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Abstract—An electrophysiological approach was used to study
a distributed random electrical neuromuscular stimulation
(ENMS) scheme in which a probability density is assigned to the
inter-stimulus intervals (IS) of the stimuli. One of the objectives
of using ENMS techniques in the study of skeletal muscles is to
obtain information about the electrical, physiological, and me-
chanical properties of muscles in a near-physiological situation
under a well-controlled experimental design in which problems
related to the uncertainty of firing patterns of the central nervous
system and physiological interference are avoided. In particular,
ISI with a Gaussian density were varied in mean rate, standard
deviation (SD), and coefficient of variation. The influence of
varying IS, and the interaction of the ISI statistics with com-
pound motor unit action potentials (CMUAP) on EMG power
spectra and their frequency parameters, was assessed theoreti-
cally using a mathematical model which is similar to that of EMG
signal generation in the electrophysiological case. In order to
quantify the effects of ISI statistics on the EMG spectrum, the
median frequency was calculated as a function of stimulation rate
using analytical expressions for various values of the coefficients
of a Gaussian ISI variation. The results obtained suggest that
1) the interaction between ISI statistics and the shape of the
CMUAP plays a major role in determining the EMG spectrum;
2) the median frequencies (MF) determined from EMG spectra
tend to increase with increasing mean rates of stimulation for a
given CMUAP. The rate of increase of the MF depends on the
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coefficient of the ISI variation; 3) the EMG spectra of random
electrically stimulated muscle show peaks at the mean rate of
stimulation, and multiples of it, when the coefficient of variation
of ISI is small. These peaks decrease in magnitude with increas-
ing coefficients of variation of ISI; and, 4) a variation in the ISI
should be introduced in the ENMS, when a reproduction of
‘normal” EMG spectra is needed. These results are consistent
with those reported for voluntary contraction of skeletal muscles.

Key words: electrical neuromuscular stimulation, electromyog-
raphy (EMG), spectral analysis.

INTRODUCTION

Electrical neuromuscular stimulation (ENMS) has
become a common and important technique to study mus-
cle activities, including electromyographic signals (EMG),
biomechanical outputs, such as muscular force and vi-
bromyographic (VMG) events (known also as muscle
sounds), and their relationships (1-7). One of the objec-
tives of using ENMS techniques in the study of skeletal
muscles is to obtain information about the electrical, physi-
ological, and mechanical properties of muscles in a near-
physiological situation under a well-controlled experimen-
tal design in which problems related to the uncertainty of
firing patterns of the central nervous system and physi-
ological interference are avoided. For studies with this
objective, it is necessary to select appropriate stimulation
parameters and strategies, in accordance with findings
from research in electrophysiology.
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A literature review (8-13) of electrophysiological
studies of muscle identifies the following features: 1) force
production in skeletal muscle is controlled by the number
of motor units and the rate of firing of each unit; 2) EMG
signals from active units are uncorrelated during low and
medium voluntary effort, but may become synchronized at
high levels of effort; and, 3) firing of alpha motor neurons
is a random process, in the sense that the time interval
between two successive spikes, that is, the interspike inter-
val (ISI), is a random variable described by a probability
density function (pdf). These random firing patterns of
motor units have been widely studied during voluntary
contraction in human skeletal muscles (9,14-17). Effects
of the firing statistics, especially the mean firing rate, on
the EMG spectrum have been described using mathemati-
cal models and experiments during tasks of moderate,
nonfatiguing, constant effort isometric contractions
(15,18-22). These findings suggest that the choice of the
IST statistics, in a study involving ENMS, may influence
the median and mean frequencies of the EMG spectrum,
two parameters commonly used to assess muscle proper-
ties during tests which involve voluntary contractions
(10,14,23).

Because of technical difficulties and a lack of ade-
quate physiological information as well as because of the
research questions being asked, early research involving
ENMS often was not aimed at representing the actual
physiological situation. In the past 20 years, researchers
have become more and more interested in the electrical,
mechanical, and physiological properties of muscle con-
traction, and they have started to incorporate electrophysi-
ological findings into ENMS approaches. Working on the
lower leg of the cat, Petrofsky described a computer-con-
trolled stimulator and a special electrode array that could
control the recruitment pattern of motor units during elec-
trical stimulation (2). More recently, a sophisticated
neuromuscular stimulation system was described that can
be used to change forces in skeletal muscle by varying
firing rates and recruitment control strategies (24). Using
this system, Solomonow et al. systematically studied the
power spectrum characteristics of the M-wave and the
relation between force and EMG (5), and Baratta et al. (25)
examined carefully the dependence of frequency response
of muscle on control strategy.

