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Abstract-A neural net approach was used to classify and 
analyze combinations of the physiological and kinematic 
responses (the factor patterns) of experienced and novice 
individuals during wheelchair propulsion, and to determine 
the key characteristics (individual factors) used in making this 
determination. A sequence of artificial neural networks 
(ANN) was developed and used to classify differences 
between eight nonimpaired conntrols and seven individuals 
using wheelchairs, who ranged in age from 24 to 36 years. 
The subjects propelled a wheelchair on a specially con- 
structed dynamometer at three different velocity levels during 
which stroke pattern, force, energy, and efficiency data were 
collected. The data from 10 subjects (5 from each group) 
were used to train a net, with the data from the remaining 5 
subjects used to test the resulting net. The nets correctly 
classified the training subjects in all 10 cases and correctly 
classified all 5 test subjects, indicating that the developed 
networks were able to generalize to new data sets. It was 
concluded that a minimal net consisting of only three 
variables, peak VO, at the high velocity, hand force on the 
rim at the low velocity, and push angle at the high velocity, 
could accurately represent the differences between these 
groups. 
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INTRODUCTION 

The effectiveness and efficiency of wheelchair 
propulsion are influenced by a wide range of variables. 
Studies to date have concentrated in several diverse 
areas including wheelchair mechanics, propulsion physi- 
ology, electromyography, kinematics, propulsion model- 
ing, and muscle and joint modeling. 

These studies have been conducted with a variety 
of objectives in mind. Some have focused on: 

1. the physiological comparisons between wheelchair 
propulsion and other, more common, forms of 
locomotion, such as bicycle riding (1) 

2. the mechanical and ergonomic aspects of efficient 
propulsion (2-5) 

3. the kinematics of various body segments during a 
propulsion cycle (6-8) 

4. the metabolic characteristics, such as oxygen 
uptake, steady state, and oxygen deficit (9,lO). 

Each of these investigations has provided much 
needed information regarding a single aspect of propul- 
sion. However, functional analysis of wheelchair use, 
whether for athletic activities or for the novice user, 
depends upon the interactions of the above factors. 
Rather than looking at individual characteristics and 
parameters, it might-be beneficial to examine how these 
factors interrelate; that is, the pattern of the factors. One 
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Figure 1. Figure 2. 
The components of a basic neural net. The input layer accepts the The stages of the back propagation method as adapted from Carling 
data, the hidden layer processes the data, and the output layer (13). 
indicates the results of a classification. 

to regression analysis. However, an ANN has a distinct 
advantage over a regression analysis as it uses nonlinear 
mathematics and so can model highly complex and 
nonlinear functions. A neural net can also be trained to 
recognize variations and combinations of the included 
variables that belong to a specific category. In addition, 
the resulting ANN model can be used in real-time 
applications for which information must be interpreted 
and decisions made quickly, based upon that interpreta- 
tion. 

The ANN can be thought of as a black box that can 
predict an output pattern (dependent variable) when it 
recognizes a given input pattern (independent variables). 
Most ANNs must be trained (learn) by first processing 
input patterns that have been associated with specific 
outputs, called targets. An ANN, after training, can 
recognize similarities to the original data when pre- 
sented with an input pattern not previously seen. That 
is, the net is able to generalize its results to new data. 
The ANN may detect important predictive patterns not 
previously apparent. Not only does the ANN approach 
provide a perspective that may contribute both new and 
different information, it has the added advantage that, 
provided with sufficient training data, a single net can 
be developed for use in a wide variety of situations. 

The most prevalent and versatile ANN currently in 
use is the back propagation network, which consists of a 
sequence of units (nodes) arranged in connected layers 
(Figure 1). There are three distinct layers of units: the 

a 

input layer, the hidden layer, and the output layer. These 
units constitute a system of equations that receive input 
data patterns and calculate an output pattern based on 
that input. 

