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Abstract—Several multiple degree-of-freedom upper-limb 
prostheses that have the promise of highly dexterous control 
have recently been developed. Inadequate controllability, how-
ever, has limited adoption of these devices. Introducing more 
robust control methods will likely result in higher acceptance 
rates. This work investigates the suitability of using high-
density force myography (HD-FMG) for prosthetic control. 
HD-FMG uses a high-density array of pressure sensors to 
detect changes in the pressure patterns between the residual 
limb and socket caused by the contraction of the forearm mus-
cles. In this work, HD-FMG outperforms the standard electro-
myography (EMG)-based system in detecting different wrist 
and hand gestures. With the arm in a fixed, static position, 
eight hand and wrist motions were classified with 0.33% error 
using the HD-FMG technique. Comparatively, classification 
errors in the range of 2.2%–11.3% have been reported in the 
literature for multichannel EMG-based approaches. As with 
EMG, position variation in HD-FMG can introduce classifica-
tion error, but incorporating position variation into the training 
protocol reduces this effect. Channel reduction was also 
applied to the HD-FMG technique to decrease the dimension-
ality of the problem as well as the size of the sensorized area. 
We found that with informed, symmetric channel reduction, 
classification error could be decreased to 0.02%.

Key words: dynamic variation, electromyography, force 
myography, movement classification, myoelectric control, pat-
tern recognition, position effect, prosthesis, prosthetic control, 
upper limb.

INTRODUCTION

Different types of prosthetic upper limbs (ULs), rang-
ing from body-powered cable hooks to multifunction myo-
electric prostheses, have been developed to offer people 
with amputation the ability to independently perform 
activities of daily living (ADLs). Each type accomplishes 
certain goals with regard to the user’s expectations. 
However, many functional limitations in the prostheses 
decrease the acceptance rate by users. These limitations 
vary depending on the type of prosthesis. Discomfort 
caused by the harness, unappealing cosmetic appearance, 
and excessive motion or power required to operate body-
powered prostheses keep them from being an ideal solu-
tion [1–2]. Externally powered prostheses, especially myo-
electric prostheses, can be more comfortable and usually 
provide a natural appearance, but still have deficiencies; 

Abbreviations: ADL = activity of daily living, DOF = degree 
of freedom, EMG = electromyography, FMG = force myogra-
phy, HD-FMG = high-density FMG, LDA = linear discrimi-
nant analysis, P = sensor pattern, Pos = subject position, S-
ADL = simulated ADL, SVM = support vector machine, UL = 
upper limb.
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they are expensive and provide less feedback to the user 
[3]. However, inadequate controllability, specifically lack 
of intuitive and dexterous control, is the main cause for the 
low rate of acceptance of externally powered prostheses. 
Improving the control strategies in different aspects, 
including accuracy, intuitiveness, and response time [4], 
may cause UL prostheses to experience a higher rate of 
acceptance [5].

UL prostheses can be controlled through different 
inputs. Surface electromyography (EMG) has long been 
one of the major neural control sources for powered UL 
prostheses. It contains useful information about the neu-
romuscular activity from which it originates, and it can 
be used to extract the user’s intent [3]. Various EMG sig-
nal-processing methods have been used to extract move-
ment intent. Conventional myoelectric control systems 
use an estimate of the signal magnitude (usually mean 
absolute value or root mean square) to quantify the inten-
sity of muscle contractions as the control input. Although 
such control schemes have been widely used commer-
cially, they are incapable of intuitively controlling more 
than one or two degrees of freedom (DOFs) [3,6]. Vari-
ous forms of pattern recognition-based myoelectric con-
trol have been implemented to control multiple DOFs [7]. 
In this approach, a set of features containing spatial and 
temporal information about the acquired signals are 
extracted and form an input pattern to a classifier that 
determines the user’s intended movement [3–4,8–9].

Pattern recognition algorithms have been widely 
investigated in terms of real-time implementation and 
performance [7,10–11], and a pattern recognition-based 
control system has recently been commercially deployed 
[12]. Low classification errors, in the range of 2.2 to 
11.3 percent, have been reported for varying numbers (6 
to 10) of wrist and hand movements using EMG pattern 
recognition techniques, such as linear discriminant analy-
sis (LDA), artificial neural networks, and support vector 
machines (SVMs) [13–18].

