VA Research and Development LOGO

Logo for the Journal of Rehab R&D
Volume 41 Number 1, January/February 2004
Pages 33 — 40


Variable-frequency-train stimulation of skeletal muscle after spinal cord injury

C. Scott Bickel, PT, PhD; Jill M. Slade, PhD; Leslie R. VanHiel, MSPT; Gordon L. Warren, PhD;
Gary A. Dudley, PhD

Department of Exercise Science, University of Georgia, Athens, GA; Department of Physical Therapy, Georgia State University, Atlanta, GA; Crawford Research Institute, Shepherd Center, Atlanta, GA
Abstract — Skeletal muscle, after spinal cord injury (SCI), becomes highly susceptible to fatigue. Variable-frequency trains (VFTs) enhance force in fatigued human skeletal muscle of able-bodied (AB) individuals. VFTs do this by taking advantage of the "catch-like" property of skeletal muscle. However, mechanisms responsible for fatigue in AB and SCI subjects may not be the same, and the efficacy of VFT stimulation after SCI is unknown. Accordingly, we tested the hypothesis that VFT stimulation would augment torque-time integral in SCI subjects. The quadriceps femoris muscle was stimulated with constant frequency trains (CFTs) (six 200 s square wave pulses separated by 70 ms) or VFTs (a train identical to the CFT, except that the first two pulses were separated by 5 ms) in SCI and AB subjects. After 180 contractions (50% duty cycle), isometric peak torque decreased 44, 56, and 67 percent, in the AB (n = 10), acute SCI (n = 10), and chronic SCI (n = 12) groups, respectively. In fatigued muscle, VFTs enhanced the torque-time integral by 18 percent in AB subjects and 6 percent in chronic SCI patients, and had no effect in acute SCI patients when compared to the corresponding CFT. The much faster rise times in SCI subjects (~80 ms vs. 120 ms in AB subjects) probably contributed to the inability of VFTs to enhance torque-time integrals in SCI patients. The results suggest that the use of VFT stimulation in patients with SCI may not be as efficacious as it is in AB persons.
Key words: catch-like property, electrical stimulation, fatigue, spinal cord injury, variable frequency train

 → Contents Page for Volume 39, No 5
 → HTML version of article
 → PDF version of the article


  Last Reviewed or Updated Tuesday, May 29, 2007 12:09 PM