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Abstract—Active participation of users in the evaluation of
technical aids is essential, since they are part of the interface
with the system and constitute a fundamental source of design
criteria. In this study, 88 active users of wheelchairs were
interviewed by means of a written questionnaire about their
opinion concerning the adaptation of his/her wheelchair to the
office workplace. A conceptual framework was introduced
linking objective measurements of the user-wheelchair inter-
face to the subjective preferences expressed by the user.
Discriminant analysis was used in order to select and quantify
the importance of the most significant factors influencing the
user’s opinions. Fuzzy logic was introduced for the qualita-
tive interpretation of the relationship between those signifi-
cant factors, based on an inductive algorithm for generating
fuzzy rules. Fuzzy logic enables a person to model the
uncertainty within the subjective formulation of knowledge or
opinions. From the results, a mismatch between actual
performance of conventional wheelchairs and requirements of
office work became evident. The proposed methods make it
possible to determine reliable rules explaining subjective
preferences; thus, they provide a flexible means of interpret-
ing user questionnaires and obtaining new design criteria.
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INTRODUCTION

The common interest in design enhancement of
technical aids for persons with disabilities, aiming at
improving product quality and user level of satisfaction,
has led to the development of new evaluation tech-
niques. As an illustration, considerable efforts have
been devoted to the area of the technical assessment of
wheelchairs. Technical standards have been developed
since the mid-1960s due to the concern of consumers,
manufacturers, and governments for the safety and
availability of quality products (1), resulting in a set of
wheelchair standards approved by several organizations
(ISO, CEN, ANSVRESNA, and so forth). Various
projects have also been undertaken focusing on the
ergonomics of wheelchair driving (2), as well as on the
set-up of a methodology for consumer evaluation of
wheelchairs (3).

Objective evaluation is primarily based on criteria
established from domain experts and knowledge ac-
quired from controlled experiences. Laboratory experi-
ments are an important source of information, but they
are costly due to the instrumentation needed, and are
sometimes inaccurate because of the limited number of
test subjects and the difficulty of simulating real
conditions. Furthermore, assessment criteria cannot be
optimized, or sometimes even discovered, without the
participation of users encouraging the detection of
design faults and the proposal of new solutions (4). The
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same idea appears in the conclusion of a recent study
funded by the European Community addressing the
development of technological tools and applications for
people with disabilities and older people (the HEART
project): ‘‘the need for user representatives to be
involved in all instances where issues on disability are
treated, in order to influence policies and programmes,
such as creating methods for user feed-back on product
development’” (5).

Consequently, alternative approaches employing
user surveys may be a proper means to tackle this
problem. A typical measurement tool for subjective
assessment in field analyses is a written or oral
questionnaire, in which the preferences of the users,
regarding several ergonomic and design topics of the
technical aid, are studied. Current methods of interpreta-
tion are based mainly on descriptive statistics, such as
tables of contingency, means, variances, and so forth.
When the aim is to simultaneously explore several
design variables, multivariate statistical methods (i.e.,
Logistic Regression or Discriminant Analysis) are the
most appropriate.

The advantages of using statistics are the handling
of quantitative data, the good empirical and statistical
foundation of the methods and their powerful capability
of generalization. The major drawbacks are the need to
check relevant a priori conditions in order to be applied
(normality, statistical independence, and so forth), and
the expertise required to process results. Moreover,
statistics are based on a clear definition of the objects,
factors, and categories involved in the study, which
must be specified without ambiguity. However, when
dealing with preferences and opinions, the use of
accurate linguistic terms is neither adequate to formu-
late questions to users, nor the most suitable way of
processing their answers. An alternative approach offer-
ing a friendlier interface for the formulation of *‘fuzzy’
concepts could be of benefit for the identification of
user preference in assistive technology.

Fuzzy logic was first introduced by Zadeh (6) as a
result of the logical paradoxes detected in common
engineering applications. Fuzziness measures the extent
to which an event may occur or to which an entity may
be classified as something. Fuzzy logic permits vari-
ables to belong to more than one set or class, thus
enabling computers to cope with vague concepts (e.g.,
the temperature of a room might be appropriate, but a
bit high at the same time). In this way, the development
of a complex mathematical model of any technical

system can be replaced by a simpler qualitative
representation.

The fundamental feature of fuzzy logic is its
capability to model the membership of an element to a
fuzzy set by means of a continuous function. Whereas
the membership is either complete or absent in tradi-
tional terms, this relationship can continuously change
in fuzzy logic from inexistent to full membership. Fuzzy
sets can be linguistic concepts difficult or even impos-
sible to designate in exact terms (e.g., ‘‘big,”” ‘‘very
small,”” ‘‘quite good,”” etc.), but also other sorts of
variables that are fuzzy in nature (e.g., all variables
describing a person’s psychological aspects). A mem-
bership function p, (x) assigns a degree of certainty in
the interval [0; 1] to the statement ‘‘Element x belongs
to the fuzzy set A.”” In this way, fuzzy logic simplifies
the formulation of knowledge, since it enables the
generation of rules including fuzzy variables, so that the
expert is less constrained in expressing and interpreting
knowledge. Figure 1 shows the association of three
linguistic variables (fuzzy sets) to a continuous dimen-
sional variable.

Most applications of fuzzy systems are intended
for the areas of process control and data analysis (7).
Particularly in the medical domain, the use of fuzzy
logic has made knowledge acquisition and manipulation
easier, enabling the development of new expert systems
that are more robust in their way of inferencing
responses and more human-like in the process of
obtaining and producing knowledge (8-10). Following
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Figure 1.

Three membership functions associating three linguistic terms
(““light,”” ‘‘average,”’ and ‘‘heavy’’) to the continuous and measur-
able magnitude “‘weight.”” There are regions in the weight axis
where the membership to a fuzzy set is multiple, which means that
one specific weight value can be, for instance, medium and heavy to
different degrees at the same time.
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this approach, fuzzy expert systems could also be
implemented for the qualitative assessment of technical
aids, since information for their design can be mainly
provided either by experts or by users.