To our knowledge, however, most early experimental
designs using ENMS did not take into account the random
nature of physiological motor neuron firing. Therefore, a
potential gap exists between the research using periodic
ENMS, and the findings obtained in electrophysiological

studies of muscle. Physiological activation of motor units
in intact skeletal muscle occurs through distributed random
excitation. Distributed stimulation, in this context, means
activating muscle according to the size principle, using
multichannel stimulation. Random excitation refers to the
random time interval between successive stimuli which
may be described by a normal ISI distribution. Conven-
tional electrical neuromuscular stimulation is typically per-
formed using periodic or near periodic stimulation pat-
terns. The coefficient of variation of the ISI of
physiological and periodic activation of muscle is differ-
ent: a coefficient of about 10 percent or higher for the
physiological case (8,15,21), and a coefficient of O percent
or close to O percent for periodic or near-periodic, artificial
stimulations. It has been suggested that the magnitude of
the coefficient of variation of the ISI affects the details of
the EMG spectrum (8,10,15,16,21,26). In particular,
changes in the median frequency of the EMG spectrum of
periodically stimulated muscle are directly dependent on
the mean stimulation rates because of the dependence of
the spectrum on the coefficient of ISI variation. We hy-
pothesize that the relation between the median frequency
and the mean stimulation rate may not accurately reflect
the actual relation between these parameters in the physi-
ological case. The purpose of this study was to test analyti-
cally the relation between the median frequency of the
EMG spectrum and the mean stimulation rate for varying
coefficients of variation of the IS], and for varying shapes
of the compound motor unit action potentials (CMUAP,
from MUAP, motor unit action potentials).

Based on findings from electrophysiological studies
of skeletal muscle, we have used a distributed, random
ENMS scheme that allowed for controlling the recruitment
of motor units and the ISI statistics. The power spectrum
of the EMG signal, commonly used in studies of voluntary
muscular contractions (10,20,23,27,28), was chosen as an
indicator of how well the EMG produced using the ENMS
corresponded to that of isometric voluntary contractions.
Since it is difficult to evaluate each particular ISI modifi-
cation experimentally, a mathematical model, similar to
that of myoelectric signal generation (8,10,17), was devel-
oped to predict the EMG spectrum of a muscle for a given
stimulation design. The median frequency of the EMG
power spectrum was calculated, and its dependence on the
ISI statistics and the CMUAP was studied. Results of
theoretical analyses confirmed experimental results re-
ported previously using systematic, distributed, random
stimulation of 8-10 ventral root filaments of cat soleus
muscle (26,29).
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METHOD

Advantages and Limitations of Periodic Stimulation
Techniques

Periodic stimulation protocols are easy to implement,
theoretically and experimentally, and they allow the study
of many questions not directly concerned with simulating
muscle behavior under physiologic, or near-physiologic,
conditions. Periodic stimulation approaches are limited in
elucidating the details of electrical, mechanical, and physi-
ological properties of muscle during voluntary contraction,
because EMG spectra (8,19), force production (29-33),
rate of fatigue (unpublished observations), and many other
neurophysiological features of muscle are different for
periodic compared to non-periodic ENMS.

Strictly Periodic Stimulus Train

A strictly periodic stimulus train consists of a se-
quence of equally spaced, monophasic or biphasic, rectan-
gular pulses. Since the duration of the stimulation pulses is
much smaller than the duration of the MUAP, the stimulus
train may be approximated by a sequence of impulses
expressed by

x(n=Y, 8(t~jT) [1]

j:-oo

where T is the reciprocal of the stimulus rate, A :
A= [2]

The above approximation will not affect the conclu-
sions drawn in the following analysis. The spectrum @, (f)
of Equation 1 is obtained by