Two stages comprise the back propagation tech- 
nique: the forward pass and the backward pass (Figure 
2). In the forward pass, data are fed into the input layer 
and then propagated (distributed) from the input nodes 
to the nodes of the hidden layer. Each node of the 
hidden layer computes a weighted sum of these input 
data and applies a transfer function before sending them 
to the next layer. More than one hidden layer may be 
used, depending upon the problem being investigated. 
The data then arrive at the output layer, whose nodes 
perform computations similar to those of the hidden 
layer(s), resulting in a final calculated value. This final 
value is then compared to the expected value. If this 
difference is not within a pre-determined range, the 
error is fed back through the system (the backward 
pass). During this procedure, the weight factors (repre- 
sented by the connections between the layers) are 
changed to improve the network's response during the 
next forward pass. 

This iterative procedure of processing inputs 
through the network, determining the associated errors, 
and using these errors to adjust the network weights, 
constitutes the learning, or training, process. One 
training iteration is complete when all supplied cases 
have been processed through the network. Once a 
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network has been successfully trained, it can be used to sub.jects were nonimpaired controls with no wheelchair 
predict the results of new, previously unseen, input data. 
ANNs have been used successfully to investigate the 
existence of nonlinear patterns in areas, such as lumbar 
muscle recruitment (11) and human gait (12). For 
greater detail on the development and use of back 
propogation neural networks, refer to Carling (13) or 
Smith (14). 

A system for obtaining information about user 
activity patterns based on a neural net approach may 
provide new insights for future investigators to consider 
when developing, evaluating, or monitoring specialized 
training for the wheelchair athlete or for the novice 
wheelchair user. Thus, the goal of this study was to 
determine the feasibility of using ANNs to classify 
users based upon wheelchaiduser interactions. The 
specific objectives of this study were to: 1) determine if 
an ANN approach could successfully classify individu- 
als during wheelchair propulsion based upon a small 
data set containing physiological and kinematic charac- 
teristics, and 2) evaluate ANN models and the key 
characteristics used in making these classifications. It 
was anticipated that several variables would not be 
useful in differentiating between the groups. To test 
this, multiple models were constructed, which used 
different combinations of the input variables with the 
most extraneous inputs from the prior model being 
discarded. 

experience, while the other seven regularly used wheel- 
chairs. As the study explored the potential for using the 
ANN technique for classifying individuals, these groups 
were selected to maximize the expected differences. 

The study was approved by the University Human 
Subjects Review Committee. Each subject signed an 
informed consent before participating. No significant 
differences ( ~ 4 . 0 5 )  in body weight, shoulder-to-elbow 
distance, elbow-to-wrist distance, or sitting elbow angle 
were found between the two subject groups. 

Variables 
The variables investigated were divided into two 

categories: technique characteristics and physiological 
characteristics. 

Technique Characteristics 
Technique characteristics represent the user's ap- 

proach in applying force to the handrim to produce 
propulsion. The following were collected: 

@ Cycle time (CT): time from hand grasp to next 
hand grasp on handrim 

* Propulsion time (PT): time in which the hand is 
applying force to the handrim 

@ Recovery time (RT): time in which the hand is 
moving to regrasp the handrim and is not applying 
a force to the handrim 
Percent propulsion time (PT%): PTJCTxlOO 

METHODS * Percent recovery time (RT%): RT/CTxlOO 
@ Starting grasp angle (SA): hand position at begin- 

Subjects ning of propulsion time 
The subject pool consisted of 15 male volunteers Ending grasp angle (EA): hand position at end of 

ranging in age from 24 to 36 years (Table 1). Eight propulsion time 

Table 1. 
Subject characteristics. 

Nonimpaired 
Controls Wheelchair User 

Age (years) 26.3 (IS)* 31.7 (2.3) 
Weight (kg) 74.1 (10.2) 74.3 (12.2) 
Shoulder to elbow (cm) 35.8 (2.5) 34.9 (3.1) 
Elbow to wrist (cm) 25.7 (1.5) 26.6 (1.6) 
Elbow angle (degrees)** 112.1 (5.0) 107.6 (5.7) 
Time in chair (years) 14.4 (10.6) 
Level of Injury T4 (2 subjects) 

T5 (4 subjects) 
Osteogenesis imperfects 
(1 subject) 

Push angle (PA): EA-SA 
@ Hand rim force (HRF): the mean force as applied 

to the handrim during a specific period. 

