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Investigation of lower-limb tissue perfusion during loading
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Abstract—An extant tissue indentor used for amputee residual
limb tissue indentation studies was modified to include laser
Doppler flowmetry (LDF) to enable measurement of tissue
perfusion during indentation. This device allows quantitative
assessment of the mechanical and physiological response of
soft tissues to load, as demonstrated by indentation studies of
the lower-limb tissues of young healthy subjects. Potential
measures of interest include the relative change in tissue perfu-
sion with load and the time delays associated with the perfu-
sion response during tissue loading and unloading. Such
measures may prove useful in future studies of residual limb
tissues, improving our understanding of tissue viability risk
factors for individuals with lower-limb amputation.
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INTRODUCTION

Today, the United States has approximately 400,000
amputees. Of these amputations, 90 percent involve the
lower limb (55 percent transtibial, 30 percent transfemo-
ral, and 5 percent partial foot). The majority (75 percent)
of these amputations result from disease, most commonly
peripheral vascular disease [1].
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Many of the prostheses fabricated for these amputees
are not satisfactory. Poor fit results in discomfort and
pain for the amputee and may impair amputee mobility
and/or contribute to tissue degradation. This tissue degra-
dation is particularly serious for vascular amputees,
because their ability to heal is often impaired.

Investigators have looked at stress, specifically the
interface stress between the residual limb and prosthetic
socket, as a potential objective measure of prosthetic fit.
However, this parameter is difficult to reliably measure
[2–4], and computer models of the residual limb have not
yet yielded accurate estimates of the interface stress
[2,5,6]. Because tissue ischemia caused by inadequate per-
fusion is believed to be a primary cause of pressure sore
development [7–12], tissue perfusion measures may pro-
vide a means of advancing our definition of prosthetic fit.

Vascular Measures Related to Amputation and 
Wound Healing

Because more proximal levels of lower-limb amputa-
tion increase energy costs for ambulation [13,14], sur-
geons select the most distal level of amputation likely to
heal. Clinical criteria such as pulse status, limb color,
temperature, infection, necrosis, and wound bleeding
have been inconsistent predictors of amputation healing
[15]. Numerous noninvasive (thermography, transcutane-
ous oximetry [tcpO2], laser Doppler flowmetry [LDF],
photoplethysmography, Doppler ankle-brachial indices)
and invasive (133Xe skin clearance, fluorescein dye
angiography) measures have been investigated as poten-
tial objective criteria for selection of the amputation level
[16–23]. Similar studies have been performed to evaluate
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and/or predict wound healing and the treatment of
ischemic ulcers [24,25]. While each measure has some
utility, none has demonstrated sufficient sensitivity and
specificity to warrant universal adoption.

While LDF may not provide definitive information
regarding the likelihood of wound healing, it does provide
information regarding local tissue perfusion. This mea-
sure is noninvasive, quick to estimate, and readily applied
to multiple sites or areas of the body. In principle, LDF
measures blood flux in the microvasculature, the capillar-
ies close to the skin surface, and the underlying arterioles
and venules involved in the regulation of skin tempera-
ture. Low-power light from a monochromatic laser, inci-
dent on tissue, is scattered by moving red blood cells and
undergoes a change in wavelength. This “Doppler shift”
is converted to “perfusion” units, related to the product of
mean cell velocity and average concentration of moving
blood cells by commercial LDF systems. The LDF mea-
surement depth depends on the underlying physiology,
incident light, and fiber separation between transmitting
and receiving fibers and is typically less than 1 mm.

