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Abstract—Much excitement has been generated by recent
work showing that a variety of myelin-forming cell types can
elicit remyelination and facilitate axonal regeneration in ani-
mal models of demyelination and axonal transection. These
cells include peripheral-myelin-forming cells, such as
Schwann cells and olfactory ensheathing cells. In addition,
progenitor cells derived from the subventricular zone of the
brain and from bone marrow (BM) can form myelin when
transplanted into demyelinated lesions in rodents. Here, we
discuss recent findings that examine the remyelination poten-
tial of transplantation of peripheral-myelin-forming cells and
progenitor cells derived from brain and bone marrow. Better
understanding of the repair potential of these cells in animal
models may offer exciting opportunities to develop cells that
may be used in future clinical studies.
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INTRODUCTION

Multiple sclerosis (MS) and contusive spinal cord
injury both present variable amounts of axonal demyeli-
nation and transection. Currently, therapeutic approaches
for both neurological disorders have limited efficacy.
Recent advances in cell biology have led to the prepara-
tion of a number of cell types in culture that, upon trans-
plantation, can remyelinate demyelinated axons and can
encourage axonal regeneration. While axonal regenera-
tion is very limited in the normal injured mammalian
central nervous system (CNS), substantial axonal regen-
eration can occur in peripheral nerves under certain con-
ditions. Part of this regenerative capacity of peripheral
nerve has been linked to several unique properties of
Schwann cells, including their production of extracellular
matrix and trophic factors and their lack of growth inhib-
itory proteins that are present on oligodendrocytes (1).
While Schwann cells normally only form myelin on
peripheral nerve, they can remyelinate demyelinated
axons in the CNS (2,3). Another cell type, olfactory
ensheathing cell (OEC), which is located in olfactory
nerves and outer layers of the olfactory bulb and nor-
mally do not form myelin, can do so when transplanted
into the CNS (4,5). An interesting observation of both
Schwann cells and olfactory ensheathing cells is that they
can enhance axonal regeneration in the spinal cord when
transplanted into axonal transection lesion sites (6–8).
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One practical difficulty with the potential use of either
Schwann cells or olfactory ensheathing cells as an
autologous cell therapy is the limitation of the number of
cells that can be harvested. Recent work suggests that
neural precursor cells derived from adult human subven-
tricular zone and bone marrow (BM) cells both can form
myelin when transplanted into the demyelinated spinal
cord. A potential advantage of neural precursor cells is
that they can be readily expanded in culture to increase
cell number prior to transplantation. In the present
review, we will discuss the potential of Schwann cells
and olfactory ensheathing cells as cellular tools to remy-
elinate and to enhance axonal regeneration in the injured
spinal cord, as well as the repair potential of cells derived
from the adult human brain and BM, which can establish
peripheral-like myelin in addition to central myelin when
transplanted into the injured spinal cord.

Transplantation of Schwann Cells to Remyelinate 
Spinal Cord

Transplantation of Schwann cells into the demyeli-
nated rodent spinal cord results in anatomically defined
myelination (2,9,10). Moreover, when anatomical repair
is achieved, near normal conduction properties of the
remyelinated axons ensue (3,5,11). Endogenous remyeli-
nation of CNS demyelinated axons by oligodendrocytes
(12) or Schwann cells (2) results in the reestablishment of
relatively normal impulse conduction in animal models
of demyelination (13–15). However, endogenous remy-
elination is very limited in human diseases such as MS
(16–18). Given the success of cell transplantation to form
functional myelin in animal models, myelin-forming cell
transplantation has been suggested as a potential repair
strategy for demyelinated CNS axons (3,5,19,20).

Transplantation of glial cells obtained from the adult
human brain failed to achieve remyelination of demyeli-
nated rat axons in the CNS (21), while transplantation of
human Schwann cells (11) and olfactory ensheathing
cells (22,23) elicited remyelination of demyelinated rat
axons in the CNS. Figure 1 shows low- and high-power
micrographs of a rat demyelinated spinal cord 3 weeks
after injection of reconstituted cryopreserved human
Schwann cells. Note the relatively large number of myeli-
nated axons with typical Schwann cell morphology, that
is, large cytoplasmic and nuclear regions. Electron micro-
graphs (not shown) reveal the presence of a basement
membrane and extracellular collagen deposition (11). The
conduction velocity of the axons remyelinated by the

human Schwann cells was improved (see Figure 2),
indicating that electrophysiological function of the remy-
elinated axons was restored.