Physiological Characteristics 
Physiological characteristics represent the user's 

response to varying workloads, indicating the usage of 
energy resources. The following were collected: 

@ Oxygen consumption (VO,): oxygen use in re- 
sponse to a given workload 

* Peak oxygen consumption (Peak VO,): the highest 
value of oxygen consumption measured during a 
test period 

* Respiratory exchange ratio (RER): the ratio of 
* = Mean (standard deviation); ** = the angular relationship between the carbon dioxide produced to the oxygen consumed 
upper a m  and forearm when the subject initially grasps the handrim. 

during a test period 
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* Kilocalories used per minute (kcalimin): a measure 
of the heat or energy value of the physical activity 
Work per stroke (WS): mean power outputxCT 
Gross propulsion efficiency (GPE): power output 
from ergometertmetabolic power output. 

Equipment 
I 

93 98 cm 

The seat and back were removed from a 45.7 cm 
wheelchair and replaced with a custom-built adjustable 
solid unit. This unit allowed the subjects to modify their I 
position in the chair. A wheelchair dynamometer, based i 
on the design of 07Reagan (15), was constructed to A / I 1 
provide a stationary platform for wheelchair propulsion I-- 77 47 cm --T b 11938cm - (Figure 2). 

An alternator assembly and power supply applied a 
resistance to the front roller of the dynamometer and Figure 3. 
monitored the force produced at the handrim. The The dynamometer. 
torque applied to the handrims was monitored by a steel 
arm with one end rigidly attached to the alternator 
housing and pinned at the other. Two strain gages, vale, CA) and CO, (Beckman Medical Gas Analyzer, 

mounted on each side of the arm, generated voltage LB-29 l3eckman Instruments, Fullerton+ CA) analyzers. 

changes when the m bent. These changes were fed All phases of data collection, calculation, and display 
into a signal-conditioning component before being sent Were performed by computer software. ?%e system was 
to a computer for data acquisition and analysis. calibrated before running each subject. 

A measurement circuit, consisting of a slotted disk, 
an optointerrupter module, and a display panel, was 
constructed to obtain velocity information. The display 
panel was mounted directly in front of the subject for 
continuous monitoring of velocity (Figure 3). 

An AT-MIO-16 data acquisition card, with a Lab 
Windows@ graphical user interface package (National 
Instmments, Austin, TX), was used to collect and 
process the strain gage voltages. Data were sampled at 
1,000 Hz for 5 s, providing two to six complete 
propulsion cycles per sampling period. A bandpass 
Butterworth digital filter was used to eliminate a 3 Hz 
noise caused by the alternator windings. A Panasonic 
Digital 5100 videocamera was used to analyze stroke 
patterns and to provide synchronization for the data 
signals. A light emitting diode (LED), wired to a port 
on the data acquisition card, remained on during the 
data acquisition period to mark this time interval on the 
videotape. 

Oxygen consun~ption and CO, values were mea- 
wed by a closed circuit system. Room air was inspired 
nd passed through an air flow meter connected to a 
omputer interface box. Exhaled air was delivered to a 
kixing chamber via an attached air tube, passing 
rough an anhydrous CaSO, desiccant before reaching 
e 0, (Applied Electrochemistry Inc., S-3A, Sunny- 

Experimental Procedure 
The subject was instructed to propel the wheelchair 

on the dynamometer for 5 min to become acclimated to 
the equipment (Figure 4). The subjects were allowed to 
adjust the seat and seat back position during this time 
period. 

Reflective markers were placed on the acromion, 
lateral epicondyle, and styloid process for the technique 
analysis. The subject was then attached to the closed 
circuit system, breathing into the mouthpiece for 2 min 
before the start of testing to stabilize the 0, and CO, 
analyzers. 

The subject then propelled the wheelchair at a 
linear velocity of 0.64 mls for 3 min, followed by an 
increase to 0.92 mls for 3 min, then an increase to 1.17 
m/s for 3 min. Data were collected during the third 
minute at each velocity level. The subject rested for 15 
min and then repeated the test in reverse order, 
beginning with 1.17 nds and ending with 0.64 mls. 
Comparison of the velocity orders indicated no signifi- 
cant data differences between the two halves of the 
trials. Therefore, only data from the first half of a trial 
were used in the analysis. During the testing periods, 
the subject's VO, and RER were automatically updated 
every 30 s and displayed. 
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Dynamometer 1 

Figure 4. 
The experimental setup. 