Applications of LDF often involve investigation of
perfusion in response to provocation, such as application
of heat or vessel occlusion. The relative change in tissue
perfusion, as well as the initial rate of change and time to
equilibrate, in response to this provocation has potential
diagnostic value in assessing vascular function. Schubert
and Fagrell [26,27] used LDF to measure skin blood cell
flux and temperature to investigate the human microvas-
cular response to external pressure to assess risk of decu-
bitus ulcer formation. The LDF measures confirmed the
existence of microvascular differences between the sacral
and gluteal tissues contributing to increased frequency of
ulceration at the sacrum. A similar animal study by Salc-
ido et al. [28] attempted to quantify the critical threshold
of reduced blood flow because of external pressure lead-
ing to pressure sore formation. Their system included an
electromechanical pressure delivery system for generat-
ing experimentally derived pressure ulcers while moni-
toring blood perfusion using LDF. Similarly, Zhang and
Roberts [29] used skin blood flow as measured by LDF
to investigate the effects of shear forces applied to human
tissues.

Mechanical and Physiologic Effects of Soft Tissue 
Loading

Human soft tissues consist of a variety of macro-
structures, including skin, skeletal muscle, artery, vein,

cartilage, ligament, and tendon. Soft tissue studies have
typically focused on isolated structures by using in vitro
experiments to quantify the mechanical loading response
and to formulate constitutive equations.

Numerical models of the residual limb require in
vivo description of bulk amputee soft tissues in compres-
sion. Such in vivo investigations typically involve inden-
tor studies [30–37]. These studies indicate that the
response of human bulk soft tissue to compressive load is
nonlinear, is time-dependent, exhibits stress-relaxation,
and varies as a function of the loading rate and level of
muscle activation.

While quantifying the mechanical response of human
tissues to load is important, understanding the correspond-
ing physiological response to load is vital. Such knowl-
edge would help prevent pressures sores and perhaps
provide insight into tissue remodeling so that tissues that
are routinely exposed to load (i.e., plantar tissues, but-
tocks tissues for spinal cord injured persons, residual-limb
tissues for lower-limb amputees) might be “conditioned.”

Mechanical and physiological analysis of soft tissues
has attempted to define load-duration thresholds using
animal models [7,28,38–41]. The influence of shear forces
and friction on these thresholds has also been investigated
[9,38,42]. While there has not been a consensus regarding
absolute thresholds, an inverse load-duration relationship
has been acknowledged. Pressure-induced ischemia is
believed to be a primary factor influencing decubitus ulcer
formation [43].

The purpose of this study was to augment a device
used previously to assess the in vivo nonlinear, viscoelas-
tic mechanical response of human soft tissue to load, to
include measures of tissue perfusion. Preliminary inden-
tation studies that used the modified device were con-
ducted to demonstrate the utility of such a tool and to
identify potential measures of interest.

 METHODOLOGY

Original Tissue Indentor System
An extant rate-controlled indentor [44,45] that was

used to characterize the force-displacement behavior,
force-relaxation, and creep response of residual-limb soft
tissues was modified to investigate tissue perfusion.
Rate-controlled indentation was implemented with a lin-
ear actuator; the indentor also incorporated a compres-
sion load cell so the reaction force to indentation could be
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measured.* The linear actuator and data acquisition were
controlled via two digital I/O (input/output) cards for the
PCMCIA [peripheral component microchannel intercon-
nect architecture (IBM)] bus of a laptop personal com-
puter and LabVIEW for Windows.†

Hardware Modifications
Simultaneous measurement of tissue perfusion was

enabled by the extant indentor being interfaced with a
commercial laser Doppler perfusion measurement sys-
tem.‡ An endoscopic probe was custom designed so that
the fiber separation between the transmitting and receiving
optical fibers was maximized to 500 µm (default fiber sep-
aration was 250 µm);§ the external diameter remained at
1.9 mm. The increased fiber separation maximized the
measurement depth and yet ensured the fiber could still be
housed within the 4 mm indentor tip. The flexibility of this
probe facilitated threading the probe into the indentor tip.

The original indentor shaft-tip was removed from the
indentor. The solid single piece design was modified to
form two distinct pieces so that the concentric perfusion
probe was secured as the two pieces were screwed
together (Figure 1). The smaller diameter tip was bored
to accommodate the perfusion probe; it was tapered,
externally threaded, and slotted at one end to secure it to
the larger diameter indentor shaft. This shaft had a hole
bored through the center and out one side at a wide angle
to form a channel for the perfusion probe. The shaft was
internally threaded at one end to attach to the load cell;
the other end was internally threaded to accommodate the
indentor tip.