One particular problem of a fuzzy system is the
way of determining its rules. Most systems are designed
from the experience of domain specialists or from the
specific knowledge found in the literature. Only when
this special knowledge becomes available, can the
approach lead to a useful fuzzy system. Inductive
systems, on the other hand, generate knowledge rules
directly from the information gathered by means of
measurements, providing assistance when specific
knowledge is either elusive to obtain or too subjective.
Inductive systems are designed with the help of a
training algorithm, which tries to match optimally the
model’s predictions to the real observations fed into the
system during training. In this context, neuro-fuzzy
networks (11-13), adaptive clustering techniques (14—
16), and genetic algorithms (17-19) have been pro-
posed. A major drawback of inductive expert systems is
their dependency on the training data set, which makes
validation with other data necessary.

This article presents a new algorithm for the
automatic generation of fuzzy rules from measured
information either of physical origin (e.g., dimensions
of the technical aid) or of subjective nature (e.g., user
opinion). Here it is applied to the qualitative interpreta-
tion of preferences of users of wheelchairs concerning
their occupational activity at office. A questionnaire
carried out among 88 users working in different offices
was used to obtain the data, and the results related to
the functional and ergonomic factors that played a key
role in global user satisfaction are presented to demon-
strate the validity of the proposed methods.

METHODS

The first part of this section describes a question-
naire that was used to characterize the user-wheelchair
interface and to obtain user feedback in a field study
where data were obtained. The second part deals with
the theoretical rationale for wheelchair evaluation that
was used to create the fuzzy logic model and the
methods applied to interpret and test that model. The
Glossary, which follows the Appendix, provides defini-
tions of the particular terminology employed throughout
the text.

CLINICAL REPORT: Fuzzy Logic and Techniczal Aids

Field Study
Scope

The questionnaire that was used stemmed from a
previous investigation carried out at the Institute of
Biomechanics of Valencia (20) among active users of
wheelchairs with the aim of determining and quantify-
ing the most relevant problems in the user’s office
workplace, particularly regarding accessibility, furniture
design, and task performance.

The questionnaire was filled in by trained staff
while the user was working. Due to practical reasons,
the measuring process was conducted at the office with
the user seated in his’her wheelchair. That implied
serious limitations and made the determination of some
dimensions (e.g., seat angle) only indirectly possible.
The procedure consisted of the following parts:

* a questionnaire of subjective user preferences

* measurement of anthropometric dimensions of the
user while seated

* measurement of wheelchair dimensions

¢ measurement of other features of the office envi-
ronment.

Since the questionnaire was intended for assessing
the occupational conditions of users of wheelchairs,
some measurements included in the original forms
related to furniture design. From the previous study, it
could be concluded that intervention on workplace
design was not a priority goal in our country, but that
the basic factor influencing user-satisfaction for office
work was the design of the wheelchair itself. Interven-
tion on wheelchair design seemed more sensible in this
context, thus concentrating on variables that configure
this design while not taking any other environmental
factor into consideration for this study.

Questionnaire of Subjective Preferences

Table 1 displays the subjective preferences, asked
of the user about his/her wheelchair, that were consid-
ered valuable for the purpose of the present study. First,
the user was asked about his/her level of satisfaction;
then his/her opinion regarding several functional aspects
was investigated. For this, it was assumed that these
functional aspects influenced the user’s level of satisfac-
tion. Furthermore, the dependence of these functional
aspects on the dimensional variables of the wheelchair-
user interface was analyzed.

User feedback was input in three linguistic levels,
because it was easier for the subject to answer in this
manner. The analysis of the user’s preferences was
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Table 1.
Subjective preference questionnaire.

Preference

Evaluation levels

General satisfaction level regarding the wheelchair

Capability of adjusting the chair according to the
demands of office job

Aesthetic outlook of wheelchair in user’s opinion
Seating comfort for office work

Ease of maneuvering the wheelchair

Ease of overcoming small obstacles

Price-quality ratio in user’s opinion

Ease of pushing the wheelchair

Feeling of safety during wheelchair use

Wheelchair durability considering frequency of repairs

Totally satisfied, Partially satisfied, Not satisfied at all
Good, Bad

Nice, Average, Ugly

Comfortable, Average, Uncomfortable
Easy, Average, Difficult

Easy, Average, Difficult

Good, Average, Bad

Easy, Average, Difficult

Safe, Average, Unsafe

Good, Average, Bad

carried out only in two levels (a positive and a negative
opinion), because the sample size and sample variability
did not allow for a finer categorization in the statistical
analysis.

Measurements of Users and Wheelchair Dimensions

Eighty-eight subjects between the ages of 18 and
55 years (average 36 years), from all over the country,
were analyzed in the study; 54 were men and 34
women. All used manual wheelchairs due to different
pathologies of the users: paraplegia (41 percent),
poliomyelitis (23 percent), tetraplegia (13 percent),
muscle dystrophy (8 percent), cerebral palsy (5 percent),
and other diseases (8 percent).

Most subjects (65 percent) showed normal mobility
in the upper limbs and 75 percent had paralysis in the
lower limbs. The functional condition of the subjects
investigated was rather satisfactory. A functional ques-
tionnaire was administered to each subject regarding
several activities of daily life, in which the majority (63
percent) reached the maximum score of 60 points in the
scale.

The sort of occupational activities carried out by
the subjects were always concomitant to the use of a
desk and other pieces of office furniture and often also
of a computer. Fifty-one percent of the subjects
interviewed reported some kind of body discomfort
referring its origin to their job rather than to their
disabilities. The dimensions of the subjects were mea-

sured with a Martin anthropometer, but were not
included in the modeling process.

The wheelchairs that were analyzed were all of
manual propulsion and their use was general and not
restricted to only the office. Figure 2 depicts the
wheelchair dimensions that were determined by means
of a tape measure. Seat angle was calculated from
geometrical considerations using the anterior (FW) and
posterior seat height (GW) and seat depth (MW).

Since aspects related to the adaptation of the
wheelchair to the office work were ranked by the users
themselves as higher than other aspects related to
mobility, some measurements that might also have been
regarded for the analysis of propulsion, maneuverabil-
ity, or safety, can be omitted in the present study.