Data Reduction 
The VO, and RER values acquired during the final 

minute were averaged for each velocity level. The 
kcaVmin equivalent energy measure for each RER was 
then obtained from a table (lg), multiplied by the VO,, 
and converted to watts. 

The mean force exerted on the handrims was 
determined by isolating complete propulsion strokes 
during each 5 s period. The mean strain gage voltage for 
each cycle was converted to units of force. The velocity 
and force obtained for each sample in a cycle were 
multiplied and averaged to yield the mean power output 
needed for calculating GPE. 

The technique characteristics of PT, RT, CT, PT%, 
and RT% were averaged over three consecutive cycles. 
The PT was determined by locating the interval from 
the point of lowest voltage to the point of peak voltage 
in the cycle, with the RT occurring from peak voltage to 
the beginning of the next cycle. The WS was found by 
multiplying the mean power output by the total CT at 
each velocity level. 

The videotape was analyzed to determine the SA, 
EA, and PA. These angles were defined relative to the 
right horizontal through the wheel axle, with 0' directed 
toward the rear of the wheelchair. 

Development of the ANN 
A file, containing the following data points for 

each of the three velocities, was created for each 
subject: 

Peak VO, in Vmin 
Peak VO, in limin per kg of body weight 

kcalimin 
* HRF in N 
* GPE in percent 

F'T% 
RT% 

W S i n J  
* SA 
* EA 
@ PA. 

In addition to these 33 inputs, each file contained 
an output, or target, value indicating whether the data 
were from a control or a wheelchair user. 

Two measures of model performance were used to 
evaluate each net: model correlation, a statistical 
measure of how well the model predictions agreed with 
the targets, and root-mean-squared error (RMS), a 
measure equivalent to determining the standard devia- 
tion of the error in the network's response. These 
measures were used to evaluate both the development of 
the net during training and the ability of a trained net to 
generalize to test-set data. By monitoring the correlation 
of the training set and RMS histories, determinations 
can be made regarding the pace of network learning, its 
general state of convergence to a solution, and whether 
overtraining is occurring. Overtraining occurs when a 
net memorizes specific characteristics of the training 
cases without extracting the underlying patterns in the 
data. A net that has been overtrained is useless for 
predicting or classifying any new data set that does not 
mimic the original training data exactly. For the test set, 
the correlations and RMS indicate how well a trained 
network responds to data sets not contained in the 
training set. 

Data for five wheelchair users and five controls 
were then randomly selected and placed in a file for use 
in training the net. Due to the small set of samples, two 
randomly selected subjects from this group were used as 
a training test set. This test set was used to halt the 
training process at the point where a net would be able 
to best generalize to new data sets. The remaining five 
individuals (three controls, two wheelchair users) were 
placed in a second file, the validation test set, for testing 
the resulting network's ability to generalize to data it 
had not seen before. 

The first model, containing all 33 input variables, 
was then constructed by evaluating several networks in 
which the size of the hidden layer was varied. The 
smallest error for the complete model containing all 33 
variables was obtained by using a network with a single 
hidden layer having 10 nodes. Six additional iterations 
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of net size resulted in a reduction of input data needed 
for accurate classification from the original 33 variables 
to a final net containing only 3. The classification 
portion of the study determined the overall pattern 
(model) and the resulting contribution of the individual 
variables that best represented the differences between 
the groups. 

A contribution analysis was performed to identify 
the individual variables most important to each resulting 
model. In addition, the sensitivity of each variable in a 
model was evaluated. A situation is sensitive to a 
variable if a small change in that variable leads to a 
proportionately greater change in the results than for 
similar changes in the other variables. The critical point 
is the value at which a variable causes an analysis to 
reverse a decision (from control to wheelchair user, for 
example). Sensitivity information was obtained by 
varying each input, one at a time, by adding 5 percent 
of its value for all training patterns to determine its 
effect on the output response of the ANN. The change 
in the output was divided by the change in the input, 
squared and summed for all patterns. These results were 
then normalized so that the most sensitive input variable 
(MSV) had a value of one. 