After the modified indentor shaft was secured onto
the load cell, the perfusion probe was fed through the
access slot into the channel of the shaft. It was similarly
fed through the indentor tip, external to the indentor. The
tip was then threaded onto the shaft, such that the perfu-
sion probe and indentor tip were flush. The perfusion

*The line actuator was model L92421-P1 (0.05 mm per
pulse) with model K33505 drive card, Philips Airpax Ltd.,
Cheshire, Connecticut. The load cell was model 31/1426-
04-03 (0 to 44 N), Sensotec, Columbus, Ohio.
†The I/O card was the Multifunction DAQCard-1200,
National Instruments, Austin, Texas. LabVIEW version
5.0 was used, National Instruments, Austin, Texas.
‡PeriFlux (PF) System 5000 (PF 5001 main unit; PF 5010
laser Doppler unit), Perimed AB, Stockholm, Sweden.
§Model 409 endoscopic probe, Perimed AB, Stockholm,
Sweden.

probe was secured as the tapered end of the indentor tip
was threaded onto the indentor shaft. The probe cable
was then connected to the PeriFlux 5000 front panel.

Next, the analog output on the rear of the PeriFlux
5000 was connected (via an RS-232-banana-plug cable)
to the analog-to-digital terminal blocks contained in the
signal conditioning box of the indentor system. This
facilitated simultaneous acquisition of perfusion and
force during indentation. Conversion of the perfusion sig-
nals to arbitrary perfusion units (apu) was performed
with the use of a motility standard.¶

Software Modifications
The LabVIEW virtual instruments (VIs) controlling

the indentor motor and data acquisition were modified to
include sampling of tissue perfusion. The PeriFlux 5000
system includes hardware filters with cutoff frequencies
(–3 dB point) of 0.125, 1.25, and 7.5 Hz.** For this pre-
liminary testing, the hardware filter was 7.5 Hz, unless
otherwise noted. The two PeriFlux analog outputs, perfu-
sion and the total amount of returning light or total back-
scatter, were sampled at 100 Hz (40 Hz for creep testing).
The indentor force was sampled at 300 Hz for cyclic
loading and relaxation trials and at 40 Hz for creep trials.
The perfusion data were then plotted, along with the
force and displacement data, and were appended to the
corresponding output files.

Test Protocol
The original device enabled in vivo testing of the

lower-limb soft tissues [46,47]. Testing included rate-
controlled cyclic loading, force relaxation, and creep pro-
tocols. These protocols were also used for the preliminary
tissue loading-perfusion studies.

¶The motility standard, PF1001, is a colloidal suspension
of latex particles. Brownian motion of these latex particles
provides a standardized perfusion value equivalent to 250
perfusion units (pu) (250 ± 5% at 22 °C). One perfusion
unit corresponds to 10 mV. Zeroing is automatic. The per-
fusion unit is arbitrary and cannot be given any physiologi-
cal definition such as actual number of cells flowing
through a given volume of tissue during a given time
period. Thus, the perfusion units are not absolute. As such,
they are referred to as arbitrary perfusion units (apu).
**These low-pass filters correspond to time constants of
3.0, 0.2, and 0.03 s, respectively, on the PeriFlux 5000
front panel.
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Institution Review Board (IRB) approval was obtained
for the modified indentor-perfusion system and associated
test protocols. Subject selection criteria were young (less
than 40 years), healthy subjects with no prior history of
dermatological or vascular problems. In vivo indentation
tests of the soft tissues of the right calf for 19 individuals
(see Table) were conducted. As tissue perfusion is temper-
ature and “stress” dependent, each subject acclimated to
the room and his or her surroundings for 15 minutes before
testing began.