Figure 1.
Remyelinated axons following human Schwann cell transplantation
show a peripheral pattern of myelination. Photomicrographs were
obtained from spinal cords placed in fixative after in vitro
electrophysiological recordings were obtained. (a) Lesion area of
dorsal columns 3 weeks after induction of X-EB lesion. “Sg” refers to
substantia gelatinosa in dorsal horn. (b) Higher power micrograph
from boxed region of lesion showing remyelinated axons. Note
myelinated axons surrounded by cells with large nuclear and
cytoplasmic domains characteristic of peripheral myelin. Calibration
in (b) corresponds to 100 µm in (a) and 10 µm in (b). Source: Modified
from citation (11).
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Homologous or autologous tissue represents one pos-
sible source of Schwann cells for transplantation into
patients with demyelinating disease. Presumably,
Schwann cells are not antigenically predisposed to the
immunological attack seen in MS as are oligodendro-
cytes. The demonstration of anatomical and electrophysi-
ological repair of demyelinated axons by adult human
Schwann cells and olfactory ensheathing cells is an
important prerequisite for future consideration of these

cells as candidates for autologous transplantation studies
in humans.

Transplantation of Olfactory Ensheathing Cells to 
Remyelinate Spinal Cord

OECs are unique cells that belong to the glial lineage
and cannot be classified within any of the known glial
populations, even though OECs belong to the glial lin-
eage (24). OECs are an unusual population of cells, in
that they share characteristics with both astrocytes in the

Figure 2.
Intra-axonal recordings from demyelinated and remyelinated dorsal column axons. (a) Schematic showing arrangement of intra-axonal recording
and stimulation sites. Intra-axonal recordings were obtained from dorsal column axons outside of lesion where axons were normally myelinated.
Stimulating electrodes were positioned outside (S1–S2) and within (S3–S4) X-EB lesion zone to assess single axon conduction velocity over
both demyelinated or remyelinated axon segment and normally myelinated axon segment of same axon. (b) (1) Pairs of action potentials recorded
from S1–S2 stimulation, (2) S3–S4 in the demyelinated dorsal columns, and (3) S3–S4 following cell transplantation. Recordings were obtained
at comparable conduction distances. (c) Plot of the conduction velocity of axon segments within lesion (S3–S4) versus conduction velocity of
axon segment outside of the lesion (S1–S2) for X-EB lesioned spinal cord without (open circles) and with (closed squares) transplantation.
Source: Modified from citation (11).
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CNS and Schwann cells in the peripheral nervous system
(PNS) (24–27) and are the only glial cells known to cross
the PNS-CNS transitional zone, accompanying the axons
that they ensheath (28). In the normal nervous system,
OECs surround or ensheath bundles of nonmyelinated
axons in the olfactory nerve and do not form myelin.
OECs share with Schwann cells the capability to support
axonal ensheathment and regrowth (5,6,8,29–30), but
they do not share the same developmental origin nor
some immunocytochemical and morphological features
of Schwann cells (24). The astrocyte-like characteristics
of OECs include the expression of glial fibrillary acidic
protein (GFAP), formation of the glial limitans at the
PNS-CNS transitional zone, and end-feet at blood vessels
(24,26). Although OECs and astrocytes share some phe-
notypic features, there are more differences than similari-
ties between both cell types (24). They differ from each
other in developmental origin, mode of association with
axons, ultrastructure, and antigenic characteristics (24).

OEC tranplantation has several potential advantages
to elicit remyelination within CNS compared to other
glial types (4,5). First, OECs are easily cultured from the
adult olfactory system in contrast to other glial cells from
the mature CNS (29). Second, OECs can migrate through
the adult CNS, cross the PNS-CNS transitional zone, and
properly integrate within the CNS upon transplantation
(29). A major obstacle to migration of myelin-forming
glia in the CNS after damage is the so-called glial scar,
which is predominantly formed by reactive astrocytes
and microglia (31,32). OECs allow the regenerating
axons to grow through known inhibitory substrates such
as gliotic tissue (29), though neither CNS nor PNS axons
are able to grow through this barrier (33). Thus, they
might be able to navigate glial scars and remyelinate
axons in the damaged CNS (29). Third, OECs are a
source of neurotrophic factors, such as nerve growth fac-
tor, platelet-derived growth factor and neuropeptide Y
(34–36), suggesting that trophic factor, production by
OECs might enhance the survival of damaged axons.
Recent work indicates that transplantation of both rodent
and human (22,23) OECs can remyelinate demyelinated
rat spinal cord axons (5,22,23).