D (f) =R S (f~ kD) [3]

k=—co

A which shows that the spectrum of the stimulus train is a
set of delta functions with the areas of A2 at frequencies
that are multiples of A =1/T, the stimulation rate. For
stimulation rates within the physiological range of motor
unit firing, conduction of action potentials is not inhibited;
thus, the spectrum of the myoelectric response (Dyy(f)) to
the stimulation is
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Oy () =RY 8(f~IP(HIT 4]

k= —oo

where P(f) is the frequency response of the system for the
generation of EMG signals in a channel (i.e., the Fourier
transform of the MUAP, or CMUAP, if several motor units
are stimulated through a single stimulation channel). Ac-
cording to Equation 4, the power density spectrum (PDS)
of a periodic signal is a discrete function of frequency
(frequency sampling, weighted by |P(f) ] 2). A spectrum
of this type is called a line spectrum, or discrete spectrum,
and it does not adequately represent EMG spectra of vol-
untary contractions, which have been shown to be continu-
ous functions of frequency (1,8,32,34). Similarly, for mul-
tichannel distributed stimulations, we have

Oy () =3 0738~k PO 5]

i=1 k=—oo

where m is the number of stimulation channels, A; is the
stimulation rate of the ith channel, and P;(f) is the Fourier
transform of the CMUAP of the ith channel. As shown
above for the single channel scenario, the spectrum of the
multichannel periodic stimulation will also be discrete.
Figure 1 shows the theoretical spectrum of an EMG signal
obtained using four stimulation channels with different
rates of stimulation: 26, 30, 45, and 50 pps. As a contrast
to Figure 1, experimental spectra of EMG signals obtained
from voluntary contractions of human rectus femoris mus-
cle are shown in Figure 2 (2); a similar result can also be
found in (19). A similar spectrum can also be obtained
during voluntary contraction in other muscles. It is evident
that varying rates of stimulation in different channels does
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Figure 1.

Theoretical spectrum of the EMG signal obtained from four chan-
nels stimulated at periodic rates of 26, 30, 45, and 50 pps.
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Figure 2.

Experimental spectra of EMG signals of voluntary contractions
obtained from human rectus femoris at contraction levels of 20%
and 40% of the maximum voluntary contraction (MVC).

not eliminate the discrete pattern of the spectrum if a
periodic stimulation protocol is used. EMG spectral conti-
nuity cannot be achieved by recruiting additional motor
units in a periodic ENMS protocol. However, recruitment
may have an influence on the overall shape of the spectrum
through the term [ P.(H ] (Equation 5) which depends on
the number of independent channels used for stimulation.

Practical Limitations of Periodic Stimulation

Periodic pulse trains are easy to implement, and they
work well as long as physiologic properties of voluntary
muscle contractions are not a major concern. However, if
electrophysiological properties of muscle during voluntary
contractions are the focus of study, there are at least three
ways in which strictly periodic stimulation protocols are
limited. First, periodic stimulations are limited in reproduc-
ing EMG spectra similar to those obtained during voluntary
contractions. Stimulation-related information is carried in
the temporal interval patterns of the CMUAP train. In
voluntary contraction of muscle, these time interval
patterns contain mainly low-frequency information
(10,15,16,21,35). However, when using periodic stimula-
tion protocols, the whole range of the EMG spectrum is
affected, and thus periodic ENMS may obscure important
details in the low-frequency regions of the spectrum.

Second, due to overlapping of muscle twitches and
early depression effects, forces produced using periodic
stimulation may differ from forces obtained using random
ENMS (30,31), even for identical mean stimulation rates
and recruitment strategies. As a consequence, the EMG-
force relationship determined using periodic ENMS may

not reflect the actual relationship that exists between these
two parameters during voluntary contraction (29,32,33).

Third, the EMG specira obtained using periodic
stimulation become “discrete” (or line spectra) as shown
in Equation 5. The use of this type of spectrum for deter-
mining the frequency response of muscle, or for studying
systems identification, may have serious consequences,
especially for high stimulation rates where only a few
frequency samples are available in the EMG spectrum.
This problem is enhanced when periodic stimulation is
used to study vibromyographic signals or muscle sounds,
which contain lower frequency components than the cor-
responding EMG signals (23,36-38).

Theoretical Basis For Distributed Random ENMS
The idea of using distributed random ENMS is based
on findings from electrophysiological studies of skeletal
muscle, specifically from a structural rather than a pheno-
menologic model of EMG signal generation. The structural
model provides insight into how physiological parameters
may contribute to observed EMG signals. It has been
widely used in the areas of estimation and detection of
myoelectric control (27), electrophysiological modeling
(10), muscle tremor (35), performance analysis of
myoelectric control channels (39-41), and generation and
analysis of myoelectric signals (10,14,18). In this work, the
structural model will be used to study systematically the
effect of interactions between ISI patterns and CMUAPs
on EMG spectra and their frequency parameters produced
by distributed random ENMS. In particular, the relation
between mean stimulation rate and median frequency of
the EMG spectrum will be investigated as a function of
varying coefficients of variation of the ISI statistics.