Following informed consent, a “pseudosocket” con-
sisting of a test port-Velcro strap was positioned over the
posterior calf (Figure 2). This pseudosocket facilitated
mounting the tissue indentor so that indentation was per-

pendicular to the limb surface. Before the indentor studies
were initiated, the maximum tissue indentation that could
be tolerated without discomfort (dmax) was manually
evaluated with an indentor-like probe. All subsequent
indentor trials were conducted with indentations less than
85% dmax.

The LDF probe was calibrated with the use of the
motility standard (see note on previous page) before sub-
ject testing. Because calibration requires that the indentor
tip be removed from the load cell and the LDF probe
removed from the tip, calibration preceded testing of the
first subject. However, ambient light noise (as indicated by
the variable total backscatter during testing of Subject 6)

Figure 1.
Modified two-piece indentor shaft-tip that accommodates and secures perfusion probe.
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indicated that such calibration should be conducted before
each subject was tested.*

Force-perfusion data were collected during 10 loading
and unloading cycles at indentation rates of 1, 5, and
10 mm/s (randomly selected). An additional test for the
assessment of force-relaxation and the associated tissue
perfusion was also conducted. During this relaxation test,
the respective tissues were indented at 5 mm/s to a pre-
scribed displacement (less than 85% dmax). The tissue
force and perfusion were then monitored, with no addi-
tional indentation, for 30 s. While relaxation trials con-
ducted with the original indentor were 120 s, the
acquisition of the additional perfusion (and total backscat-
ter) data resulted in file size limitations (i.e., buffer over-
flows), necessitating the reduced test duration. Finally,
tissue studies for the evaluation of creep and the associ-
ated tissue perfusion were conducted. During these creep
tests, the tissues were indented at 1 mm/s. The tissue creep
and perfusion were then monitored while the tissue was

*Perimed AB recommends calibration only when the
probes are changed.

subjected to a constant force (less than the peak force
observed during the initial 1 mm/s cyclic loading) for 100 s.
As for the relaxation trials, the original creep test duration
(120 s) was reduced to accommodate the additional data
channels.

Signal Processing
Prior to signal processing specific to the respective

test protocols, the force and perfusion data were digitally
low pass filtered at 5 Hz (LabVIEW®).†

Cyclic Loading Data
Force-time and perfusion-time curves were obtained

for rate-controlled cyclic loading (Figure 3(a) and 3(b)).
Contact of the indentor tip with the limb surface was
defined by the force amplitude, namely, when the force
exceeded the “no-load” force by 0.2 N. The data cycles
were subdivided into the respective loading and unload-
ing portions, based on this contact force (start of tissue
loading, end of tissue unloading) and the maximum force
of the respective cycle (end of tissue loading, beginning
of tissue unloading), as shown in Figure 3(b).

Analysis of the loading data were conducted to deter-
mine the loading delay, defined as the time between the
onset of tissue loading and the subsequent decrease in tissue
perfusion. Two different techniques were used to estimate this

†For cyclic and relaxation data, this filter was implemented
with the use of a 7.8 Hz second-order Butterworth filter and
applied forward and backward, thereby minimizing phase
lag. For creep, a 5 Hz fifth-order elliptical filter was used.

Table.
Summary of test subjects.

Subject Age (yr) Gender Calibrated Probe
1 20 F Y
2 23 F N*

3 26 M N
4 27 M N
5 22 M N
6 24 M N
7 22 F Y
8 27 M Y
9 34 M Y

10 23 M Y
11 37 F Y
12 34 M Y
13 37 F Y
14 22 F Y
15 22 F Y
16 24 M Y
17 24 M Y
18 24 F Y*

19 20 F Y
Y = yes
N = no
*Perfusion hardware filter cutoff frequency was 1.25 Hz, as opposed to default
cutoff frequency used for all other subjects was 7.5 Hz.

Figure 2.
Pseudosocket (left) used to position indentor over the tissues of
posterior calf.
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parameter, one based on a threshold detection scheme and the
second based on the maximum cross-correlation coefficient.