Methodology for the Qualitative Modeling of User
Preference

Framework for Interpreting User Preference

The process of ergonomic evaluation of the wheel-
chair was based on assuming the existence of a
deterministic cause-effect chain between the physical
design of the user-aid interface and the final conse-
quences of its use on the subject (comfort/discomfort,
facility/difficulty of use, and so forth). The modeling
process was based on assuming a relationship between
functional aspects of the wheelchair and objective
dimensions of the user-aid interface, and a dependence
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Figure 2.
Wheelchair dimensions measured in the questionnaire.

between those functional aspects and the global opinion
of the user about his/her technical aid.

Figure 3 separates this concept into variables
analyzed, techniques deployed, and results obtained.
Significant functional aspects of the wheelchair that
influenced the global satisfaction of the user were
discovered and ranked in importance by means of a
statistical technique described in the section headed
Selection of Significant Input Variables. Internal
relationships among those factors were modeled by
means of the fuzzy algorithm explained in the section
headed Interpretation of the Relationship Between Input
Variables: Fuzzy Logic. The fuzzy model was then
reduced to a set of rules, which also enabled the
prediction of users’ opinions. Using the same methods,
significant objective measurements of the user-
wheelchair interface were selected and their interrelation
to explain the significant functional aspects of the
wheelchair identified. In the former instance, qualitative
variables (preferences) were used as model inputs,
whereas inputs were of quantitative nature (dimensions)
in the latter.

FW) SEAT HEIGHT (WITH CUSHION)
GW) SEAT POSTERIOR HEIGHT

s

LW) OVERALL LENGTH
MW) SEAT DEPTH

(WITH BACK CUSHION)
NW) ARMREST LENGTH
PW) REAR WHEEL DIAMETER
QW) BACK ANGLE

Different preferences may be expressed depending
on specific user characteristics (i.e., body size, sex, age,
physical condition) or environmental factors (e.g.,
furniture design, working conditions). Since the sample
size was not too large, it was assumed that the
preferences expressed by the interviewed subjects were
independent of each user’s size and functional status,
and the environmental factors. The dimensions of the
subjects were, therefore, not taken into account and only
variables characterizing the user-wheelchair interface
were considered as potentially significant factors (Fig-
ure 2). The error conveyed by this assumption did not
preclude an appropriate interpretation of results.

Selection of Significant Input Variables. Fisher’s
Discriminant Analysis (FDA)

When subjects’ answers are expressed in previ-
ously defined evaluation levels (e.g., easy, average,
difficult), classification techniques can be employed in
order to predict the likelihood of an input parameter
vector to belong to each of these linguistic classes.
Fisher’s Discriminant Analysis (FDA) is a powerful
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Framework for modeling the preferences of user. A cause-effect
chain between objective parameters defining the wheelchair-user
interface and the final opinion of the user is assumed. Global
satisfaction is assessed in the dependence of several functional
factors; significant functional factors are then analyzed in depen-
dence of objective dimensions of the wheelchair-user interface.

linear multivariate classification tool used to maximize
the ratio of variability observed between different
classes and the variability observed within the classes
(21,22). The relative importance or discrimination
potential of each input parameter can be estimated by
means of the absolute value of the standardized
discriminant coefficients (SDC) a; ;.

If K is the total number of classes defined and n
the number of inputs, FDA calculates f=min (K—1,n)
projection axes z; (j=l,..f/) of maximum separation
between the groups. Each projection axis z; represents a
new standardized discriminant component, defined by a
weighted sum of the original (standardized) parameters
x; (i=1,..,n) as shown in Equation 1.

2 .(xi—/\?i).

3= 20‘],,' — ] =

i=1 Ui

By applying an iterative variant of Fisher’s algorithm,
the selection of a reduced subset of discriminant
parameters can be optimized. In our study, the subjec-
tive preferences considered were grouped in two classes
representing two evaluation levels. Five input param-
eters resulted significantly in the analyses performed
and only the four most discriminant parameters were

included as inputs in the subsequent fuzzy modeling
process.

Interpretation of the Relationship Between Input
Variables: Fuzzy Logic

Each fuzzy system links together several inputs to
one output variable. The design of the fuzzy expert
system consisted of the following steps: 1) fuzzification
of model inputs and model output, 2) application of an
inductive algorithm to identify the fuzzy qualitative
model and interpret the user’s preference, and 3)
determination of a simplified rule-base enabling the
model prediction.

Fuzzification

Input fuzzification converts the input and output
variables into fuzzy variables, following the transforma-
tion defined by the membership functions. In this study,
three fuzzy linguistic variables were considered to
synthesize each numerical input value (Figure 4a). The
term ‘‘low’” has a membership function that is activated
for values below the mean of each input variable,
achieving full membership for values under the fifth
percentile. The term ‘‘medium’ has its maximum
membership at the mean, with activation reaching until
the percentile 5 and 95. Finally, the term ‘‘high,”” has a
membership function that is activated for values above
the mean, with full membership for values above the
95th percentile. Categorical inputs (when a user’s
opinion was regarded as an input variable) were directly
fuzzified by introducing bell-shaped membership func-
tions, because their wider spread rendered more consis-
tent results (Figure 4b).

Output fuzzification was carried out in a similar
way. Since the output response was entered by the
subject in discrete levels (e.g., ‘‘satisfied’”” or ‘‘not
satisfied’’), bell-shaped membership functions were
used. These were symmetrically distributed in the
fuzzification window, as shown in Figure 4c¢ for two
output categories. Hence, the resulting fuzzification
scheme was robust and problem-independent. It was not
sensitive to outliers and could be computed in an
automatic fashion.

Application of the Inductive Algorithm

The algorithm proposed and described in the
Appendix is based on the concept of the adaptive fuzzy
associative matrix introduced by Kosko (15). It works in
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(A) Input fuzzification of numerical parameters with triangular
membership functions starting and ending at the mean value, the 5th,
and the 95th percentile, respectively. (B) Input fuzzification of
categorical variables by means of bell-shaped membership functions
with symmetrical arrangement. (C) Output fuzzification of subjective
dichotomous preferences by means of symmetrical bell-shaped
functions.

an iterative manner by extracting functional rules from a
data set provided during training. Here, this data set
consisted of input parameters, which were measured
from the wheelchair and output responses, that were
asked of each user, so that a qualitative identification of
the preferences was performed, as in a ‘‘black-box”’
approach.