Irrelevant inputs, as determined by the contribution 
analysis, were then eliminated from the current model, 
resulting in a smaller input set to the next model. 
Several network configurations were then evaluated 
with the one having the best predictive capability being 
kept. This procedure was used to reduce model size 
from the original set of 33 inputs while keeping a 
reasonable level of prediction capability as well as 
minimizing prediction error. 

Qnet V2.03 software (Vesta Services, Winnetka, 
IL) was used to develop, train, and test the ANN. 

Table 2. 
Neural net training and testing statistics. 

RESULTS 

In general, a good ANN representation is one that 
can be described very economically while still contain- 
ing enough information to perform the required task. In 
the present study, the series of models is presented to 
demonstrate the information available as a neural net 
searches for the best model. In a typical ANN 
procedure, these intermediate models are not evaluated. 
However, in the present study, it was felt that analysis 
of these models might provide some insight into the 
level of model detail needed to classify wheelchair users 
accurately. 

Classification by the ANN 
Each of the nets generated during this procedure 

correctly classified each subject into the appropriate 
group based on wheelchair experience. The data pat- 
terns from the five additional subjects were then 
analyzed by each to determine whether that ANN could 
generalize to data patterns it had never seen. Again, 
each ANN correctly classified all five subjects, indicat- 
ing the ability of these networks to generalize training 
results to previously unseen data (Table 2). It is unusual 
to have all iterations of a network perform this well. 
However, as this investigation was intended as a 
feasibility study, the subject groups were intentionally 
selected to be dissimilar. Due to this approach, the nets 
did not have any difficulty in separating the groups. 

The conelation values for each of the seven 
models were at least 0.995 in the training set and 0.976 
for the test set (Table 2), indicating close agreement of 
the data and the net models. The RMS ranged from 
0.0001 to 0.119, again indicating good agreement 

Model # 
1 2 3 4 5 6 7 

Training Set 
Correctly Classified (%) 100 100 100 100 100 100 100 
Correlation 0.999 1.000 1 .OOO 1.000 0.995 0.999 0.998 
RMS 0.001 0.0001 0.0004 0.00 1 0.033 0.012 0.019 

Test Set 
Correctly Classified (%) 100 100 100 100 100 100 100 
Correlation 0.999 0.997 0.999 0.976 0.999 0.998 0.992 
RMS 0.034 0.084 0.045 0.119 0.045 0.017 0.059 
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between the data and the net models. Correlation 
coefficients of 1.0, or RMS values of 0.00, do not 
usually indicate a net having good generalization 
properties. These values may instead indicate a net that 
has been overtrained and so will be unable to respond to 
differing combinations of variables that represent a 
class. As variations in the characteristics in the member- 
ship of any class are to be expected, a great deal of 
effort must be expended to be sure that the range of 
possible values and combinations that will describe all 
members of a class adequately are incorporated into a 
training set. 

The final model with three variables, while not 
having the best correlation and RMS values, was the 
most economical representation that correctly classified 
all the subjects. As an accurate group division becomes 
more critical or as the groups become more difficult to 
differentiate, many additional data patterns will be 
needed. For example, subjects in this study were 
allowed to select the chair configuration that suited 
them best. As the importance of wheelchair configura- 
tion to propulsive efficiency has been demonstrated (3), 
it will be important that future ANN studies include 
data patterns from subjects using chairs that are too 
wide, too nasrow, and so forth, for them. This will 
incorporate additional unique characteristic patterns for 
evaluating a user's fit to a chair. 

Model Reduction and Key Variables 
The series of input patterns used in the develop- 

ment of the sequence of models, and the relative 
contribution of each input variable to the classification 
success of the ANN, changed vaIue with each new 
configuration (Table 3). 

The reduction of the model from one containing 33 
input variables to one consisting of 3, while retaining 
both predictive accuracy and low predictive error, 
provides some interesting insights into the effects of 
experience and training on a user's propulsion charac- 
teristics. Surprisingly, as the models included progres- 
sively fewer input variables, the physiological factors 
became less important, until only peak VO, at the high 
velocity remained. Indeed, most of the physiological 
characteristics were relatively unimportant in differenti- 
ating the subject groups from construction of the very 
first model. Conversely, the technique factors were 
more important in differentiating these groups of 
subjects than were the physiological factors. Many of 
these factors continued to be important throughout 
model construction, with two technique variables in- 

cluded in the final model consisting of only three 
factors. 