Spectral Expression for Distributed Multichannel
Random Stimulation

A structural model for distributed ENMS is shown in
Figure 3. In this model, w(t), i = ,2,....,m, is the activation
signal (stimulus train) which corresponds to the innerva-
tion signal for the fibers of the ith channel, and it is
considered, as in the physiological case (10,27), a renewal
point process with known activation statistics. Let x;(t), i =
1,2,...,m, represent the ith channel signal, then the autocor-
relation function ¢yy(7) of the EMG signal y(0) can be
written as

o, 0=EY 50 Y x+1 (6]

i=1 j=1
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Figure 3.
Structural model of distributed ENMS with m stimulation
channels.

where 7 is the correlation lag value. With uncorrelated
channels, the PDS, @y (f), is given by

®,=(N)=Y Pui (NP NI 7]

i=1

where ©;(f) is the PDS of the innervation process u(t).
The PDS of a single channel EMG signal consists of two
parts: one part, l P(f) ] 2, comes from the CMUAP owing
to the occurrence of muscle activation, and the other part,
®,.i(), comes from the stimulation patterns of the ith
channel. For a given channel, the PDS of the point process
is found by (34,42),

Fi(f)
1-F(f)

Filf)
1= Fi(f)

(I)uui(f) Zki[l_i' J’f;to [8]

where the superscript * represents the complex conjugate,
and Fj,(f) is the Fourier transform of the ISI probability
density function fi(x). Substituting Equation 8 for ®;(f),
Equation 7 yields

m Fil ) Fi(f)
Dy, (f) =2, M|l + *
vy le [ 1-Fi(f) 1_Fix(f))
IP(AI, £20 [9]

Equation 9 shows that 1) the EMG spectrum of simul-
taneous multichannel stimulation is the linear summation
of the spectra for stimulation of the individual channels;
and that 2) the spectrum of EMG signals does not only

ZHANG et al. Random ENMS in Study of Muscle

depend on the spectrum Pi(f) of the CMUAP, but also on
related physiological parameters: A;, the mean stimulation
rate of each motor unit; m, the number of active motor
units; and the pdf fi(x) of the ISI.

Thus, any attempt of using the spectrum of an indi-
vidual CMUAP as a measure of the entire EMG signal
may, and typically will, give incomplete and misleading
results. This problem occurs because the spectrum of a
single CMUAP is, in general, not representative of the
temporal and spatial summation of CMUAPS as a whole
(Equation 9). Equation 9 allows for investigating the effect
of interactions between the ISI statistics and the CMUAPs
on the corresponding EMG spectra.

Spectral Properties of Random Gaussian Stimulations

Interspike intervals of voluntary contractions of
skeletal muscles may be approximated using a Gaussian
distribution (9). In this section, selected properties of the
spectra produced by Gaussian stimulation protocols are
summarized.

With fix(x) representing a Gaussian distribution,
Equation 9 may be written as,

sinh[2(x f 6%
cosh[2(T f G;)?] — cos(2m f/X )

@) =D ki f#0 [10]
i=1

where Gjy is the standard deviation (SD) of the ISI for the
ith channel. Figures 4 and 5 show results obtained using
Equation 10, for m = 1 and with different stimulation rates
and coefficients of variation (¢; = OixA,) of the ISI. In order
to compare the spectral shifts for different values of the
mean stimulation rate, for different values of the SD of the
ISI, and for different coefficients of the ISI variation, the
amplitudes of the PDS in Figures 4 and § were normalized
with respect to their maxima. Inspection of these figures
and the corresponding equations indicates the following
features:

1. The PDS, ®,,(f), for Gaussian point processes, has
a high-pass characteristic. The band-pass width is
controlled by the stimulation rate, A, and the coeffi-
cient of variation of the ISI, c¢. This can be seen by
the shift of the EMG spectrum as a function of the
stimulation rate (Figure 5). At higher frequencies,
the PDS, ®,,(f), is almost equal to the mean stimu-
lation rate, A (the normalized spectrum approaches 1
as the frequency increases). This result may be de-
rived from Equation 10, for f—ee,
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Figure 4.

Power density spectra of a Gaussian point process with A = 24pps
and different values of ¢, where ¢ = oxA.

n

lim @, (/)= A=k, forc,=0  [11]
freo

i=1

where A, is a pooled stimulation rate.