For the threshold detection scheme, the change in per-
fusion was approximated by central difference techniques

where P is the tissue perfusion (apu), t is time (s), n is the
sample number, and  is 10 ms.
The onset of tissue perfusion decrease was determined based
on a perfusion slope threshold detection scheme so that the
time of perfusion decrease, tPdecrease, occurred when

The loading delay was also estimated with the Hilbert
transform. The resultant maximum cross-correlation coeffi-
cient provides an estimate of the delay between the force

and perfusion time series for each of the respective 10 load-
ing time series. These delays were then averaged for all
cycles at the respective indentation rate. More specific
details regarding the use of this methodology are reviewed
by Saad et al. [48].

The associated magnitude of the physiologic or per-
fusion response, %Pdrop, was defined as the normalized
change in maximum (Pmax) and minimum (Pmin) tissue
perfusion for each cycle

This physiologic response was then averaged over the
respective 10 cycles at each indentation rate.

The mean recovery delay was similarly evaluated
based on the unloading data, defined as the time between
the onset of tissue unloading and the subsequent increase
in tissue perfusion.

Figure 3.
Representative data for cyclic loading for Subject 16 at 5 mm/s (force = gray; perfusion = black). Shown are (a) all 10 loading and unloading
cycles and (b) a close-up of cycle 6.
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Relaxation Data
Force-time and perfusion-time curves were also

obtained for the relaxation (ramped step displacement)
loading. Contact of the indentor tip with the limb surface
was again defined by the force amplitude. The data were
divided into the respective initial loading and relaxation
portions, based on the contact force (start of tissue load-
ing) and the maximum force (end of tissue loading,
beginning of the relaxation period), as shown in Figure 4.

The associated magnitude of the physiologic or per-
fusion response (%Pdrop) was evaluated as for cyclic
loading. The mechanical response was quantified in
terms of the percentage of force relaxation, %frlxn,

where fequilibrium was the mean force over the final 2 s of
relaxation. The equilibrated or steady state perfusion,
Pequilibrium, was similarly evaluated. Finally, the time for
the tissue to equilibrate, tequilibrium, defined as the time for
the tissue to fall to this Pequilibrium value, was evaluated.

Creep Data
Force-time, displacement-time, and perfusion-time

curves were obtained for the creep (constant force) load-
ing. Contact of the indentor tip with the limb surface was
again defined by the force amplitude. The data were
divided into the respective initial loading and creep por-
tions, based on this contact force (start of tissue loading)
and the time at which the force reached its target value
(end of tissue loading, beginning of creep period), as
shown in Figure 5.

The associated magnitude of the physiologic or per-
fusion response (%Pdrop) was evaluated as described pre-
viously. The mechanical response was quantified in terms
of the percentage of tissue creep,

where df target is the initial displacement when the force
reached the target load and dequilibrium is the mean dis-
placement over the final 15 s of loading. The equilibrated
or steady state perfusion was also evaluated over the final
15 s of loading. Finally, the time for the tissue to equili-
brate, tequilibrium, defined as the time for the tissue to fall
to within 95 percent of Pequilibrium, was also evaluated.

RESULTS

Preliminary tests conducted with the modified device
did not indicate any degradation in initial system perfor-
mance. Frequency analysis of the perfusion (and total
backscatter) data indicated that the signal power was con-
sistently less than 5 Hz for all test protocols for the first
six subjects tested. In subsequent studies, the 100 Hz
sampling rate for perfusion (and total backscatter) can be
reduced to enable longer test duration and indentations.