The graphs in Figure 3 show dorsal column area, the
demyelinating lesion area, and the number of myelinated
axons in a control lesion (Figure 3a) and a lesion following
transplantation of OECs at a single point in the longitudinal
center of the lesion. Virtually no axons are myelinated in
the control lesion, but myelinated axons can be found

throughout the entire longitudinal dimension following
OEC transplantation (Figure 3b). Similar results are
obtained with Schwann cell transplantation where the donor
cells were transfected with LacZ and identified in vivo (3).
These data indicate that both OECs and Schwann cells are
able to elicit relatively extensive peripheral-like myelina-
tion upon transplantation into a spinal cord demyelinating
lesion. In the X-irradiation/ethidium bromide lesion model,

Figure 3.
Spatial dimensions of normal myelinated, demyelinated, and
remyelinated (OEC transplantation) areas and number of axons in
dorsal funiculus. x-axis corresponds to longitudinal length of spinal
cord segment under study and y-axis to the area of target zone (left)
and the number of myelinated axons (right). (a) Data indicate that
lesion constitutes a significant proportion of dorsal funiculus and very
few fibers are myelinated in control lesion. (b) Similar dimensions for
lesion site as in (a), but a substantial number of fibers are myelinated
throughout lesion following transplantation of OECs. Source:
Modified from citation (5).
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no endogenous repair of the demyelinated lesion is
observed before 6 to 8 weeks. In addition to identification
of a reporter gene in some of the transplant studies, the
observation of extensive remyelination at 3 weeks postle-
sion strongly suggests that the donor cells were responsible
for the repair.

Neural Precursor Cells Derived from Adult Brain as 
Source of Peripheral-Myelin-Forming Cells

Multipotent neural precursor or stem cells are present
in the mammalian CNS during development and in the
adult brain (37–42). Neurospheres, clusters multipotent/
progenitor cells, can be developed from neurogenic
regions of the adult human brain (43,44). Neural precur-
sor cells can be isolated and expanded in culture in the
presence of mitogens, such as epidermal growth factor
(EGF) or basic fibroblast growth factor (bFGF) (45–49).
After withdrawal of the mitogens and with appropriate
growth factors or substrates, these cells can differentiate
into neurons or glia (43,50). When transplanted into the
embryonic or neonatal CNS, both neurons (51,52) and
oligodendrocytes (47,53) have been generated. These
cells appear to differentiate and integrate into the host
CNS because they form functional synapses (neurons)
and myelinate (oligodendrocytes) axons. However, when
injected into the normal adult CNS, stem cells differenti-
ate primarily into astrocytes (54). These results indicate
that environmental signals may direct the specification of
cell lineage.

Multipotential neural progenitor cells derived from
the fetal human brain propagate and differentiate in cul-
ture and in vivo (55-57). Progenitor cells from adult ani-
mals have been cultured from the subependymal zone
(SEZ) (38,40,42,58), the subventricular zone (SVZ) (39),
the hippocampus (37,41), and the spinal cord (48,59). A
recent study suggested that ependymal cells may be a
source of progenitor cells (58), but a GFAP-positive cell
distinct from, but adjacent to, ependymal cells has been
recently implicated as the primary neural progenitor cell
type of the subventricular region (60). Although the pre-
cise cell type within the subventricular zone giving rise to
neural precursor cells is still under investigation, it is
clear that with appropriate culture and mitogen condi-
tions, neural precursor cells can be developed and
clonally expanded in culture.