2. The PDS, ®uu(f), has peaks at harmonics of the fir-
ing rate, depending on the form of the ISI pdf f,(x).
This result may be inferred from Equation 10. With
f=kh,k=1,2,..., the cosine factor in Equation 10
produces the peaks in the PDS.

3. The magnitudes of the peaks of the PDS that are
caused by the mean rate of stimulation depend on
the coefficient of variation of the ISI. This may be
illustrated by substituting f = kA; into Equation 10
as follows:

- sinh[2(7t k¢;)?]

(D " k, = 7\1' N
k. €) l.; cosh[2(m kel - 1"

20 [12]

When ¢; is small, the peaks of the PDS become
large. The number of distinct peaks depends on the value
of ¢;. This statement may be verified using Equation 12,
and it is illustrated in Figure 4. In the physiologic case,
peaks of the PDS are pronounced in a frequency range
from 0-120 Hz, depending on the value of ¢j, and the
shape of the CMUAP. This observation implies that the
effect of ISI statistics on the power density spectrum of
the CMUAP is mainly a low-frequency effect as re-
ported in the literature (15,21).

4. The local minima in the PDS are given, at f = kAi/2
(k=3,5,7,...), by

1.0

i

0 20 40 B0 80 100 120 140 180 180 200 220 240
FREQUENQCY (Hz)

Figure 5.
Power density spectra of a Gaussian point process with ¢ = 0.1 and
different values of A.

L sinh[(7t kc) -
D, k,c) ZE 7Li sinhl(r C; 2] .
= cosh[(m k¢ Al + 1

f#0 [13]

The magnitudes of these minima will change as a func-
tion of ¢; and k as speculated by Christakos (35).

. The PDS becomes discrete (line spectrum) as the
coefficient of variation of the ISI approaches zero,
0;x—0. Taking the limit 6;,—0, Equation 10 gives

lim ®,, (f)=co,f=tkh;j, k=1,2,.. [14]

G

(

0, other values of f# £ kA;, k=0, 1,2,...

When o;, =0, (i=1,2,.m) or ¢; =0, the signal
becomes periodic, and a periodic signal always has a
line spectrum as shown above.

6. With 6;, = ¢ and A = A, Equation 10 becomes

sinh[2(% £ 6)?]
Peosh[2mfo)?] -1

q)uu(f ):7\' f#0 [15]

This result shows that the spectrum of a stimulation
protocol involving m channels with the same mean
stimulation rate A (but not necessarily identical stimula-
tion patterns), and the same SD o, will be equal to m
times the spectrum of a stimulation protocol involving
a single channel with A and ©.
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A Model for CMUAP

If several motor units are stimulated simultaneously
in a ventral root filament, the resultant CMUAP, p(t), is the
sum of the action potentials of the individual motor units
in the filament. The CMUAP of a given filament will be
invariant in form because of the fixed number of motor
units activated, and the ‘all-or-none’ nature of action po-
tential generation in motor units. The p(t) will not be
identical to the muscle fiber action potential owing to
diameter, endplate, and threshold dispersion, and it may
not be identical across filaments for the same reasons, and
because of the variation in the number of motor units in an
activated filament. However, in general, the CMUAP may
be expressed by summing the MUAPs activated in a single
channel. One expression of a CMUAP that agrees well with
observed data, and for which the spectrum can be derived
analytically, is as follows:

L
p)= hyt—1,) [16]

n=1

where 1, is a time shift (t; = 0), L is the number of motor
units in a single channel, and £, is the nth motor unit action
potential in the filament which can be modelled by (27)

{2—-b,tyexp (b, 0=t

= 1
Ky {O, otherwise. [17]

In this Equation, b, is a constant, or a shape factor,
which is determined by the size of motor units and the
distribution of fiber types in a muscle. It can be shown that

the spectrum of this CMUAP is characterized by the band-
width control parameter b, and the time shift T,

L
P(f)=), H(f exp (=j2nf1,) [18]

n=

where H(f) is the Fourier transform of the MUAP £,y and
is given by

=2 [19]
(j an— bn)3

By properly selecting the parameters b,, and n=

1,2,...L, a spectrum similar to that of a real CMUAP can be

derived. In the ideal case, one stimulation channel should

only include a single motor unit. In such a situation, T, =
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0, P(f) = H(f) and the amplitude of the spectrum may be
obtained using

ey
PN =y 1201

Spectra from Equation 20 with different values of the
parameter b are shown in Figure 6. The spectrum shifts
toward higher frequencies with increasing values of b.