The total backscatter measure depends on the power,
alignment, and focusing of the laser, as well as the light
scattered by the blood cells. Since hemoglobin in red blood
cells absorbs light, the higher the blood cell concentration,
the less the light reflected and hence the lower the total
backscatter value. The total backscatter is therefore corre-
lated to the blood cell content of tissue rather than blood
flow. Total backscatter can also be considered as a measure
of the total amount of light returned. As such, it is a means
with which to identify experimental error. Perimed AB rec-
ommends that the total backscatter measure during testing
be [0.5, 9.5 V]. If the total backscatter is outside this range,
the accompanying perfusion data are considered suspect.
The perfusion probe should then be recalibrated. During
testing of the calf tissues of the 19 subjects for each of the
five test protocols, the total backscatter exceeded the rec-
ommended values for only one subject (Subject 6). Calibra-
tion of the perfusion probe was conducted before testing for
all subjects after this error was noted.

Representative data for cyclic loading are illustrated in
Figure 3. The overall mechanical (maximum force, fmax)
and physiologic (%Pdrop) response as a function of inden-
tation rate is summarized in Figure 6. The observed differ-
ences in physiologic response at the various indentation
rates were statistically significant (P < 0.005 for 1 versus
5 mm/s; P < 0.001 for 5 versus 10 mm/s and 1 versus
10 mm/s).

The loading delay as estimated by the threshold
detection scheme was dependent on the value of the slope
threshold (Figure 7a). The alternative loading delay
estimation scheme based on the maximum cross-correla-
tion coefficient and the Hilbert transform appeared to be
more robust, facilitating estimation of both the loading
and unloading (recovery) delays for all cycles for all sub-
jects (Figure 7b). The differences in the loading delays at
the various indentation rates were also statistically signifi-
cant (P < 0.1 for 1 versus 5 mm/s; P < 0.005 for 5 versus
10 mm/s; P < 0.001 for 1 versus 10 mm/s). The recovery

% frlxn
fmax fequilibrium–( )

fmax
-------------------------------------------*100 ,=

%creep
dequilibrium df target–( )

df target
---------------------------------------------------*100 ,=
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delays evaluated for the 19 subjects at each of the three
indentation rates (as summarized in Figure 7b) were also
found to differ significantly with the indentation rate (P <
0.1 for 1 versus 5 mm/s; P < 0.005 for 5 versus 10 mm/s;
P < 0.025 for 1 versus 10 mm/s).

Representative data for relaxation loading are illus-
trated in Figure 4. As seen in this curve, little to no tissue
reperfusion was observed during the relaxation period.
The magnitude of the mechanical (fmax, %frlxn) and physi-
ologic (%Pdrop, tequilibrium) response to the applied dis-
placement is shown in Figure 8.

Finally, representative data for creep loading are
illustrated in Figure 5. As seen in this curve, perfusion
(black) does not continue to decrease as the tissue creeps.
For the tissues tested to date, the applied force of 3.4 ±
1.2 N was accompanied by substantial tissue creep (313.4
± 60.6%). The corresponding decrease in tissue perfusion
was 89.3 ± 7.4%, with the perfusion falling to 95 percent
of the equilibrated value in 1.35 ± 2.2 s.

DISCUSSION

The objectives of this work were to develop a tool to
investigate tissue perfusion during loading, to demon-
strate the utility of this device, and to identify potential
perfusion measures of interest for future investigation of
residual limb tissues.

The modified extant indentor retained the original func-
tional capabilities and facilitated simultaneous measure-

ment of tissue perfusion during cyclic loading, relaxation
(ramped step displacement), and creep (constant force)
loading. Limitations regarding the data acquisition card
buffer (64 kB) were noted, necessitating reduced test dura-
tion for relaxation and creep loading—in addition to a maxi-
mum of 8 mm indentation at 1 mm/s. However, the
observed frequency content of the perfusion data (less than
5 Hz) indicates that the 100 Hz sampling rate (40 Hz for
creep loading) can be reduced substantially during future
testing, obviating this hardware limitation.

The preliminary tissue loading-perfusion studies con-
ducted on the posterior calf on young healthy subjects dem-
onstrated the feasibility of such simultaneous measurements
and the potential utility of the device. These preliminary
studies identified the need for calibration of the perfusion
probe before each subject was tested (as indicated by total
backscatter outside the recommended [0.5, 9.5 V] range).
While the cyclic, relaxation, and creep protocols were sup-
ported, the perfusion data during cyclic loading at 1 mm/s
was noisier and less consistent from cycle to cycle than that
observed at 5 and 10 mm/s. Future cyclic loading studies are
therefore recommended at 5 and 10 mm/s only. 