While oligodendrocytes normally myelinate CNS
axons, Schwann cells can remyelinate CNS axons after
injury (14) and following transplantation into the demy-

elinated CNS (3,9). Schwann cells can be derived from
single cell clones of neural crest cells (61). Mujtaba et al.
have distinguished a common neural progenitor for the
PNS and the CNS (59). They found that cultured neu-
roepithelial cells derived from embryonic rat spinal cords
can differentiate into CNS precursors, giving rise to CNS
neurons and glia, and into PNS precursors, which can dif-
ferentiate into neural crest cells, giving rise to peripheral
neurons, Schwann cells, and smooth muscle. Recently,
Keirstead et al. demonstrated that immunoselected pre-
cursor cells from the neonatal rat forebrain expressing
polysialyated (PSA) form of the neural cell adhesion
molecule (NCAM), which mostly generates oligodendro-
cytes and astrocytes in vitro, can also produce peripheral
myelin in vivo (62). This suggests that both peripheral
and central myelin can be produced from neural precur-
sor cells derived from the CNS.

To test the capability of neural precursor cells
derived from the adult brain to differentiate into myelin-
forming cells and repair the adult demyelinated CNS, we
transplanted clonal neural progenitor cells derived from
the adult human brain into an experimentally established
glial-free zone in the dorsal columns of the rat spinal cord
(44). Although these precursor cells differentiated upon
mitogen withdrawal in culture into neurons and astro-
cytes—and to a lesser extent oligodendrocytes—when
transplanted into a demyelinated glial-free zone of the
adult rat spinal cord, they extensively remyelinated the
axons and restored conduction velocity toward normal
values (Figure 4). The majority of the myelinated axons
displayed a peripheral pattern of myelination character-
ized by large nuclear and cytoplasmic regions of the
myelin-forming cells surrounding the axons and a base-
ment membrane. These data provide evidence that clonal
neural precursor cells derived from the adult brain can
elicit Schwann cells that form functional myelin when
transplanted into an axon-enriched, glial-free environ-
ment of adult central white matter. Taken together these
data suggest that a common neural progenitor cell for
both the CNS and the PNS described for embryonic neu-
roepithelial cells (59) also may be present in the adult
human brain. While our lesion model does not normally
lead to the beginning of remyelination for 6 to 8 weeks—
and we observed extensive remyelination at 3 weeks
postlesion and transplantation—we cannot rule out that
the cell transplantation may facilitate endogenous repair.
We view this unlikely because of the nature of the lesion
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induction, but more efficient cell marking techniques will
help resolve this issue in the future.

Bone Marrow as a Cell Source to Induce CNS 
Remyelination

Bone marrow stroll cells have recently been reported
to differentiate into neurons and astrocytes in cell culture
and into astrocytes when transplanted into normal and

ischemic brain (63–65). Systemic (intravenous) applica-
tion of a BM fraction into terminally X-irradiated rats
results in neuronal phenotypes in brain, which were
derived from the injected BM (66,67). These investiga-
tors have suggested that BM or isolated BM stromal cells,
which can be harvested from a patient, may be useful for
potential cell therapy approaches in neurological disease.
Our preliminary work indicates that transplantation of an

Figure 4.
Remyelination and improved conduction velocity of rat spinal cord following transplantation of adult human neural precursor cells. (a)
Demyelinated and (b) remyelinated axons of the dorsal column. The anatomical pattern of myelination elicited by transplantation of human neural
precursor cells was similar to that produced by Schwann cells. (c) Schematic showing dorsal surface of spinal cord with positions of stimulating
(S) and recording (R) electrodes. Shaded region indicates area of demyelination or remyelination. (d) Conduction velocity for control, EB-X
demyelinated and transplant-induced remyelinated axons (n = 5: each group) recorded at 26 °C. Error bars indicate SEM. Source: Modified from
citation (44).



293

KOCSIS et al. Cell transplantation to repair spinal cord
acutely isolated BM cell fraction (devoid of erythrocytes,
platelets, and debris) into the demyelinated rat spinal cord
results in relatively extensive remyelination (68). These
results indicate that an acutely prepared BM cell fraction
can develop a myelinating phenotype in vivo and anatom-
ically repair demyelinated axons when injected into the
spinal cord. This suggests the potential of developing an
easily accessible and renewable source of autologous
donor cells for cell transplantation studies in demyelinat-
ing disease.

