically the ankle joint) along the z-axis (depth).

Figure 2.
(a) Walking is divided into two phases: swing and stance. (b) Sit-

to-stand is divided into three phases: phase I as hip flexion, 

phase II as transfer phase, and phase III as hip extension (angle 

α is defined as angle between line segment connecting hip to 

center of shoulders and horizontal plane).

 Conse-
quently, basic spatiotemporal gait parameters including 
the step length, stance time, and cadence were automati-
cally measured from these two phases.

Processing algorithms were developed in MATLAB 
(MathWorks; Natick, Massachusetts) to detect the walking 
phases (stance and swing phases) automatically. During 
walking, when a foot is in a stance phase, its location 
should not be changing. By calculating the numerical deriv-
ative of the ankle joint trajectory along the z-coordinate (via 
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a Gaussian derivative filter, n = 2, σ = 2), we could detect 
whether a foot was in a swing phase (i.e., the location of the 
foot was changing) or if it was in a stance phase (Figure 
2(a)). This binary classification method used a sliding win-
dow (with a step size of three frames) to identify the begin-
ning and ending of each phase. The start of each phase was 
estimated if the second-order derivative of the sliding win-
dow was above a threshold. The threshold was set based on 
the inspection of the distribution of second-order derivative 
of data.

The STS task was characterized based on the model 
offered by Schenkman et al. [33]. In this model, an STS 
sequence is divided into three phases, as shown in Figure 
2(b). The initial phase, titled hip flexion, begins with hip 
flexion and ends at the beginning of lift off from the 
chair. The second phase, titled transfer phase, begins with 
the lift off from the chair and ends at the beginning of hip 
extension. The final phase, titled hip extension, begins 
with hip extension and ends by full extension to the 
standing position. We estimated the basic kinematic 
parameters from STS based on the inspection of 3D joint 
motions of the shoulders and hips along the x-, y-, and z-
axes. In Figure 2(b), the angle α is defined as the angle 
between the line segment connecting the hip to the center 
of shoulders and the horizontal plane.

The same binary classification algorithm was used to 
automatically identify the three phases of STS, i.e., hip 
flexion, transfer phase, and hip extension. Similar to pro-
cessing the walking phases, a sliding window (with a step 
size of three frames) was used to identify the beginning 
and ending of each phase of STS from the angle α trajec-
tories and the CoM displacement. Various spatiotemporal 
measures were computed automatically by processing 
recorded joint trajectories, the angle α, and the CoM dis-
placement over the STS phases. These measures included 
the angular displacement and the angular velocity of the 
hip flexion and extension phases and the vertical and hor-
izontal displacement and velocity of CoM.

As explained earlier, the chair height varied across 
different weeks because the subject used cushions in 
some sessions. Accordingly, measures extracted from the 
STS sequences (e.g., trunk flexion and extension angular 
velocities and the CoM vertical and horizontal displace-
ments) were all influenced by the varying height of the 
chair. Rather than analyzing displacement values, which 
were highly affected by chair height, we analyzed veloci-
ties, which were mostly unaffected by chair height. Con-
sequently, velocity measures from sessions with different 

chair heights could be compared with monitor recovery 
trend.

Statistical Analysis
A combination of visual and statistical analysis was 

used to compare changes in walking and STS characteris-
tics between different stages ranging from 1 d before to 
9 wk after surgery. Since visual inspection alone might 
result in inconsistent and unreliable interpretation of 
time-series data [34], the C statistic method was utilized 
for quantitatively evaluating the presence of significant 
changes (p < 0.01) in walking and STS parameters across 
the seven time groups. The Tryon C statistic is a simple 
method of time-series analysis used with small and seri-
ally dependent data sets [35]. The C statistic is a robust 
statistical approach if the data points at each time group 
are shown to be stable [34–35].

RESULTS

Differences in Walking Task
The changes in the step length, stance time for each 

leg, and cadence for all sessions are all illustrated in Fig-
ure 3(a)–(c) in the form of a box plot. On each box, the 
central mark denotes the median value, the box denotes 
values within the 25 to 75 percentile, and the whiskers 
extend to the most extreme data considered inliers.

Using the C statistic, no significant trend was found 
(0 < Z statistic < 1, p > 0.1) on the spatiotemporal gait 
measures collected separately at each pre- to postsurgery 
sessions. However, the C statistic computed on ensem-
ble data points taken from all seven time groups from 
presurgery to all postsurgery sessions together indicated 
the presence of significant differences between the gait 
measures across time specifically for right step length 
(p < 0.001, Z statistic = 4.4), left step length (p < 0.001, 
Z statistic = 5.5), left stance time (p < 0.004, Z statistic = 
2.69), and cadence (p < 0.001, Z statistic = 5.05).