Effects Of Interaction Between CMUAP and ISI
Statistics On Frequency Parameters

Effects on the EMG Spectrum

After having examined the properties of the IST sta-
tistics and the model for the CMUAP, it is possible to study
the effects of interactions between the IS statistics and the
CMUAP on the PDS of the EMG signal. Equation 21
shows the EMG spectrum of an ENMS with a Gaussian
ISL

- B = 400 '

[/2Rw i)

L H £ H L L i

0 20 40 80 80 100 120 140 180 180 200 220 240

—
— - 900

P

D

S

] 40 80 120 160 200 240 280 320 360

FREQUENCY (Hz)

Figure 6.

Power density spectra of a MUAP with values of the parameter of
b =400 and b = 900.
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(Dyy( =

m A 2m f)2sinh2(n £ 5,)?]

i=1 {cosh[Z(nfoi)z] — cos(2T f/A )] {(217:]”)2 + b,2§3

f#0 [21]

The EMG spectrum in Equation 21 is plotted in Fig-
ures 7a, 7b, and 7¢ for a CMUAP with » =900 and in
Figure 8 for a CMUAP with b = 400, for different values
of A and o,. These figures illustrate the changes in the EMG
spectrum associated with the ISI statistics under various
conditions. The influence of the ISI statistics on the PDS
is mainly concentrated around the low-frequency region
when G is small (Figures 7a and 8). Peaks are introduced
at multiples of the firing rate, as observed experimentally
in electrophysiological studies (16,21). Such changes in
the PDS as a function of the ISI statistics may reflect
variations in activation. For example, when activation lev-
els increase, it is expected that the firing rate will increase,
and as a result, the peak of the spectrum will shift toward
higher frequencies. It is also noted from these figures, and
the corresponding equations, that the magnitude of the
peaks of the PDS depends on the coefficient of the ISI
variation.

With a Gaussian ISI, 6;, = 6 and A; = A, Equation 9
becomes

sinh [2(% f6)?] 2 PLF)

2
cosh [2(m fo)2] — 1 < L f# 0[22]

q)_yy( f ) =L

1

Equation 22 gives the PDS of a distributed, random
ENMS, where stimulations in each channel have similar
rather than identical statistical properties. When the
CMUAPs are approximately the same across channels, the
PDS of the EMG signal has the same form as that of an
individual channel, except that the multichannel PDS is
scaled by a factor m, where m is the number of channels
used in the ENMS. This result represents the so called
grouping effect of action potentials and has been reported
in electrophysiological studies (35).

Effects on the Median Frequency

In order to quantify changes in the myoelectric spec-
trum as a function of the firing rate and SD of the interspike
interval, the median frequency, fumeq, of the signal was
calculated numerically using Equation 21 (withm = 1) as

wo

A

o] 40 80 120 160 200 240 280 320 360

| — b-800 '

®nov

L ) : L ;
0 40 80 120 160 200 240 280 320 360

*

noo

0 40 80 120 160 200 240 280 320 360
FREQUENCY (Hz)

Figure 7.

Influence of the ISI statistics on the PDS of the EMG signal: (a)
PDS of a Gaussian point process with & =20pps; (b) MUAP with
parameter b = 900; and, (c) PDS of the EMG signal.

a function of A. The plots of the median frequency against
A are shown in Figure 9 for different values of oy and in
Figure 10 for different values of the parameter b.

The relationship between the median frequency of the
EMG spectrum and A is nonlinear, especially for small o.
This result is associated with the nonlinear relation be-
tween @, (f) and A, as indicated in Equation 21, and in
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Figure 8.
Effects of changes in the coefficient of variation of the ISI on the
PDS of the EMG signal with A = 20pps.

Figures 8 and 9. For large values of G,, the change in the
median frequency as a function of A becomes small (e.g.,
Figure 9, 6, = 8ms), because the fact that the effect of
changing A on the EMG spectrum decreases with increas-
ing oy. Nevertheless, in all cases, the median frequency
tends to increase with increasing A. These data support
experimental results reported in the literature (21).

The observation that changes in the median fre-
quency, as a function of A, become small for large values
of the oy is further demonstrated theoretically in the Ap-
pendix using m = 1. It was found that for large values of
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Figure 9.