Many of the myelinated axons induced by transplan-
tation of BM cells are characteristic of peripheral myelin.
While bone marrow-derived-peripheral-like myelinating
cells have many similarities to Schwann cell myelination,
a number of noted differences exist. In particular, the
BM-induced remyelinating cells show larger and multi-
lobular nuclei and larger cytoplasmic regions. In addi-
tion, while no Schwann cells were observed to engage
more than one axon, some of the BM cells (2.7 percent)
myelinated two to three adjacent axons. Interestingly,
neural precursor cells and olfactory ensheathing cells
transplanted into our lesion model show peripheral-like
myelin and some of the features such as multilobular
nuclei and multiple axonal myelination described here
for BM cells (22,44). Given that both OECs and
Schwann cells can remyelinate and encourage axonal
regeneration of transected long tracts in the spinal cord,
the peripheral-like differentiation of many of the BM
cells may be advantageous for the development of a
renewable and autologous source of cells for the treat-
ment of spinal cord injury and demyelinating disorders.

Cell Transplantation to Encourage Axonal Regenera-
tion of Spinal Cord Tracts

Long tract axons in the mammalian spinal cord do
not normally regenerate for an appreciable distance
within the denervated host tract after they are transected.
However, a number of experimental approaches have
been reported to improve elongative regeneration of
axons in the transected mammalian spinal cord. These
include blockade of inhibitory proteins on glial cells and
introduction of neurotrophic factor-enhanced peripheral
nerve bridges (69,70). Recent attention has focused on
transplants of cultured OECs into ablated corticospinal
tract axons (6) and into nerve bridges in the spinal cord
(7) to enhance regeneration. OECs have several unique
properties that provide a rationale for their potential to
enhance CNS axonal regeneration. They are specialized

cells that support axons that leave the olfactory epithe-
lium and project through the peripheral nervous system
into the olfactory bulb of the CNS; they are pluripotential
cells that can show Schwann cell or astrocyte-like cell
properties (71,72). Interest has focused on these cells
because olfactory epithelial neurons are continuously
replaced and regenerate axons in the adult (72,73). It has
been reasoned that the unique properties of OECs may
allow them to guide and enhance regenerating CNS
axons through a normally growth inhibitory environment
(6,24).

OEC transplantation can enhance regeneration of
transected spinal cord axons, improve forepaw reaching
behavior, and remyelinate demyelinated axons in the spi-
nal cord (4–6). Following transplantation of either OECs
or Schwann cells into transected dorsal funiculus of the
adult rat spinal cord, we found that the regenerating
ascending sensory axons displayed stable conduction
properties with regard to conduction velocity (Figure 5)
and frequency-response properties (8,30). However, the
conduction velocity of the regenerated axons was signifi-
cantly greater than normal axons; morphological assess-
ment of the regenerated axons indicates that they are
myelinated with a peripheral pattern of myelin (Figure 6)
and of a larger caliber than control axons (8). These
results indicate that the regenerated spinal cord axons
reconstitute electrophysiological function, an important
requirement for an intervention therapy to enhance
axonal regeneration after spinal cord injury, but there is a
preferential regeneration of large myelinated and rapidly
conducting axons. Therefore, while the number of regen-
erated axons induced by cell transplantation of OECs or
Schwann cells is limited, a rapidly and securely conduct-
ing new information line is established which may con-
tribute to the observed behavioral recovery of function.

CONCLUSION

Animal models of demyelination and axonal transec-
tion of the spinal cord indicate feasibility of cell transplan-
tation as an approach to elicit at least some degree of
functional recovery. One of the primary challenges to such
therapies will be selecting the appropriate cell type and
delivery method for the appropriate neurological condi-
tion. While oligodendrocytes normally form myelin in the
CNS, the prospect of using Schwann cells to remyelinate
CNS lesions in MS patients is intriguing because they can
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be harvesting autologously, and they may not have anti-
gens present on oligodendrocytes that may be immuno-
genic. Yet the use of Schwann cells has limitations. One is
that Schwann cell remyelination in the CNS does not pre-
cisely recapitulate the pattern of remyelination by oligo-
dendroctyes. The density of axonal spacing is less with
Schwann cell myelination, and one must ask what poten-
tial negative effects this could have on the system, such as
a reduction in axon number. Indeed, it has been speculated
that a selective force for the evolution of oligodendrocytes

was to provide for maximum conduction velocity con-
ferred by myelin deposition, with the most economic use
of space. The advantage this organization achieves with
oligodendrocyte myelination is a relatively compact CNS,
but a disadvantage is that pathology to a single oligoden-
drocyte will effect a number of myelin segments. In spite
of this limitation, it is reasoned that restoration of myelin
and conduction in even a limited subset of axons could
potentially result in significant functional recovery.