Table 1 presents the results of C statistic analysis 
applied on gait measures for 1 wk after surgery plus every 
other pre- to postsurgery sessions to determine which time 
groups depart from the 1 wk after surgery time group. For 
the step length measured on the left leg, four time groups—
1 d before, 6 wk after, 7 wk after, and 9 wk after the 
surgery—were significantly different from 1 wk after sur-
gery (Z statistic > 2.33, p < 0.01). For the right step length, 
however, no significant difference was found between 1 d 
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Figure 3.
Changes in (a) step length, (b) stance time, and (c) cadence for all 

sessions from 1 d before surgery to 9 wk after surgery. C statistic 

method was used for evaluating presence of significant changes 

(p < 0.01) in walking parameters across seven time groups. Z sta-

tistic is ratio of each value of C statistic to its standard error. For 

significance at p < 0.01, Z statistic must be >2.33 for sample size 

of 90 (13 samples at each time group) for walking. Results indi-

cated presence of significant differences between gait measures 

across time as follows: right step length (p < 0.001, Z statistic = 

4.4), left step length (p < 0.001, Z statistic = 5.5), left stance time 

(p < 0.004, Z statistic = 2.69), and cadence (p < 0.001, Z statistic = 

5.05). There is no significant difference between measures of 

stance time on right side. Note, – and + denote pre- and postsur-

gery data points (e.g., +1 wk R denotes 1 wk after surgery for right 

leg). L = left, R = right.

Measure Time Group II Z Statistic* p-Value

Step Length

+7 wk 3.01 <0.002

+9 wk 3.24 <0.001

1 d 3.55 <0.001

+6 wk 3.27 <0.001

+7 wk 3.54 <0.001

+9 wk 3.38 <0.001

Stance Time (L) 1 d 2.42 <0.008

+4 wk 2.7 <0.004

+6 wk 2.33 <0.01

+7 wk 3.37 <0.001

+9 wk 2.83 <0.003

Cadence 1 d 2.81 <0.003

+4 wk 3.03 <0.002

+6 wk 3.01 <0.002

+7 wk 3.02 <0.002

+9 wk 2.78 <0.003

before and 1 wk after surgery (Z statistic = 2.12, p > 0.01). 
As the results present, step length measures worsened from 
1 d before the surgery to 1 wk after the surgery. Moreover, 
no significant difference was observed between 1 wk and 
2 wk after the surgery (Z statistic < 0, p > 0.01). Starting 
from 2 to 4 wk following the surgery, considerable 
improvement was obtained. And finally, gradual recovery 
(but not statistically significant) occurred from 4 wk to 
9 wk after surgery. In brief, the highest variation was 
observed between the 1 wk and 9 wk after the surgery for 
both legs (right and left), which indicates the substantial 
improvement obtained within this period.

For the left stance time, the test showed that five time 
groups (1 d before and 4, 5, 6, and 9 wk after the surgery) 
had means pointedly different from 1 wk after surgery (Z
statistic > 2.33, p < 0.01). Similar to left stance time, the 
same statistical difference between time groups can be 
observed for the cadence measures. So, unlike the step 

Table 1.
Statistical analysis results of C statistic computed on walking for one 
1 wk postsurgery plus every other pre- (–) to postsurgery (+) session 
to determine which time groups depart from 1 wk after surgery. 
Difference is significant at 0.01 level. According to this procedure, 
significant difference between pairs can be determined if Z statistic is 
>2.33 for sample size of 26 (13 samples at each time group).

R

L

*Z statistic values calculated for between Time Group I (+1 wk) and Time 
Group II.
L = left, R = right.
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length, the difference between 1 and 4 wk after surgery 
was significant in stance time and cadence measures.

Differences in Sit-to-Stand Task
Changes in the angular velocity of hip flexion 

(AVHF), angular velocity of hip extension (AVHE), vertical 
velocity of CoM (VCoM), and horizontal velocity of CoM 
(HCoM) for all time groups are shown in Figures 4(a), (b), 
(c), and (d), respectively. Similar to gait measures, no 
significant trend has been found (0 < Z statistic < 1, p > 0.1) 
on the STS measures collected separately at each pre- to 
postsurgery sessions. As expected, the C statistics com-
puted on ensemble STS velocities from all sessions
revealed significant differences for AVHF (p < 0.002, 
Z statistic = 2.99), AVHE (p < 0.003, Z statistic = 2.76), 
VCoM (p < 0.006, Z statistic = 3.2), and HCoM (p < 
0.001, Z statistic = 3.14) between measures across seven 
time groups from presurgery to all postsurgery sessions.