Despite great successes in laboratory settings, several 
factors, such as variation in electrode placement [19–20], 
impedance, and the effect of socket loading, challenge 
pattern recognition-based myoelectric control in clinical 
settings. The position effect is also a challenging problem 
that has recently been the focus of several researchers 
[14–16]. The position effect refers to the degradation of 
myoelectric pattern recognition performance when the 
classifier is trained in one fixed position but is used in 
other positions or during dynamic activities [16]. Scheme 

et al. demonstrated that training the classifier in multiple 
positions reduces this degradation [14]. Chen et al. per-
formed a similar study using data from participants with 
transradial amputation and supported the notion that 
training the classifier in multiple positions reduces the 
position effect [17]. In another study, Scheme et al. fur-
ther showed that changing the limb position during both 
static and dynamic ADLs negatively affects myoelectric 
pattern recognition [15]. They proposed training the clas-
sifier with dynamic activities to reduce both of these 
effects. Boschmann and Platzner used a 96-channel high-
density electrode array and showed that training the clas-
sifier in multiple positions (three positions in their work) 
in combination with an increased number of EMG chan-
nels helped reduce the effect of limb position variation on 
classification accuracy [21].

The limitations of myoelectric control motivate inves-
tigation of alternative control inputs with a higher degree 
of robustness and accuracy. Many movements of the hand 
and wrist are controlled by muscles in the anterior and pos-
terior compartments of the forearm known as extrinsic 
hand muscles. When the forearm muscles contract to move 
the hand, some muscles bulge outward while others recede 
inward from the surface. This results in pressure changes 
observable between the surface of the forearm skin and the 
socket. This pressure pattern may be used as the primary 
information source for prosthetic control [22–26]. The 
hypothesis is that the pressure patterns generated by vari-
ous hand motions are distinct enough to differentiate the 
various motions from each other. Phillips and Craelius, 
who first proposed force myography (FMG), used pressure 
sensors to produce topographic maps of the pressure 
exerted against the hard prosthetic socket [22]. They used 
these pressure patterns to distinguish volitional finger flex-
ion/extension. Yungher and Craelius then used an array of 
force sensors to measure pressure changes on the skin 
caused by muscular activity and a linear regression-based 
approach to accurately discriminate six different grasps 
with the arm in a fixed static position [23]. Li et al. 
recently used an array of 32 force-sensitive resistor sensors 
combined with an SVM classifier for finger-motion recog-
nition based on pressure distribution maps [24]. They were 
able to accurately identify 17 different finger motions in 
within-session validation. Xiao and Menon prototyped an 
easy-to-use force sensor strap to extract the FMG signals 
from the proximal portion of the forearm [25]. They could 
classify, in real-time, six UL postures needed to complete a 
drinking task with an average overall error of 7.67 percent. 
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Other groups have used pressure sensors in attempts to 
minimize the effects of pressure on EMG recording sites 
but not as the primary information source for control [27].

In this work, we use a technique referred to as high-
density FMG (HD-FMG) to distinguish the pressure pat-
terns. HD-FMG measures changes in surface pressure 
caused by the displacement (i.e., the bulge) of the under-
lying muscle, movement of the bone, or even displace-
ment of soft tissue to create a circumferential pressure 
map of the limb. HD-FMG extends previous FMG meth-
ods [22–25] by completely encircling the forearm with a 
custom, high-resolution grid of 126 pressure sensors. This 
advantage enables HD-FMG to accurately sense even 
small changes in the surface pressure map of the limb. 
Also, with greater coverage and resolution, HD-FMG 
requires no custom placement of sensors within the 
socket. HD-FMG uses standard pattern recognition algo-
rithms to discriminate the patterns and determine the 
user’s intent. In this study, we compared the performance 
of HD-FMG with that of previously reported pattern rec-
ognition-based EMG control approaches using an experi-
mental protocol similar to those reported in the literature 
[13–18].