The contribution of a variable to a given model 
may be productively viewed in two ways: 1) an input 
having little or no contribution (a low value or drops out 
of a model) to differentiating the groups indicates a 
parameter in which data from nonimpaired individuals 
could be used in wheelchair studies; 2) the largest 
contributors (a large value or remains in a model) 
indicate those factors that differentiate either on the 
basis of injury levelitype or wheelchair experience, and 
so the use of nonimpaired subjects would not be 
recommended. 

The sensitivity analysis revealed that the variables 
of kcaVmin at high velocity (models 1 and 4), GPE at 
medium velocity (model 2), PA at high velocity (model 
3), PT at the medium velocity (model 5) ,  HRF at the 
low velocity (model 6), and peak VO, at the high 
velocity (model 7) were most sensitive to a change in 
the experimentally obtained values. That is, if a 
particular model were selected, one of these variables 
could conceivably result in an erroneous classification 
with a small change in its value. This suggests that, 
when using the variables contained within a specific 
model, particular attention must be paid to the accuracy 
and method of collecting these MSV. 

SUMMARY 

The purpose of this study was to determine the 
feasibility of using ANNs as a tool for evaluating users 
and user-wheelchair combinations. An ANN approach, 
developed by progressively reducing the number of 
input variables, was trained using features of subject 
responses to a specific wheelchair use protocol. We 
have shown how a series of ANNs can be trained on 
physiological and technique data to achieve high 
accuracy in differentiating between widely disparate 
groups of wheelchair users. 

Our results imply that the ANN approach could be 
a useful tool for making finer separations of groups that 
are more similar in experience or skill, for example: 

1. evaluating the progress of world class athletes 
during training 

2. evaluating user response characteristics to differ- 
ently configured chairs (wheelchair prescription) 

3. providing a sophisticated athletic classification 
system. 
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Table 3. 
The contribution of each variable to pattern classification and model reduction. 

--- 
Contribution to Pattern (%) 

Variable Best Model # 
1 2 3 4 5 6 7 

- - - - - - 

Physiological Factors 

Peak VO,(Vm) 
Low 3.1 5 .O 8.7 4.7 - - - 

Medium 
High 

Peak VO, (limikg) 
Low 
Medium 
High 

kcal used per m 
Low 4.0 2.1 - - - - - 

Medium 
High 

Gross Propulsion Efficiency (76) 
Low 
Medium 
High 

Work per Stroke (J) 
Low 
Medium 
High 

Technique Factors 

Propulsion Time (5%) 
Low 
Medium 
High 

Recovery Time (96) 
Low 
Medium 
High 

Starting Angle (degrees) 
Low 
Medium 
High 

Ending Angle (degrees) 
Low 
Medium 
High 

Push Angle (degrees) 
Low 0.5 - - - - - - 

Medium 0.5 - - - - - - 

High 6.6 7.0 14.6* 11.8 10.6 15.2 24.4 
Hand Force on Rim (N) 

Low 8.5 7.7 12.5 26.0 32.8 49.1 * 49.5 
Medium 4.0 2.3 - - - - - 

High 0.2 - - - - - - 
- I 

Low. medium, and high refer to the test velocities; * = most sensitive variable for a specific model: - = variable not used in model. 

i 
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This was an exploratory study and did not intend to 
provide a definitive classification system, but to pro- 
mote instead the value of ANNs as a tool in some of the 
above areas. The development of an actual system will 
require a much larger data set that includes more levels 
of training, experience, and types of wheelchair use. 
The information generated by using this expanded ANN 
approach could be used to focus the development of 
training techniques on those areas (variables) that would 
improve most through training. That is, those that 
change to the largest extent over time or have the 
largest differences between group levels as determined 
by use of a net. Another potential use for this technique 
may be in the development of classification systems to 
more fairly assign athletes into categories based on 
multiple factors that might exist in a variety of 
combinations. 

The results obtained here were most encouraging. 
Future work will incorporate more training patterns 
containing a wider variety of skills, chair configura- 
tions, and lesion levels, to further generalize and extend 
our results. 
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