Table 2 lists the most statistical differences observed 
between 2 wk after surgery and every other time groups 
for AVHF, HCoM, and VCoM and 4 wk after surgery and 
every other time groups for AVHE. Based on the results, 
all velocity measures during STS, except the AVHE, were 
significantly smaller for 1 and 2 wk after the surgery than 
6 wk after the surgery. And so, the four time groups of 1 d 
before, 6, 7, and 9 wk after surgery had velocity measures 
significantly different from 2 wk after surgery (Z statistic 
> 2.25, p < 0.01). The AVHE, by contrast, did not differ 
significantly from 1 d before to 1 wk after the surgery (Z
statistic = 1.8, p > 0.01). Furthermore, there was still sig-
nificant difference between 4 and 6 wk after the surgery 
(Z statistic = 2.42, p < 0.008), which was contrary to the 
pattern of changes observed for all walking parameters 
throughout this period. That is, while the recovery of 
walking plateaued after about 4 wk, the STS recovery 
seemed to extend to a longer length of time and continued 
to week six. The first important result given by this study 
was that a substantial improvement in walking and STS 
occurred following the surgery.

DISCUSSION

The demand for a home-based, cost-effective, quanti-
tative, and continuous assessment of balance is

Figure 4.
Changes in (a) angular velocity of hip extension (AVHE), (b) angu-
lar velocity of hip flexion (AVHF), (c) horizontal velocity of center of 
mass CoM (HCoM), and (d) vertical velocity of center of mass 
(VCoM) for all sessions from 1 d before surgery to 9 wk after sur-
gery. For significance at p < 0.01, Z statistic must be >2.33 for 
sample size of 63 (9 samples at each time group) for sit-to-stand 
(STS). Results indicated presence of significant differences
between STS measures across time as follows: AVHF (p < 0.002, 
Z statistic = 2.99), AVHE (p < 0.003, Z statistic = 2.76), VCoM (p < 
0.006, Z statistic = 3.2), and HCoM (p < 0.001, Z statistic = 3.14). 
Note, – and + denote pre- and post surgery data points.

 growing in 
order to better understand changes in movement pattern 
and balance. This single case study represents the first 
attempt to investigate the feasibility of using an affordable 
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Measure
Time Group

I
Time Group

II
Z Statistic p-Value

AVHF +2 wk 1 d 3.58 <0.001

+6 wk 3.54 <0.001

+7 wk 3.78 <0.001

+9 wk 3.71 <0.001

AVHE +4 wk 1 d 3.2 <0.001

+1 wk 2.58 <0.005

+6 wk 2.42 <0.008

+7 wk 2.34 <0.01

+9 wk 2.75 <0.003

VCoM +2 wk 1 d 4.01 <0.001

+6 wk 3.04 <0.002

+7 wk 3.82 <0.001

+9 wk 3.38 <0.001

HCoM +2 wk 1 d 3.69 <0.001

+6 wk 3.74 <0.001

+7 wk 3.48 <0.001

+9 wk 3.82 <0.001

vision-based motion capture tool (Microsoft Kinect) to 
investigate long-term changes in mobility and balance fol-
lowing early discharge from the hospital.

The results of this realistic follow-up study provide 
evidence that, at least in the case of one individual with 
THR, it is feasible to study and monitor long-term 
changes in mobility through an innovative, affordable, 
markerless motion capture system.

Case studies have been used as a successful and rig-
orous method in several research areas [10]. It has been 
proposed that single case approaches are probably the 
best research tools for evaluating research methods in 
rehabilitation [36]. As such, we expect that our results 
will extend across additional similar users.

Overall, the system and the algorithms to automati-
cally analyze collected data provided reliable accuracy for 
studying significant mobility changes through walking and 
STS. Experimental analysis revealed postsurgery improve-
ment in function following the surgery. In brief, the mea-

sured spatiotemporal gait parameters all worsened in 
comparison with presurgery values after the surgery and 
mostly started to improve 1 to 4 wk following the surgery. 
Subsequently, they all remained stable, as seen between 
the 6 and 9 wk points after the surgery. Moreover, we 
could not observe any significant difference between the 
left and the right spatiotemporal gait measures during the 
study period. This is in agreement with previous studies 
[37–38]. The only asymmetrical feature was the difference 
between the patterns of change in the step length and 
stance time measured on the right side (the operated side) 
compared with those measured on the left side. As the 
patient underwent the THR on his right side, the right step 
length and stance time measures did not change substan-
tially from the presurgery baseline to any postsurgery time 
points. The left side step length and stance time, on the 
contrary, altered significantly from pre- to postsurgery 
time points, but with a slower improvement rate than the 
other spatiotemporal gait measures.

The analysis on STS data indicated that all velocity 
measures were worse in the earlier stages, i.e., from 1 to 
4 wk after surgery. All velocity measures deteriorated from 
1 d before to 2 wk after the surgery, and they did not 
improve significantly across the early stages postsurgery 
(up to 4 wk after surgery). Starting from 4 wk after surgery, 
these measures improved faster until 6 wk after surgery 
and then did not improve significantly over the 6 to 9 wk 
after surgery. For the vertical and horizontal velocities, a 
small decrease was observed from 6 to 7 wk after surgery, 
but the difference was not statistically significant.