These preliminary indentation studies also identified
potential perfusion measures of interest that might eluci-
date prosthetic fit and dermatological damage risk factors
in lower-limb amputees and individuals with peripheral
vascular disease. These measures of interest include the
loading-recovery delays during cyclic loading; the time
for the tissue perfusion to equilibrate during relaxation

Figure 4.
Representative force (gray) and perfusion (black) data for relaxation (ramped step displacement) for Subject 9.
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and creep loading; and the magnitude of the perfusion
response during cyclic, relaxation, and creep loading.

The loading-recovery delays associated with cyclic
loading were readily estimated with the cross-correlation
coefficient and the Hilbert transform. More simplistic
attempts based upon a perfusion slope threshold detec-
tion scheme were less robust and depended on the magni-
tude of the slope threshold. The estimated loading-
recovery delays typically ranged from 1 s to 5 s, and var-
ied with indentation rate (delays decreased as indentation
rate increased). Statistical comparison (paired t-test) of
the loading versus recovery delays indicated that the
loading delay exceeded the recovery delay at 5 mm/s and
10 mm/s (P < 0.001 and P < 0.05, respectively). The dif-
ference in loading versus recovery delays at 1 mm/s was

not significant, providing further incentive for the poten-
tial omission of this protocol in future studies.

The perfusion response, %Pdrop, during cyclic load-
ing was substantial, ranging from 60 to 90 percent for
submaximal loading of these tissues. This decrease in tis-
sue perfusion was rate-dependent, with greater decreases
observed at slower loading rates.

The physiologic explanation of these rate-dependent
responses in the loading-recovery delays and perfusion
decrease is not known. Further investigation is warranted
to confirm the existence of such trends in larger popula-
tions and to determine if such behavior is also observed
for limb tissues of individuals with vascular disease and/or
lower-limb amputation.

The decreased force and perfusion during relaxation
(ramped step displacement) testing was also marked, as

Figure 5.
Representative perfusion (black) and tissue creep (gray) in response to constant force (light gray) for Subject 17. Also shown are mechanical
(ftarget = 5.6 N, dequilibrium = 6.9 mm, %creep = 331%) and physiologic (%Pdrop = 95%, Pequilibrium = 0.4 apu, tequilibrium = 3.1 s) measures of
interest.
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seen in Figure 8. Perfusion in these posterior calf tissues
typically equilibrated within 7 s to 9 s. While a reduced
perfusion-sampling rate would permit relaxation duration
greater than 30 s, this test period was sufficient to observe
equilibrium. Future studies incorporating longer test peri-
ods may therefore not be necessary, although other sites
and sample populations may exhibit different behavior.

Substantial tissue creep (more than 300 percent) and
perfusion decreases (90 percent) were observed during

constant force loading. The tissue perfusion typically
equilibrated in 1 s to 4 s. As such, the 100 s test duration
during creep testing was more than sufficient. Further
investigation of lower-limb tissues for individuals with
vascular disease and/or lower-limb amputation is war-
ranted for one to determine whether the perfusion decrease
and/or equilibrium time during creep (and relaxation)
loading differs for these populations.

As tissue perfusion is temperature-dependent, future
studies should also monitor ambient and skin temperature.
Changes in tissue perfusion because of thermal variations
may then be isolated.

CONCLUSION

This study resulted in a tool and some preliminary
data with which to assess tissue perfusion as a function of
load. The results of this preliminary work indicate that
such studies are possible and that perfusion parameters
such as the loading-recovery delay, equilibrium time, and
perfusion decrease may have clinical utility. Future studies
involving individuals with peripheral vascular disease and/
or lower-limb amputation are needed.
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