Previous work using FMG employed unrealistically 
ideal conditions, measuring static contractions in fixed 
positions. In real-world prosthetic use, however, a user 
must elicit contractions in a variety of positions and ori-
entations and under different loading conditions. These 
conditions affect signal patterns and erode the accuracy 
of EMG pattern recognition methods [14–16]. In this 
work, we determined the effect of limb position on the 
accuracy of HD-FMG by conducting trials with static and 
dynamic variation in limb position. For EMG control, 
incorporating static and dynamic position variation into 
the training protocol can improve the resilience to posi-
tion variation during use [14]. We used this methodology 
in this study to evaluate its potential for improvement 
with the HD-FMG method.

Finally, we investigated channel reduction when
using HD-FMG. Reducing the number of pressure sensors 
mounted in the prosthetic socket is desirable for many 
reasons. As the number of sensors reduces, so does the 
number of control inputs along with the dimensionality of 
the classification problem and the computational com-
plexity. Channel reduction also reduces hardware require-
ments, and so the cost of producing the pressure-sensing 
socket decreases. With fewer sensors, the sensorized area 
can be smaller, simplifying the fit within a socket. For 

channel reduction, however, even though the goal is to 
reduce the number of sensors, it is important to maintain a 
sufficient number of sensors to accurately measure the 
muscular displacement. Otherwise, the advantages of 
using a high-density configuration will be lost.

METHODS

Population and Data Acquisition
We collected pressure maps corresponding to eight 

classes of motion from 10 right-handed, healthy male sub-
jects with intact ULs. Subjects ranged in age between 25 
and 33 yr. The University of New Brunswick’s Research 
Ethics Board approved all experiments.

The pressure maps were recorded using a high-
density grid of 126 (14 longitudinal rows × 9 circumfer-
ential columns, with respect to the forearm) force-
sensitive resistors 1 × 1 cm in size that were custom made 
for this application by Smart Skin Technologies, Inc 
(Fredericton, New Brunswick, Canada). The array was 
mounted inside an adjustable prosthetic socket as shown 
in Figure 1(a). The flexible sensor grid covered the dom-
inant forearm, centered at the position with the largest 
muscle bulk, with the sensors encircling it. Two zip ties, 
one at the top and one at the bottom of the socket, were 
used to adjust the socket size for each subject, and any 
socket gap was aligned with the ulna bone (Figures 
1(b)–(c)). Because of the density and coverage of the 
grid, targeted placement of the sensors was not required. 
The 126 channels of pressure data were sampled at 20 Hz 
by a custom data-collection system. Data from the pres-
sure sensors generate a pressure map image, composed of 
a single amplitude value for each of the 126 pixels for 
each reading.

Experiments
To study the performance of the HD-FMG technique, 

we compared the classification results with those of stan-
dard pattern recognition-based EMG control methods that 
have been reported in the literature [13–18], and followed 
a similar experimental protocol as that used by Radmand 
et al. [28]. Subjects were prompted to elicit contractions 
corresponding to eight classes of motion including wrist 
flexion/extension, wrist supination/pronation, pinch grip, 
power grip, hand open, and no movement. Each contrac-
tion was sustained for 3 s, and a 3 s rest was given between 
subsequent contractions. Subjects were instructed to
perform contractions at a moderate and repeatable force 
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Figure 1.
(a) Adjustable pressure-sensing socket. Each 2 × 2 array of 

cells forms a single pressure sensor. (b) Sensor grid with its 

corresponding location on the muscles. (c) Placement of the 

socket with zip ties used to adjust socket size.

Figure 2.
Subjects were asked to perform four sets of contractions corre-

sponding to eight classes of motion while holding their arm such 

that the hand was located in each of the eight static positions 

represented by the boxes numbered 1 through 8. Reprinted 

with permission from Radmand et al. [28].

level and given rest periods between trials to avoid fatigue. 
The data were collected while subjects were seated in an 
armchair, with the arm held in a fixed position, and the 
elbow resting on the chair’s arm. Four sets of contractions 
were collected for each subject.

Then, to study the effect of limb position variation on 
the performance of the HD-FMG method, the same set of 
contractions was repeated during three sessions, each 
involving a different form of positional variation.