Median frequency of PDS versus A for ox =2, 3 and 8 ms. (Sym-
bols: the calculated median frequency, Lines: the regression line
approximation).
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the SD of the IS1, the median frequency relates to parame-
ter b of the MUARP as,

f;ned <5 ‘ b‘

Equation 23 indicates that the median frequency is
independent of the rate of stimulation (or firing), when the
values of the o, are large, but depends on the CMUAP
through the parameter b. The larger the parameter b, the
higher the median frequency. In general, the median fre-
quency depends on both stimulation (or firing) statistics,
and the MUAP, and thus is an indicator of the combined
effects of nerve stimulation and muscle response to the
nerve stimulation.

Experiments on Cat Soleus Muscle

Experimental data were obtained from the cat soleus
muscle. Cats were anesthetized and placed in a stereotaxic
frame (43) in a prone position with the hind limbs rigidly
fixed. Ventral roots L.7 and S1 were exposed, separated,
and carefully divided into bundles (29). Each of these
bundles was hung over a separate bipolar electrode for
individual and simultaneous distributed stimulations. The
stimulations, using patterns generated from computer
simulations, were applied to the ventral root bundles via
the electrode. EMG signals from stimulations of each of
the 10 nerve bundles individually (finger prints), and the
simultaneous stimulation of all 10 bundles were measured
using a pair of indwelling bipolar electrodes. EMG signals
were digitized on line and stored on a computer. Blood
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Figure 10.

Median frequency of the PDS as a function of A for different val-
ues of the MUAP parameter b.
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pressure, core temperature, and muscle temperature of the
cats were monitored continuously and were kept constant
throughout the experiment.

The power density spectrum of each experimental
EMG signal was estimated using a 512-point fast Fourier
transform (FFT) algorithm, and then averaged over four
consecutive segments in order to reduce estimation errors.
Figure 11 shows two representative spectra of experimen-
tal EMG signals obtained using the same value for yt and
different values for ¢. The experimental results support the
mathematical predictions discussed in the previous sec-
tions. Specifically, the EMG signal spectrum shows peaks
at the mean stimulus rate and its multiples when the coef-
ficient of the ISI variation is small; and the envelope of the
PDS is determined by the CMUAP waveform and the
details of the ISI stimulus statistics.

RESULTS AND DISCUSSION

General Discussion

Figure 8 shows the effects of changes in the SD of
the ISI on the single channel EMG spectrum. A decrease
in the SD of the ISI produced an increasingly more discrete
spectrum of the EMG, indicating that variations of the ISI
play an important role in controlling the details of the
corresponding EMG spectrum. This finding was supported
by our experimental results (Figure 11). A comparison of
the experimental results of the ENMS (Figure 11) with the
spectra obtained during voluntary contraction in the human
rectus femoris (Figare 2) indicates that the EMG spectrum
obtained using ENMS with a coefficient of variation of the
IST of 12 percent is similar to that obtained for voluntary
contractions. Therefore, in situations where it is necessary
to produce EMG spectra and frequency parameters similar
to those obtained during voluntary contractions, it is sug-
gested that variations in the inter-stimulus intervals be
introduced.

The theoretical results of this study indicate 1) that the
EMG spectrum shows peaks at the mean stimulation rate
and its multiples; 2) that the magnitude, or clarity, of the
peaks at the mean stimulation rate and its multiples de-
pends on the coefficient of variation of the ISI, and further,
that the PDS approaches a line spectrum when the coeffi-
cient of variation of the IS becomes small (Figure 8); and,
3) that the envelope of the PDS is primarily determined by
the shape of the CMUAP, and is virtually independent of
the IST statistics when the coefficient of variation of the IS1
is large. This result is illustrated by the similarity of the
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Figure 11.
PDS of EMG signals obtained from random ENMS with A = 20pps
and different values of c.

envelopes of the spectra in Figures 7 and 8. It has been
found that, from a mathematical point of view, there is a
distinct difference in EMG spectra between periodic and
random ENMS. It is possible to obtain “normal” EMG
spectra (as defined here) with random ENMS, but not with
periodic ENMS.

The median frequency of the PDS depends on the
interaction of the firing (or stimulation) statistics and the
MUAP. The results reported here imply that it is possible
to use the median frequency as a selective indicator of
changes in the MUAP by increasing the SD of the inter-
stimulus interval in distributed random ENMS to suffi-
ciently large values (8 ms or higher, see Figure 9). This
approach may be used when attempting to determine quali-
tatively the contribution of variations in CMUAP to a
change of the median frequency using random ENMS.