CLINICAL REPORT: Fuzzy Logic and Technical Aids

At each iteration, a sort of “‘fuzzy contingency
table’” (the fuzzy associative matrix, FAM) was updated
with new information linking the measured input vector
to the desired output (see Appendix and Glossary).
After the learning process, the resulting FAM repre-
sented the qualitative model of the system identified,
with every rule characterized by a recurrence and a
reliability score.

The recurrence is proportional to the relative
frequency of use of the rule and reflects its importance
within the training data set for explaining output
responses. The more recurrent a rule, the more often
this rule is required in order to account for the
observations. The reliability indicates the certainty and
correctness of a rule. The more reliable a rule, the less
ambiguous and more accurate the description made by
that rule. Both indices fall in the same real interval [0;
1], but are not necessarily bound together. For example,
the rule ‘‘if the person is tall, the person is a man’’
might be an often recurring rule to explain observations
of daily life, but its reliability is not high, because many
women are also tall, thus constituting evidence against
1t.

The interpretation of this FAM was made by
looking for clusters of similar behavior; that is, by
trying to correlate a specific configuration of input
fuzzy parameters with the same output response. These
configurations thus represented an aggregation of indi-
vidual fuzzy rules that could summarize the behavior of
the system, and since the terminology employed for
their formulation was easy for an expert to understand,
their interpretation was also straightforward.

The time spent on the algorithm in the training
process was relatively short: about 20 seconds for every
user’s preference analyzed using the MATLAB software
package on a PC.

Rule-Base Determination and Model Validation

Fuzzy inference or prediction involves actualiza-
tion of the fuzzy variables after fuzzification and
application of the rule-base using the appropriate logi-
cal operators, resulting in different activation values
for each rule. All fuzzy rules of the base are consulted
and a combined averaged response is given
(defuzzification), with each rule weighted by its reliabil-
ity.

The number of rules in the rule-base was kept low
and built with those fuzzy rules displaying maximum
reliability and recurrence scores of the FAM.
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Table 2.

Significant aspects for the user’s perception of global satisfaction.

Parameter Acronym # Positive # Average # Negative SDC
Opinions Opinions Opinions

Capability of adjusting the chair ADJUST 45 (51%) not asked 43 (49%) 0.57

according to the demands of office job

Seating comfort COMFORT 25 (29%) 54 (61%) 9 (10%) 0.46

Aesthetic outlook of wheelchair in user’s LOOK 16 (18%) 50 (57%) 22 (25%) 0.37

opinion

Price-quality ratio in user’s opinion PRICEQUAL 10 (11%) 40 (46%) 38 (43%) 0.23

Wheelchair durability considering DURAB 29 (33%) 34 (39%) 25 (28%) 0.22

frequency of repairs

SDS = absolute value of the standardized discriminant coefficient.

Validation of the resulting fuzzy rule-base was
carried out three times, each time preserving 25 percent
of the samples for testing and employing the rest for
fuzzy rule induction. Results were then averaged to
assess the predictive behavior of the model.

RESULTS

First, the user’s perception of global satisfaction with
his/her chair was studied. Secondly, two functional
aspects closely related to this perception were analyzed:
adjustability and seating comfort. Other factors regard-
ing mobility could have been investigated with the same
methods, but were not within the scope of the field
study (20).

Assessment of Global Satisfaction

The assessment of the users’ global satisfaction
was confined to two linguistic categories: totally
satisfied or not satisfied. The answers ‘‘partially satis-
fied”” and “‘not satisfied at all’’ were combined, with 36
percent of the users answering ‘‘satisfied”” and 64
percent answering ‘‘not satisfied.”’

The input parameters selected and ordered in
importance via FDA were all of subjective nature,
preserving the original categorization in three linguistic
terms, except for the adjustability, which was mentioned
in only two options (see Table 2). The order of
importance is as follows: adjustability for occupational
purposes, seating comfort, aesthetic outlook, price/
quality ratio, and durability. Only the first four were

utilized in the fuzzy model. Fuzzification of these four
input parameters was accomplished using bell-shaped
membership functions, distributed as shown in Figure
4b. The outputs of the fuzzy model were:
e Output 1 = User is satisfied. The user expresses
satisfaction with the wheelchair.
e Qutput 2 = User is not satisfied. The user is either
partially or completely unsatisfied.

The algorithm for inductive fuzzy rule generation
provided the FAM that is shown in Figure 5. Here, the
theoretical five dimensions of the FAM were reduced to
merely two by combining two input parameters in each
axis and displaying the output of the expert system on
the corresponding cell. The asterisks on both sides of
the output represent the reliability score of the rule. The
absence of an asterisk indicates that there is an
insufficient reliability («<(0.2); one asterisk = low
reliability (0.2=a<0.5); two asterisks = average reli-
ability (0.5=a<0.8); three asterisks = high reliability
(¢>0.8). Finally, the shadowed cells designate those
rules with the highest recurrence (p>0.33-p_..).

By selecting the most recurring and reliable rules,
three fuzzy statements, modeling the subject’s percep-
tion of global satisfaction, were obtained (Table 3.)
With these rules, an average of 81.0 percent of subject
responses could be correctly predicted, with 4.5 percent
indeterminations. An indeterminate response happened
when none of the rules in the fuzzy rule-base got an
activation superior to 0.01 per membership function. As
a reference, FDA delivered a classification accuracy of
83.0 percent using the same qualitative input parameters
codified in an ordinal scale.
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Fuzzy rules expressing the user’s perception of global satisfaction depending on the input preferences.

Rule Recurrence p Reliability o
IF ADJUST = GOOD & COMFORT = GOOD & LLOOK = GOOD 0.28 0.98
THEN OUTPUT 1 (user is satisfied)

IF ADJUST = BAD & COMFORT = NORMAL & LOOK # 020 1.0
NORMAL & PRICEQUAL = BAD THEN OUTPUT 2 (user is not

satisfied)

IF ADJUST = BAD & COMFORT = BAD & LOOK = NORMAL & 0.10 1.0

PRICEQUAL = BAD THEN OUTPUT 2 (user is not satisfied)

Table 4.
Wheelchair parts more frequently criticized for not being
adjustable.