Figure 5.
Olfactory ensheathing cell transplantation facilitates axonal
regeneration in transected dorsal funiculus. (a) Schematic showing
transection site, position of cell injections, and of stimulating and
recording electrodes. Stimulating electrodes were positioned 1-mm
caudal to transection site (0-mm), and recordings were obtained at
1-mm intervals beyond lesion site; schematic shows recordings up
to 4 mm, but recordings were obtained up to 15 mm. (b) CAP
recordings for control lesion. At 2-mm rostral to stimulating site
(i.e., 1-mm beyond transection site) in a transected spinal cord
without cell transplantation, no clear response could be obtained. At
3 mm (2-mm beyond the transection site), no CAP could be
detected; note flat baseline following stimulus artifact. (c) CAP
recording for OEC transplanted lesion. In a transected spinal cord
that had been transplanted with OECs, propagating CAPs could be
detected for several milimeters beyond transection site; note distinct
negatives recorded at various distances beyond lesion site. Peak
negativities are indicated by solid squares. Source: Modified from
citation (30).

Figure 6.
Regenerated axons following dorsal funiculus transection and
OEC transplantation are myelinated. Photomicrographs obtained at
(a) 0.75 mm, and (b) 0.25 mm rostral to the lesion of rat dorsal
column following transplantation of OECs into the completely
transected spinal cord 5 weeks earlier. Note the small bundles of
axons with Schwann cell-like patterns of myelination. Source:
Modified from citation (8).
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Another important concern with regard to cell trans-
plantation therapies is the harvesting of sufficient num-
bers of cells for transplantation. While a number of cell
types can be expanded in culture with trophic factors and
mitogens, it is not clear if such expansion will alter the
physiology of the cells in a way that impairs their
capability to form functional myelin. Further studies to
examine the myelinogenic potential of expanded cells
will be required. Another concern with expanded cells is
the potential risk of tumor formation. It will be absolutely
essential to determine if experimental in vivo transplanta-
tion of expanded cells not only retain their capability to
carry out neural repair but also do not form tumors. It is
encouraging that expanded neural precursor cells derived
from human subventricular zone and BM, as just
reported, were able to form myelin in a rat model of
demyelination and that no obvious tumor formation was
observed.

Another concern is that cell-induced axonal regener-
ation and remyelination may not recapitulate uninjured
structures but may establish new neuronal circuits and
conduction channels. Such newly organized neural struc-
tures could be maladaptive and elicit neurological prob-
lems, such as inappropriate movement, pain, or
paresthesae. An example of maladaptive plasticity has
been well-characterized following peripheral nerve
injury. A section of a peripheral nerve can result in dying
back of C-fibers and A-delta fibers from the substantia
gelatinosa with reoccupation of these synapses with A-
beta fibers (74–77). Normally A-beta fibers are associ-
ated with nonnoxious mechanical inputs to the spinal
cord and terminal in lamina III of the dorsal horn. It has
been hypothesized that this aberrant regeneration of these
fibers and new synapse formation may contribute to tac-
tile allodynia, a condition that normally nonnoxious stim-
uli result in pain (74–77). Care must be taken to assure
that new pathways and myelination elicited by interven-
tional approaches such as cell transplantation do not
result in maladaptive changes.

Rehabilitation medicine may take on an important
role both in the evaluation of cell therapy studies in man
and in the therapeutic design of the studies. Clearly,
appropriate design of functional experiments to assess
efficacy will be paramount to evaluating these
approaches in clinical studies. Additionally, because pat-
terns of remyelination and potentially partial restoration
of axon white matter tracts and synapses may not recapit-
ulate preinjury structures, rehabilitation strategies may be

needed to better understand and maximize the extent of
achievable functional recovery.
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