Session 1: Static Positions
Subjects sustained the motions while holding the arm 

in the eight static limb positions located on a plane paral-
lel to the sagittal plane, passing through the humerus as 
shown in Figure 2. As first laid out in Radmand et al. 
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[28], “These positions cover the workspace in which 
most activities of daily living (ADL) are performed. To 
ensure that all subjects moved their arms to the same set 
of eight positions, the subjects were asked to stand in 
front of a white board, on which a grid of four cells corre-
sponding to positions P1–P4 was drawn, and move the 
limb as if they want to reach the center of each cell. 
When data from all four of these positions were col-
lected, the board was moved away from the subject to 
elicit the other four positions (P5–P8) and data were col-
lected from those positions. Before each session, the dis-
tance from the board to the subject, the height of the 
board, and the spatial distribution of the cells were 
adapted for the height and reach of the subject.”

Session 2: Activities of Daily Living
A more meaningful assessment of the usability of a 

control system is its accuracy while a subject is perform-
ing ADLs, which are a specific subset of dynamic tasks 
identified by occupational therapists as meaningful func-
tional activities. Subjects were asked to perform simu-
lated ADLs (S-ADLs) while holding each of the eight 
classes of motion:
  • S-ADL1: Subject position (Pos) 7 to Pos 3 (table top 

to drink),
  • S-ADL2: Pos 1 to Pos 6 (neutral to table top), and
  • S-ADL3: Pos 1 to Pos 5 (neutral to cupboard)

(Figure 3).
Contraction classes were held for 4 s during perfor-

mance of S-ADLs, with 3 s interclass delays.

Session 3: Dynamic Motion
Executing all eight motions in every static position or 

during each S-ADL would be time-consuming for train-

ing; having only one dynamic trial would take much less 
time. The subjects were asked to smoothly move the arm 
through a circular trajectory, starting from Pos 1, through 
Pos 2 to 8, shown in Figure 4, while holding each of the 
classes of motion. Contraction classes were held for 15 s 
during dynamic motion performance, with 3 s interclass 
delays.

Four sets of contractions were collected for each of 
the static or dynamic positions, and the average duration 
of the experiment was approximately 120 min per subject.

Data Processing and Classifier
No specific data processing was performed on the 

pressure data; consequently, each decision was computed 
from an analysis window of 50 ms (due to the 20 Hz sam-
pling rate). Moderate contraction intensities generally 
produced a pressure profile of sensor readings reasonably 
distributed between 0 and 1, with minimal clipping. These 
amplitudes were the only input to the classification stage.

To recognize the acquired pressure patterns of differ-
ent motion classes, we used an LDA classifier [4] as a 
real-time control scheme for prosthetic control. This 
approach has been widely accepted because of its relative 
ease of implementation and high performance [11].

Fourfold cross-validation was used to test the perfor-
mance of the HD-FMG technique. For each iteration, the 
data from three of the four repetitions of each motion 
were used for training, and the data from the fourth repe-
tition was used for testing. The classification results 
reported represent the average across all four

Figure 3.
Three simulated activities of daily living (S-ADL1 to S-ADL3) were completed while subjects were holding each of the classes of 

motion (figure modified from Scheme et al. [15] with permission).

 iterations.

HD-FMG Channel Reduction
In order to achieve the best performance, we equipped 

the pressure-sensing socket used for this work with
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126 pressure sensors, located in 14 rows and 9 columns, 

Figure 4.
Subjects were asked to smoothly move their arm through a cir-

cular trajectory.

to 
completely encircle the limb and accurately monitor its 
shape. To investigate the optimal subset of channels and 
the effect of channel reduction on performance, we per-
formed two rounds of channel reduction. We performed 
the first round of channel reduction over the sensor rows 
with all columns available, with the aim of reducing sensor 
density and hardware requirements. In order to avoid the 
need for accurate sensor placement inside the socket, we 
heuristically reduced the channels using the symmetrical 
patterns shown in Figure 5. The first pattern, which repre-
sents no reduction, was used as a baseline for comparison. 
In the next three patterns, every fourth, third, and second 
row, respectively, was left out. Pattern five represented a 
symmetric reduction of every second sensor in rows and 
columns. In the sixth pattern, we used only two separate 
groups of recording sites, covering the flexor and extensor 
muscles. The goal of this selection was to avoid placement 

of sensors on the top or bottom of the forearm to reduce 
any potential loading effects, which may cause changes in 
the socket pressure unrelated to the actual contractions.