Parameter Assessed Incidence
Back angle 48%
Seat width 42%
Seat height 41%
Armrest height 36%
Leg-to-seat surface angle 34%

Assessment on Functional Aspects

Adjustability of the wheelchair to the typical office
tasks was the most discriminant factor associated with
global wuser satisfaction. However, in the original
questionnaire, this factor was assessed by asking the
user to identify those parts that needed to be adjustable
by responding in yes/no answers. Hence, the methods
based on FDA and fuzzy logic were not applicable;
instead a descriptive analysis with incidence rates is
presented (Table 4). According to user opinion, the
features that most urgently needed to be made adjust-
able were back angle, followed by seat width, seat
height, and armrest height. With respect to the seat
width, it should be noted that most wheelchairs are
generally ordered to a specific size and are hardly ever
adjustable.

Seating comfort was assessed for two subjective
levels: the seat was either comfortable or it was not.
Since a part of the interviewed users (27 out of 88) had
removed their wheelchair armrests, only wheelchairs
provided with armrests were considered for this analysis
in order to avoid eventual bias. The categories ‘‘average

comfort’” and ‘‘uncomfortable’’ were combined, yield-
ing a response of 17 (28 percent) comfortable and 44
(72 percent) average or not comfortable wheelchairs.

From all wheelchair dimensions shown in Figure
2, the five most significant input parameters selected via
FDA are shown in Table 5. The first most discriminant
variables, namely seat depth (SEATDPH), ground-to-
back height (BACKHGT), ground-to-armrest height
(ARMHGT), and seat angle (SEATANG), were used
for fuzzy modeling. Fuzzification of these input param-
eters was accomplished using triangular membership
functions, with corresponding maxima set at the 5th
percentile (p-5), at the mean value, and at the 95th
percentile (p-95). The possible outputs of the fuzzy
model were:

¢ Qutput 1 = Seat is comfortable. The seat was
perceived as being comfortable for office work.

* Qutput 2 = Seat is not comfortable. The seat was
not perceived as being comfortable for office work.

The algorithm for inductive fuzzy rule generation
provided the FAM that is shown in Figure 6. The
display format is identical to Figure 5. By selecting the
most recurrent and reliable rules, the fuzzy expressions
of Table 6 could be derived. With these rules, an
average of 77.0 percent of subject responses could be
correctly predicted, with no indeterminations. As a
reference, FDA reached a score of 77.1 percent of
correct hits using the five numerical input parameters
listed in Table 5. Further functional aspects, such as
aesthetic outlook and price-quality ratio, though actually
relevant for the user’s global satisfaction, were not
analyzed in this context, because of the difficulty in
correlating these aspects with objective dimensions of
the wheelchair.
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Table 5.

Critical dimensions for seating comfort in office work.

Parameter Acronym Mean/cm p-5/em p-95/cm SDC
Seat depth (MW) SEATDPH 422 38.0 46.0 0.59
Ground-to-back height (HW) BACKHGT 84.6 78.1 89.8 0.45
Ground-to-armrest height (JW) ARMHGT 70.2 64.2 72.0 0.38
Seat angle SEATANG 4.8° —1.4° 14.6° 0.36
Ground-to-footrest height (KW) FOOTHGT 15.9 12.0 26.6 0.31

SDC = absolute value of the standardized discriminant coefficient.

Table 6.

Fuzzy rules explaining the seating comfort in dependence on the input dimensions.

Rule

Recurrence p Reliability o

IF SEATDPH = HIGH & ARMHGT = HIGH & SEATANG = HIGH 0.40 0.97

THEN OUTPUT 1 (seat is comfortable)

IF SEATDPH = HIGH & BACKHGT = MEDIUM & ARMHGT = 0.07 0.54
HIGH & SEATANG = MEDIUM THEN OUTPUT 1 (seat is

comfortable)

IF SEATDPH = LOW & BACKHGT = MEDIUM & ARMHGT = 0.18 0.98
MEDIUM & SEATANG < HIGH THEN OUTPUT 2 (seat is not

comfortable)

IF SEATDPH = MEDIUM & BACKHGT = HIGH & ARMHGT = 0.07 0.93
MEDIUM & SEATANG = LOW THEN OUTPUT 2 (seat is not

comfortable)

IF SEATDPH = MEDIUM & BACKHGT = MEDIUM & ARMHGT 0.05 0.63
= HIGH & SEATANG = LOW THEN OUTPUT 2 (seat is not

comfortable)

DISCUSSION

Design Criteria Based on User Preference

Although a great variability exists among indi-
vidual physical factors and preferences, some general
concepts are known to apply especially for active users
(23,24). Interpretation of the user’s preferences was
made irrespective of the user’s characteristics by
regarding the recurrence and reliability score of each
rule in the resulting FAM. The aim of the study was not
to predict the user’s behavior, but to validate the
usefulness of the approach for the simplified interpreta-
tion of users’ preferences. Additionally, some basic
design recommendations for wheelchair manufacturers,
though less relevant in this preliminary work, could be
easily found and translated into common language.

In order to obtain significant results in classifica-
tion and due to the limited sample size (88 interviewed
subjects), users’ responses were always divided in two
categories (by eventually combining two response
labels), thus improving the power of the experiment.