In summary, three features distinguish the present
study from previous ENMS investigations (6). First, em-
phasis was placed on introducing random ISI into the
ENMS. Second, the distributed multichannel stimulation
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approach allows the simulation of recruitment of motor
units according to the size principle. This is an important
feature of physiologic activation. Third, the effects of the
mean stimulation rate on the EMG spectrum and the fre-
quency parameters of stimulated muscles were studied
analytically for varying coefficients of variation of the ISI
and for varying shapes of the CMUAP. The theoretical
findings presented in this study are supported by the ex-
perimental findings using a distributed, random ENMS
approach.

Clinical Relevance

The median frequency of the EMG spectrum has been
used widely to assess muscular fatigue. When muscles
fatigue, the median frequency of the EMG signal tends to
decrease (8). However, in experiments using voluntary
muscular contraction, it is difficult to determine how much
of the change in the median frequency is caused by chang-
ing in the local muscle properties (as reflected in the
MUAP) and how much is caused by the decrease in firing
rates of motor units. Distributed random ENMS provides
a possibility for separating these two factors that influence
the median frequency by choosing the SD of the ISI
appropriately.

CONCLUSION

The distributed, random ENMS approach described
here can be used to study the properties of EMG spectra in
situations approximating voluntary contractions; however,
simply reproducing EMG spectrum of voluntary contrac-
tion is not sufficient to guarantee mechanical muscle be-
havior similar to that of voluntary contractions. The effect
of changes in stimulation parameters, such as the mean
stimulation rate, the number of stimulation channels, and
the coefficient of variation of the ISI, on muscle force,
EMG, and VMG signals must be determined analytically
and experimentally.
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APPENDIX

LIST OF SYMBOLS

A—the average amplitude of the MUAP

b—the shape factor of motor unit action potential
c—the coefficient of variation ¢ = G, A
CMUAP—the compound motor unit action potential
El ]—the expectation operator

ENMS—electrical neuromuscular stimulation
F(x)—the probability density function of random inter-stimulus interval x
F{(f)—the Fourier transformation of f (x)

h(t)—the CMUAP

IST—the inter-stimulus interval (or the inter-spike interval)
m—the number of stimulation channels
MUAP-—the motor unit action potential
pdf——probability density function

PDS—power density spectrum

P(f)—the Fourier transform of p(z)

pps—ypulses per second

p(t)—the averaged MUAP

r(t)—the renewal point process

SD-—standard deviation

T, —the excitation time instant

T,—the duration of the MUAP

var| ]—the variance operator

x—the ith ISI

A—the mean stimulus (firing) rate

o,—the standard deviation of the ISI

O(t)—the autocorrelation function

O(f)—the power density spectrum

The Relation between Median Frequency and the Parameter b
When ¢ is large, we have from Equation 22 the approximation
i @2nf)?
(I)\\ (f) = Z Aixi ____—f)‘_3
=1 enf)r+ b

According to the definition of the median frequency, we get

Jinea I 21 )2 I )2
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For m = 1, the above equation reduces to
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Solving the definite integrals on both sides (with x = 21tf,,.; and e = b?), we get

X X 1 X T
+ -+ ——arctg | = | - —5=0 [A4]
rl(anp+e]  2meAm?t el e (211:6]/2] 4c%

{
For x < 2me”, we have

= - +
ome” | 2me”s  3(2me’s)?

artg( al j s L [A5]

Using the first order approximation in Equation (A4) and considering e = b?, we obtain

5

X x* 3x°? x?
- + - -+ 2x-m*b=0 A6
20mby 42t 2w2n? 8b [A6]

Substituting f,.; = /271 into the above Equation (A6), we finally get

5 4 3 2
f;ned Ic_ ﬁt_le_él _fﬂg{ E_ fmed Zi;?lf‘g’ _ -
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The upper bound of the root Y for the general equation

apX"+a X'+ +a,_x+a,=0 [A8]

is given by

MES! +~1—max{!a1 Jag] s layl| [A9]
ag

and
fmedSs |b| [AlO]

A more specific root of Equation A10 could be obtained using the Newton Integration approach. For our purpose, Equations A7
and A10 are sufficient to indicate that the median frequency is independent of the stimulation (or firing rate) for large values of the
standard deviation of ISI but depends on the CMUAP, which supports the observations made in Figure 6 and Equation 21.
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