A second round of channel reduction was performed 
over the sensor columns with the aim of reducing the length 
of the sensorized area within the socket. A brute-force 
method was applied, meaning that for each distinct number 
of sensor columns, the results were acquired and compared 
for every possible consecutive subset of the available col-
umns. A constraint was applied to ensure that the selected 
columns were consecutive and that any resulting reduction 
effectively reduced the overall sensor dimensions.

RESULTS

Pressure Maps
Examples of the pressure maps acquired for each of 

the eight motion classes computed from a representative 
subject performing static contractions in a fixed position 
are shown in Figure 6. Although most subjects produced 
a general profile that resembled that of Figure 6, individ-
ual pressure maps exhibited distinct differences between 
subjects. In these pressure maps, the areas of low and 
high pressure are clearly visible for each motion, result-
ing in a distinct image for each motion.

Hand Motion Classification
Motion classification was performed for eight classes of 

motion, with the user’s arm in a fixed static position. The 
results of applying HD-FMG for classification were com-
pared with those of standard pattern recognition-based EMG 
control methods reported in the literature [13–18]. As shown 
in Figure 7, the mean overall error was 0.33 percent using 
pressure maps, while errors between 2.2 and 11.3 percent 
have been commonly reported using EMG signals [13–18].

The interclass confusion matrix for classification 
using the HD-FMG method is shown in Figure 8. Entries 
of the matrix represent the average accuracy on the diag-
onal and the average error everywhere else across all sub-
jects and repetitions for the indicated class of motion. A 
perfect classification result would yield 100 percent on 
the diagonal and 0 percent everywhere else. Using the 
HD-FMG method, only slight confusion occurred (during 
one iteration, from one user) when discriminating the 
“hand open” motion from “no movement.”
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Figure 5.
Heuristic channel selection patterns used for sensor density reduction. White cells are active sensors and gray cells are disabled 

sensors. P = sensor pattern.

Figure 6.
Examples of acquired pressure map images for the motion classes performed in a fixed static position (darker areas correspond to 

higher pressure).

Limb Position Variation
While HD-FMG showed a low level of error when 

the arm was in a fixed position, it is important to study 
the effect of limb position variation on its performance. 
Figure 9 shows how classification error increased when 
the classifier was trained in only one fixed static posi-
tion and tested in either eight different static positions 

or while subjects were performing S-ADLs. These 
results show that, like EMG control, HD-FMG is sus-
ceptible to limb position variation as reported in Scheme
et al. [15].

Training the classifier using data acquired in multiple 
positions or while subjects performed dynamic activity 
were two proposed potential solutions to the limb position 
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Figure 7.
Average classification errors of high-density force myography

(HD-FMG) and electromyography (EMG) control methods for

eight hand motion classes with arm in a fixed static position.

Figure 8.
Interclass confusion matrix for high-density force myography control method, averaged across all subjects and repetitions. CG = chuck 

grip, HO = hand open, NM = no movement, PG = power grip, WE = wrist extension, WF = wrist flexion, WP = wrist pronation, WS = 

wrist supination.

effect for classification accuracy with EMG signals [15]. 
We tried these proposed solutions to investigate whether 
they can be applied in a similar fashion to HD-FMG. Fig-
ure 10(a) shows the classification errors when varying 
numbers of positions (1–8) were included for training of 
the classifier. For each number of training positions, the 

average classification error of all subsets is shown. Fig-
ure 10(a) also shows the classification error when the 
classifier was trained while doing the dynamic activity 
described in the “Experiments” section (p. 445). The 
results show that dynamic training does not reduce the 
error for HD-FMG control. In each case, the classifier 
was tested with data from all eight positions. Figure 
10(b) shows the classification errors when the classifier 
was tested with data from the three S-ADLs described in 
the “Experiments” section (p. 445).