Global satisfaction was mainly affected by adjust-
ability for occupational purposes, seating comfort,
aesthetics, price-quality ratio, and durability. This pre-
sented a sound picture of the collective sampling:
individuals working at offices with good functional
capabilities, great concern for an ergonomic, attractive
and well-adapted occupational environment, average
income, and worries about frequent wheelchair repairs.
It should be noted in this context that the ranking of
preferences and evaluation of rules explaining a purely
subjective opinion are not very common in previous
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LOOK
ASSESSMENT OF GOOD NORMAL BAD
GLOBAL SATISFACTION PRICEQUAL PRICEQUAL PRICEQUAL
GOOD | NORMAL | BAD | GOOD | NORMAL | BAD | GOOD | NORMAL | BAD
Goop 1 1 1 1 1 1 1 1 1
GOOD | COMFORT | NORMAL 1 1 1 1 1 1 2 1 2
ADJUST BAD 1 1 1 1 1 2 2 2 1
GOoOD 1 1 2 2 1 2
BAD COMFORT | NORMAL 2 2 2 2 2 2 2 2
BAD 2 2 2

1: USER IS SATISFIED
2: USER IS NOT SATISFIED

Figure 5.

Fuzzy rule base for modeling the global satisfaction of the user. “*1”” denotes a positive opinion and ‘2’ denotes a
negative one. An increasing number of asterisks denotes a higher reliability.

literature, because of the difficult formal handling. FDA
served to select and rank significant factors influencing
the user’s perception of global satisfaction and the
inductive fuzzy algorithm allowed the interpretation of
the internal dependencies between those factors.

The possibility of adjusting some parts of the
chair—not frequently available in the sampled wheel-
chairs—resulted in the most important factor affecting
the user’s global satisfaction (SDC=0.57), followed
by seating comfort (SDC=0.46), aesthetic outlook
(SDC=0.37), price (SDC=0.23), and durability
(SDC=0.22). Other relevant aspects of wheelchair
design (e.g., ease of propulsion, maneuverability, safety)
did not appear in the study as key factors, because the
questionnaire was focused on working conditions and,
on the other hand, standard wheelchairs were actually
less prepared for their adaptation to the workplace than
to the restoration of mobility.

The main conclusions that could be drawn from the
FAM in Figure § are:

1. Poor adjustability of the wheelchair was the most
common reason to dislike the chair. If this
negative aspect appeared together with average or

poor seating comfort, the chair was usually
rejected. Wheelchairs that were not adjustable,
should at least be inexpensive and attractive in
order to be acceptable to the user.

2. Easily adjustable chairs, with a seat that was also
comfortable, were generally well-considered by
the user. However, the esthetic outlook played an
important role in this group. Inexpensive chairs
with an unpleasant appearance and average or poor
seating comfort tended to be evaluated poorly by
the user. Expensive chairs usually led to a less
reliable user response.

A reduced set of fuzzy rules rendered more than 80
percent of correct predictions, which confirms the
graphical impression of the FAM showing two general
patterns of behavior: a group of satisfied users with
easily adjustable, comfortable, and attractive wheel-
chairs, and another category of users with hardly
adjustable and expensive wheelchairs.

With regard to adjustability, it was remarkable that
the parts of the wheelchair that were strongly demanded
to be adjustable were precisely those parts that actually
should be adjustable in a well-designed conventional
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ARMHGT
ASSESSMENT OF LOW MEDIUM HIGH
SEATING COMFORT SEATANG SEATANG SEATANG
LOW | MEDIUM | HIGH | LOW | MEDIUM | HIGH | LOW | MEDIUM | HIGH
Low 2 2 1 2 2 2 1 1 1
Low BACKHGT MEDIUM 2 2 2 2 2 1 1 1
HIGH 2 2 2 2 2 2 2
Low 1 1 1 1 2 2 2 2 1
SEATDPH | MEDIUM | BACKHGT MEDIUM 2 2 1 2 2 2 2 1 2
HIGH 2 2 1 2 2 2 2
Low 1 1 2 1 1 2 1 1 1
HIGH BACKHGT MEDIUM 1 1 1 2 1 2 1 1 1
HIGH 2 2 1 2 2 1 2 2 1

1: SEAT IS COMFORTABLE
2: SEAT 1S NOT COMFORTABLE

Figure 6.

Fuzzy rule base for modeling user perception of seating comfort. “‘1’” denotes a positive opinion and ‘2’ denotes a
negative one. An increasing number of asterisks denotes a higher reliability.

office chair (e.g., back angle, seat height, backrest
position, and armrest height). This would confirm that
ergonomic aspects related to the wheelchair-office
configuration are not yet adequately solved in many
situations. Since these were the problems that active
wheelchair users who worked in offices judged even
more relevant than other aspects related to mobility,
further investigation on these topics seems advisable.
With reference to seating comfort, 72 percent of
the subjects using wheelchairs with armrests at the
workplace considered the chair uncomfortable. The
parameters that played a key role were the seat depth,
with special significance (SDC=0.59); the ground-to-
back height (SDC=0.45); the ground-to-armrest height
(SDC=0.38); the seat angle (SDC=0.36); and the
ground-to-footrest height (SDC=0.31). From these re-
sults, an appropriate match between seat depth, back
height, and seat angle seems essential in order to

maintain a proper posture while working. In addition,
adjustment of the armrest and footrest height appears to
be critical for preserving a sufficient accessibility to the
office furniture.

A close look at the FAM in Figure 6 revealed that
seating discomfort while working was typically caused
by the following features of the wheelchair:

¢ A short seat with armrests that are not high enough;
probably due to a deficient pressure distribution

* A high backrest with a seat angle that is not steep
enough.

In analogy, a perception of seating comfort while
working was the result of a wheelchair with the
following configuration:

* A deep seat and a low backrest, which would

probably lead to a better load distribution and
easier upper limb mobility
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* A deep seat and a steep seat angle, provided that
armrest height was properly set.

If we consider armrest height and seat angle as
being adjustable, some recommendations could be
suggested from the FAM:

* For shorter seats and lower backrests, a sufficient
armrest height should be selected

e For an average seat depth, a high seat angle and a
lower armrest height are better perceived by the
user

* For deep seats and higher backrests, seat angle
should be set at a steep position and armrest height
should be adequately chosen for that angle.

Two clusters of reliable and frequent rules could be
distinguished: 1) a group of comfortable wheelchairs
with deep seats, lower backrests, high armrests, and
steep seat angles; and 2) a class of uncomfortable chairs
with shorter seats, average armrest height, and lower
seat angles. The few fuzzy rules extracted could
correctly model the subject’s opinion in 77 percent of
the cases.