In order to examine the reliability of results given by 
the developed vision-based motion capture tool, we met 
one more time with our one participant after the comple-
tion of the study. During the meeting, he was asked to 
visually review the graphs shown in Figures 3 and 4. Fol-
lowing his review, he provided his own personal experi-
ence during rehabilitation recovery at home. The verbal 
interpretation report given by the participant was then 
compared with the statistical analysis shown in Tables 1
and 2. His inputs not only were in line with our statistical 
outcomes but also in some cases explained the results that 
were difficult to interpret without understanding the par-
ticipant’s thoughts. For instance, in response to the ques-
tion of why the STS velocity measures deteriorated from 
1 to 2 wk after surgery (while they were all expected to 
improve), the participant explained that during the STS 
task he felt more pain at week two than week one because 
he was taking less analgesic at week two.

Table 2.
Statistical analysis results of C statistic computed on sit-to-stand 
velocities for 2 wk postsurgery and every other time groups for 
angular velocity of hip flexion (AVHF), horizontal velocity of center 
of mass (HCoM), and velocity of center of mass (VCoM) and 4 wk 
postsurgery and every other time groups for angular velocity of hip 
extension (AVHE). Difference is significant at 0.01 level. According 
to this procedure, significant difference between pairs can be 
determined if Z statistic is >2.25 for sample size of 18 (9 samples at 
each time group). – and + denote pre- and postsurgery data points.
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Limitations of Study
While this case study examined a novel approach to 

assess balance in the home, there are a number of limita-
tions that could be addressed in future work. Further work 
is required, for instance, to examine the generalizability of 
the study for various subject populations since the statistical 
analysis and findings here are limited since this was a sin-
gle case study. This case study lacked adequate support for 
conclusions concerning other subjects’ population and 
environment; e.g., other participants with balance problems 
might be different from our participant in terms of mobility 
recovery, gait patterns, and baseline. In addition, all data 
here were collected only in two separate locations
(HomeLab and the participant’s home) and, as a result, the 
variability in lighting conditions and furniture arrange-
ments (potential sources of partial occlusion) was limited in 
our recording sessions. Hence, in general, the findings and 
statistical analysis are limited to the studied participant and 
location. However, it is important to note that the methodol-
ogies provided by this case study are not highly affected by 
these limitations. That is, Kinect-based tracking of body 
joints and the subsequent computation of significant kine-
matic features can be applied to any subject and any envi-
ronment. Another potential limitation is comparing walking 
and STS with and without assistive devices across recorded 
postsurgery sessions. Naturalistic follow-up without any 
interference during rehabilitation recovery has both advan-
tages and disadvantages that might affect the comparison 
results. But it should be noted that it would not affect the 
major conclusion of this study, which is accepting the feasi-
bility of monitoring rehabilitation recovery through an 
affordable vision-based approach.

CONCLUSIONS

Toward the goal of this single case feasible study, the 
Kinect sensor was set up in a THR participant’s home to 
track changes in kinematic measures through analysis of 
functional tasks including walking and STS. Study record-
ing started from 1 d before surgery (baseline) to 9 wk after 
surgery. Following utilizing the Kinect sensor, an auto-
mated algorithm was designed to compute spatiotemporal 
kinematic measures from the tasks recorded by the Kinect 
sensor. In this regard, spatiotemporal gait measures, includ-
ing step length, stance time, and cadence, were automati-
cally extracted from a walking task. Other spatiotemporal 

measures, including AVHF and extension along with 
VCoM and HCoM, were extracted from the STS task.

In conclusion, monitoring balance and mobility dur-
ing rehabilitation recovery at home appears to be feasible 
following early discharge from the hospital. This single 
case study is the first of its kind and has a significant 
potential value to researchers and clinicians in the field. It 
will give them an opportunity to build studies on using 
affordable, markerless motion capture systems, replacing 
the current expensive 3D motion capture systems, pres-
sure sensing walkways, and wearable sensors to investi-
gate long-term changes in balance and mobility 
following acute events such as stroke, brain injuries, and 
orthopedic surgeries. Developing such a tool is novel 
because it would require little or no effort from the indi-
viduals using it in a home environment compared with 
existing wearable sensors. For clinicians in particular, it 
will help them understand recovery and balance failures 
taking place at home. More importantly, this study pro-
vided reasonable outcomes that evaluated the proof of 
concept regarding using a single Kinect sensor for gait 
and movement analysis. Having the state-of-the-art prac-
tical methodologies as a means of investigation for bal-
ance and mobility changes, future work will include 
recruiting more participants, recording more functional 
tasks, and collecting data for longer follow-up periods.
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