HD-FMG multiposition training reduces the error 
when more static training positions are added, for both 
static test positions (Figure 10(a)) and S-ADLs (Figure 
10(b)). Dynamic training does not reduce the error when 
testing with static positions and only marginally reduces 
error when testing with S-ADLs. We therefore recom-
mend static multiposition training.

Channel Reduction
The results of applying row reduction using the patterns 

shown in Figure 5 are illustrated in Figure 11. These results 
suggest that while sensor pattern (P) 2, P3, and P4 are very 
close to P1 in terms of classification error, P5 significantly 
increases and P6 significantly decreases the error. It is 
important to note, however, that although significant 
differences were obtained, the effect size is minimal 
because all patterns resulted in very low error rates.
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Figure 12 illustrates the classification errors for
varying numbers of columns of sensors mounted in the 
prosthetic socket. Column reduction was performed 
twice, once with all rows available as the baseline and 
once with only the rows available in P6 as the best pat-
tern selected in round one. For each number of columns, 
the classification errors of the best possible consecutive 
subset of columns and the average of all consecutive sub-
sets of that size are shown. The results are shown for P1 
and P6 in Figures 12(a) and (b), respectively, and the 
best subsets of columns for both patterns are compared in 
Figure 12(c).

Figure 9.
Illustration of increase in classification error when a classifier 

that has been trained in only a fixed position (Pos) is tested dur-

ing dynamic limb movements. Error bars indicate standard error 

across all subjects. ADL = activity of daily living, HD-FMG = 

high-density force myography.

These results showed that, on average, increasing the 
number of columns improved classification performance. 
A multivariate analysis of variance was completed on the 
results, with subject as a random factor and column com-
bination as a fixed factor. The results showed, however, 
that for P1 and P6, the error when using three columns of 

sensors was not significantly different from the results 
achieved when using all nine columns. Use of fewer than 
three columns of sensors, however, significantly
increased error. Also, comparison of the best consecutive 
subsets for varying number of columns using rows of P1 
and P6 showed that, when using more than four columns, 
P6 would result in lower classification error with fewer 
number of sensors than P1.

DISCUSSION

The results of hand motion classification illustrated in 
Figure 7 showed that the HD-FMG control technique is 
highly accurate in detecting different wrist and hand ges-
tures. Compared to EMG, this method generated signifi-
cantly lower classification errors. Using 126 force sensors 
for the HD-FMG technique, while comparing to studies 
that used only six to eight channels of EMG, may raise 
questions. However, the described HD-FMG system may 
provide a clinically and commercially viable approach, 
whereas a similarly high-density EMG-based system 
would likely not. Consequently, HD-FMG was compared 
with literature results consistent with the instrumentation 
of current commercially available pattern recognition-
based myoelectric control systems [12]. Furthermore, 
studies have shown that the use of more than eight chan-
nels of EMG does not significantly improve myoelectric 
classification accuracy above that reported here [29–33]. 
It would be preferable to directly compare HD-FMG and 
EMG signals and to possibly combine them, but the 
nature of the HD-FMG sensor instrumentation prohibited 
recording both signals simultaneously.

HD-FMG may also have some additional advantages. 
With the high resolution and full coverage of the socket, 
HD-FMG does not require targeted electrode location. The 
pressure sensors are very light and thin, making them com-
fortable and unobtrusive for the wearer. Existing EMG 
sensors, such as stainless steel electrodes, apply substantial 
and uneven pressure on the skin, often creating pain points 
or skin irritation. The pressure sensor components of the 
HD-FMG are not required to be in direct contact with the 
skin (they could be worn over thin clothing), minimizing 
any risk of skin reaction. Also, the performance of HD-
FMG relies on muscle physiology, which is relatively sta-
ble over short periods. While fatigue and sweat can change 
the characteristics of EMG, the physical dimensions of the 
limb do not change appreciably over moderate time periods. 
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Figure 10.
Illustration demonstrating that increasing the number of training positions reduced the classification error on average for a classifier 

that is tested (a) in eight static positions and (b) with three simulated activities of daily living. HDFMG = high-density force myogra-

phy, Multipos = multiposition.