Translation of the linguistic terms ‘‘low,”” ‘‘me-
dium,”” and “‘high”” into useful design criteria can be
easily accomplished by considering the fuzzification
scheme of the input dimensions and knowing the
definition points of each fuzzy set: Sth percentile, mean
value, and 95th percentile. For example, a typical high
seat angle for the sampled population would be any
inclination above 9.7° (the intersection of fuzzy sets
medium and high for this variable).

Finally, it should be noted that further design
criteria could have been derived from the FAMs by
looking at specific user-wheelchair configurations; that
is, by studying fuzzy rules in appropriate cell positions.
Extra dimensional parameters could have been added
for modeling each subjective assessment as well. This
might have led to new insights about optimal design.
However, our intention was to keep complexity in
limits, showing a preliminary application of fuzzy
techniques. Furthermore, it should be also stated that
generalization of these results is only possible with
great caution, because the collective analyzed is hardly
representative of the global population of wheelchair
users.

Proposed Methodology
The results presented show that introduction of
fuzzy logic in a field where subjective opinions play a

CLINICAL REPORT: Fuzzy Logic and Technical Aids

primary role constitutes an interesting step for adapting
mathematical tools to the human way of reasoning; thus
providing an efficient way to cope with imperfect
information (25).

The inductive learning algorithm proposed was
developed starting from several ideas published in the
fuzzy literature (14,15,26). Our major contribution was
the introduction of two essential concepts: recurrence
and reliability of the fuzzy rules. The algorithm is
universal and can be employed for modeling any system
in a qualitative fashion in numerous domains of
application, either of subjective feelings or of objective
measurements.

The accuracy of the prediction of the derived
rule-bases was similar or even better than the classifica-
tion accuracy of FDA. Variability of the dimensions and
functional capabilities of the subject could explain why
some preferences were misclassified. If we take into
account that fuzzification always implies a certain loss
of information (quantitative are transformed into quali-
tative variables), our results demonstrate not only the
interpretability but also the discrimination potential of
the introduced methods.

The process for obtaining a fuzzy rule-base de-
scribing user preference is completely automatic and
problem-independent. No arbitrariness is introduced
during this process, since membership functions are
defined in a standard way from statistical landmark
values (percentiles and means), input parameters are
selected from among a multiple set of measured
magnitudes by means of the linear FDA, and the FAM
is computed automatically with the help of the algo-
rithm. Moreover, working with the techniques proposed
is simple even for people not familiar with computers
and statistics, since every design stage can be efficiently
automated. The interpretation of the resulting FAM is
straightforward as well, because the concepts involved
(linguistic terms, fuzzy rules, recurrence, reliability) are
comprehensible and not difficult to translate into
practical design criteria.

In this sense, it is important to remark that,
although previous knowledge of the concepts involved
is necessary in order to sort out the significant input
parameters with FDA, the selection of fuzzy rules and
the subsequent interpretation of the users’ preferences
can be performed without resort to the a priori
knowledge of the human expert. Obviously, this exper-
tise is helpful in speeding up the interpretation and
making it more profitable.
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Finally, the mapping of linguistic concepts into
membership functions could be optimized by means of
strategies based on genetic algorithms or neural net-
works. This sort of technique could better match the
qualitative model to the observations, thus reducing the
estimation error.

CONCLUSIONS

The introduced methods consisted of the fuzzifica-
tion of the parameters featuring the user-wheelchair
interface in order to discover the rules that modeled
preferences of a collective of users interviewed via a
questionnaire aimed at studying the adaptation of the
wheelchair to the office workplace. Fuzzy rules were
automatically determined by using a self-developed
inductive algorithm that rendered an associative matrix
with every rule characterized by its recurrence and
reliability score.

The aim of the derived rule-bases was not to
predict the behavior of the user in new settings (other
subjects and other wheelchairs), but to extract the
implicit subjective criteria within the collected data that
played a role in the user’s perception of global
satisfaction and seating comfort. For this, previous
expertise was helpful for selecting potentially signifi-
cant input dimensions and for interpreting the resulting
rule-base.

The results reveal a mismatch between actual
performance of standard wheelchairs and the require-
ments of work in an office in the sampled collective.
Functional aspects criticized by the users agree with
essential needs also detected in office workers with no
disability.

The proposed methods provide a flexible tool for
wheelchair design based on questionnaires that are
user-friendly. The concept could be also extended to the
area of prescription by considering user characteristics
in the fuzzy model.

APPENDIX
Algorithm for Inductive Fuzzy Rule Generation

The problem of modeling an unknown system by means of fuzzy rules (in our case, the opinion of a person using a
wheelchair) can be considered as a problem of system identification, with several measured input variables x,(i=1,..n) feeding
the system (black box) and with a unique response y representing the response of the system. The fuzzy rule-base modeling this
system sets up a qualitative model, because no numerical differential equations are used; instead rules employing linguistic
terms are used. Input and output variables may be of an arbitrary nature (quantitative, qualitative, physical, or psychological).

When all relevant input variables have been determined (for instance, by means of FDA), input fuzzification must be
specified and the rule-base generated. The first task must be solved by the designer using his/her a priori knowledge for
defining appropriate membership functions; in this article, one method is proposed, based on the mean value, and the 5th and
95th percentile.

The second task is much more complex and, in many practical cases, is carried out by asking a human expert to formulate
his/her knowledge in the form of heuristic rules (using his/her habitual language) and subsequently converting those rules into a
fuzzy rule-base. However, this procedure of knowledge acquisition is prone to the subjectivity of the domain expert and is
sometimes not atfordable. We propose an alternative method that stems from the original formulation of the adaptive FAM by
Kosko (15).

Given a fuzzy system with n quantitative or qualitative input variables x; (i=1,..,n), each of them distributed into f; fuzzy
sets (linguistic descriptives), and one quantitative or qualitative output variable y again divided into f,,, fuzzy sets, the total
number of dimensions in the FAM is n+1, being C, the global set of possible cells of that matrix. The total number R, of
possible fuzzy rules is equal to the number of cells in the FAM.