Electrode lift is another problem with EMG control 
because it changes the EMG signal characteristics, intro-
ducing substantial noise. This problem, however, does not 
exist with the proposed HD-FMG method, because contact 

is not needed; lift simply results in a 0 reading level, which 
may provide additional information if it is repeatable.

The analysis window of HD-FMG control (50 ms in 
this work) can be very short. This is because the proposed 
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Figure 11.
Illustration demonstrating that reducing sensor density has min-

imal, but significant, effect on classification error. Error bars 

indicate standard error across all subjects. P = sensor pattern.

method does not explicitly rely on temporal information, 
and therefore, the length of the analysis window is only 
limited by the scanning frequency of the custom-acquisi-
tion hardware. Although not employed in this work, a 
majority vote postprocessing scheme could be employed 
within an acceptable window length to further improve 
the relative performance of the HD-FMG.

Figure 9 shows that limb position variation increases 
classification error in HD-FMG control. By training the 
classifier using data from multiple arm positions and 
including samples from different positions in the training 
data set, this error can be reduced, as shown in Figure 10. 
This method has been previously shown to be effective 
for resolving the position effect for EMG control [16]; it 
increases the repeatability between the training and test-
ing data sets [28]. Another proposed solution to the posi-
tion effect problem, dynamic training, was not very 
effective for HD-FMG control because muscle geometry 
changes as the arm moves in space.

The results of channel reduction illustrated in Figure 
11 show that by monitoring only the flexor and 

Figure 12.
Illustration demonstrating that increasing the number of col-

umns improves the classification error on average when (a) all 

rows or (b) only P6 rows are available. (c) Comparison of the 

best subsets for varying number of columns using rows of P1 

and P6. Error bars indicate standard error across all subjects. 

P = sensor pattern.

extensor 
sides of the forearm, the error can be reduced consider-
ably. This suggests that even minimal loading due to the 
weight of the socket may cause changes in the pressure 
patterns unrelated to the actual motions of the hand. We 
propose that in future work the loading surface at the top 
of the socket should be avoided. Also, the results of col-
umn reduction illustrated in Figure 12 suggest that the 
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size of the pressure sensing interface can be reduced to as 
few as three columns without any considerable drop in 
classification performance. Given the results in Figure 
12(c), the use of five columns with only six rows, split 
evenly between the flexor and extensor sides, may pro-
vide a reasonable trade-off between classification accu-
racy and socket size and hardware requirement.

It is important to consider that this work represents a 
preliminary investigation of the HD-FMG approach, involv-
ing only nondisabled control subjects. Ongoing work, which 
will evaluate the performance of the approach with subjects 
with amputation, will require customization of the sensor 
boards to fit within custom sockets. It is possible that 
reduced muscle tone and surface deformations due to 
trauma or scar tissue could degrade the precision of the HD-
FMG approach. Nevertheless, these challenges also exist 
with EMG-based approaches, and we anticipate that HD-
FMG may still provide a reliable interface. Finally, HD-
FMG generates pressure maps that are similar to a digital 
image and uses pattern recognition algorithms to decode the 
user’s intent. As images, the substantial body of shift/rota-
tion tolerance in the image processing literature could poten-
tially be employed in future work to accommodate sensor 
displacement or shift that may occur during or between uses 
of the device.

CONCLUSIONS

Although there is a significant body of research
describing different techniques for EMG-based prosthetic 
control, their clinical robustness still needs improvement 
and novel methods of control that may improve robust-
ness are of interest. In this work, we demonstrated that 
high-density monitoring of pressure patterns between the 
forearm and a socket can be used as a potential technique 
for prosthetic control. Compared with multichannel EMG 
control, HD-FMG demonstrates impressive accuracy in 
recognizing multiple movements of the wrist and hand. 
We also found that previously proposed methods to alle-
viate limb position effects on EMG control are applicable 
to HD-FMG control as well. In addition, we performed 
channel reduction over rows and columns of pressure 
sensors and demonstrated that, by monitoring only the 
flexor and extensor sides of the forearm and avoiding the 
loading surface at the top of the socket, HD-FMG perfor-
mance increases. Future work will focus on validating the 
presented technique with subjects with amputation and 

developing sensor shift/rotation resilient techniques for 
robust, real-time pattern recognition-based control.
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