Roy=h-forto funi

As an illustration, we could think about an expert system for evaluating the degree of comfort of wheelchair seats given its
depth and inclination. Imagine that we had these two inputs (n=2), each one partitioned into three fuzzy sets (fj=f,=3), for
example, low, medium, and high, and the output again into two fuzzy sets (f;=2), and ‘‘seat uncomfortable’” and ‘‘seat
comfortable.”” The total number of FAM dimensions would be three and the amount of possible fuzzy rules Ry,=18. The first

[A-1]



105
CLINICAL REPORT: Fuzzy Logic and Technical Aids

rule in the upper left corner of the FAM would correspond to the conjunction of the first fuzzy set per variable, reading: ““When
the seat’s depth is low and the seat’s inclination is low the seat is uncomfortable.”’

In order to automatically obtain the main rules governing the system, it is necessary to monitor the recurrence p; of each
fuzzy rule (i=1,..,R,), as the system intends to reproduce known output responses from given input values. For each real
observation (x; y.), a fuzzy rule subset CxCC, becomes active in order to explain the output. The activation 3, of each rule is
the result of the logical AND of the antecedent’s p(ANT) and the consequent’s activation p(CONS). No such activation is
computed when the fuzzy implication is not fulfilled, that is, when the membership function value of the rule’s consequent is
lower than the rule’s antecedent value. Computing the AND operator with the product, the rule’s activation is defined as
follows:

5 = WANT, ) - W(CONS,;) s p(ANT; ;) < p(CONS, ;)
ik o) ; W(ANT,;) > p(CONS, ) [A-2]

The activation counter p; is incremented at each step k (new observation) by the amount of activation of the rule 3,. Hence,
after each iteration the active rules rCCy are updated according to the following law:

8, VreC
Apyy = { ék Y, ¢C: Pik = Pix + Apis [A-3]

Once all observations have been presented (x;; y,), k=1,...N, an activation pattern is obtained for every cell (rule) in the FAM.
We then normalize each activation by the total sum of activations D, resulting in a relative rule activation or recurrence pi
with values in the interval [0; 1]:

o
D“;pz ’pt'—D [A~4]

Obviously not all rules with the same antecedent can be valid at the same time, because this would imply a logical
contradiction. From the f,,, rules responding to the same stimulus x;, merely one is valid. Therefore, only that rule among the
rule set with the same antecedents whose relative activation (recurrence) is maximal is taken into consideration. In any case, the
significance of that rule clearly depends on the dispersion of activity among the f,,, rules responding to the same antecedent.
The more disperse, the less reliable the selected rule will be.

Reliability «; of a rule is expressed by the difference between the highest recurrence and the second highest recurrence,
normalized by the sum of recurrences for the same antecedent. The reliability has values in the interval [0; 1] shown in formula
A-5.

Pm — P
4= 1py = p, = pii = L. Ry [A-5]
Therefore, each rule is characterized by two features: its recurrence p; and its reliability «; in the training data set. Once the
FAM matrix has been calculated, it is straightforward to read those rules that better synthesize the phenomenon under study. As
a general recommendation, we select those rules that exhibit the greatest recurrence together with the maximum reliability,
avoiding an excessive number in order to facilitate the subsequent interpretation. After selecting those rules, a rule compression
by means of fuzzy logical laws can be carried out (association, distribution, and so forth).

To conclude, a final sentence should be devoted to classification problems such as the one in this paper. Here the output
does not need to be defuzzified into a continuous value; instead, group membership probabilities are desired. After defining each
class as a fuzzy set, we can consider the membership to these sets proportional to the probability of pertinence to that group
computed by the expert system. In this case, normalization of the activities (recurrence) of the rule will be based on the a priori
probabilities defined for each group. Dividing each activation counter by the total activation sum D, implies the sampling of the
population with its actual group proportions. In laboratory experiments, however, the number of samples per category often is
not equivalent to the expected probabilities. If we want to assume equal a priori probabilities for every class, we should then
normalize each rule affecting one output fuzzy set (a classification class) by the total activation sum D, of this output fuzzy set
(k=1,..,K), with K being the total number of possible classes.
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GLOSSARY

Qualitative model. A simplified description of a complex
reality that uses qualitative knowledge (knowledge
that cannot be expressed by means of numerical
terms) in order to predict a physical system’s behav-
ior.

Fuzzy associative matrix (FAM). A representation of a
rule-base in conjunctive form; fuzzy rules combine
input variables by means of logical ANDs. The FAM
forms a hypercube with as many dimensions as input
variables, together with one output dimension. Each
cell stands for a hypothetical rule. The number of cells
in each axis depends on the number of fuzzy partitions
(linguistic variables) defined for that input.

Fuzzy rule. An IF-THEN rule that explains observations or

predicts a behavior in a qualitative way, built up with

fuzzy linguistic variables connected by logical opera-
tors (AND, OR, NOT, etc.). A rule consists of an
antecedent expression and a consequent expression.

The latter can only be true if the antecedent is also

true.

rule-base. A set of fuzzy rules constituting a

qualitative model of the behavior of a physical system.
Fuzzy rule activation. The activation of a rule within a
rule-base depends on its explanatory or predictive
power. It is proportional to the degree of truth of the
antecedent when the rule is used for prediction, and is
proportional to the degree of truth both of antecedent
and of consequent when the rule is used to explain an
input/output observation. Faced with an specific input,
only a subset of the rules forming the base is activated
and just this subset accounts for the given response.

implication. Analogous to Boolean implication,
saying that the degree of truth of a rule’s consequent
can never be less than the degree of truth of the
corresponding antecedent. In fact, this is the definition
of a rule.

Input parameter vector. The vector formed by all signifi-
cant parameters featuring a wheelchair-user configura-
tion. The parameters can be measured and the whole
set of measured parameter vectors builds up the
observation matrix.

Output response. A subjective judgment, expressed in
categorical linguistic terms, about a specific feature of
the wheelchair-user configuration.

Training data set. A set of parameter vectors labeled
according to their corresponding output response and
used to train the fuzzy expert system.

Validation data set. A set of parameter vectors that is
independently and randomly chosen from the whole
observation matrix and used to test the performance of
the fuzzy expert system.

Fuzzy

Fuzzy
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