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Abstract—The wheel camber of a wheelchair is a significant
parameter that must be taken into account in the search for
optimal regulation of a wheelchair. This study examined the
effects of different rear-wheel camber (9°, 12° and 15°)—
today used mainly in the handibasket championship—on the
various kinetic and kinematic parameters of the propulsion
cycle. Eight males, all players in the French handibasket cham-
pionship, were asked to participate in this study. They per-
formed three 8 s maximal sprints as measured by a wheelchair
ergometer, 9°, 12°, and 15° of rear-wheel camber. The results
of our study show that residual torque increases in proportion
to the increase in wheel camber. This could explain other study
results, which show a decrease in mean velocity and an
increase in both power output and time of the propelling phase,
in relation to the wheel camber. These results should provide
the information necessary for optimal wheelchair regulation.

Key words: basketball, biomechanics, camber, propulsion,
wheelchair ergometer.

INTRODUCTION

The wheel camber of a wheelchair is a significant
parameter that must be taken into account in the search
for optimal regulation of a wheelchair. Camber is defined
in several ways in the literature. According to Higgs,
camber is “the angle of the main wheel to the vertical”
[1], while Frank and Abel define it as a situation in which
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“the spacing between the top points of the wheels may be
less than the spacing between the bottom points” [2].
Wheel camber has direct effects on several parame-
ters. For instance, increasing camber slightly reduces the
height of the seat, while it proportionally increases the
wheelbase, which corresponds to the width of the wheel-
chair. In the same way, with negative camber, the center
of gravity of the occupied wheelchair moves backward
[3]. From a practical point of view, increased wheel cam-
ber improves hand protection as chairs pass through doors
and, in terms of handibasket, it helps prevent contact
between wheelchairs during a match [4]. Increased wheel
camber also provides better lateral static stability for the
wheelchair [5] and shortens the down turning moment [6].
Moreover, Faupin et al. have shown that increasing wheel
camber improves basketball players’ turn velocity [7].

Abbreviation: FHF = French Handisport Federation.
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Scientific data pertaining to the effects of camber on
physiological responses are limited, and those that exist
vary significantly depending on the authors and the test
protocols used. For example, while Veeger et al.
observed no significant effect on physiological responses
in able-bodied subjects propelling a wheelchair whose
wheel camber varied between 0°, 3°, 6° and 9° [4], Buck-
ley and Bhambhani concluded that the energy cost of
wheelchair propulsion increased with camber angle [8].
In addition, several authors have proposed that increasing
rear-wheel camber would both make it easier to reach the
hand rims, and facilitate arm movement during the pro-
pulsion cycle [4,9]. It has also been suggested that
increased camber would provide a more effective appli-
cation of force and lower energy losses [10].

The effect of wheel camber on overall rolling resis-
tance is a controversial subject in the literature: the vari-
ous published results are contradictory [11]. Veeger et al.
found that rolling resistance decreases with increasing
camber angle in a minor, but significant, difference [4].
Other researchers have concluded that rolling resistance
is negligible [8,12]. Further, Weege theoretically sup-
ports the hypothesis according to which that rolling resis-
tance would increase proportionally with increasing
wheel camber [13]. Our 2002 study, which used a wheel-
chair ergometer, tends to confirm the findings of Weege
rather than those of Veeger [14].

Within-cycle parameters have also been described
frequently in the literature [4,11,15-21]. Among these
studies, Vanlandewijck et al. was particularly interested
in wheelchair basketball propulsion [15,17]. To our
knowledge, among the many researchers publishing in
this area, only Veeger et al. have studied the incidence of
wheel camber on the different kinematic parameters [4].

The data obtained in their study indicate that a 0° to 9°
wheel camber modifies push time and push angle signifi-
cantly. However, because of minor changes in wheel
alignment, the authors had to compensate for the differ-
ences of rolling resistance and, their test group included
only able-bodied subjects.

The present study examined the effects of increased
rear-wheel camber (9°, 12° and 15°) on the mechanical
parameters of the propulsion cycle. A group of elite
wheelchair basketball athletes was asked to participate. A
wheelchair ergometer measured the parameters under
examination: the resistance to advancement required for
the user-to-chair interface, the force and the power output
developed by the user, as well as the velocity and the
time of the various propulsion cycles. Our results should
provide the information necessary for optimal wheelchair
regulation.

METHODS

Subjects

The sample group consisted of eight experienced
male athletes, all players in the French handibasket cham-
pionship. Table 1 presents the averages and standard
deviations of subject age, mass, and height, as well as the
number of training hours/week. The French Handisport
Federation (FHF) classifications, which correspond to
individual disability levels, are also presented for each
athlete. The FHF classifications varies from 1 to 5: the
lower the classification, the heavier the athlete’s disabi-
lity and vice versa. Written informed consent was
obtained from all subjects, in full knowledge of what the
experiments entailed.

Table 1.
Mean and standard deviation of subject data.
Subject Age Mass Height Classification Sports Training
(yr) (kg) (cm) (1to5) (h/wk)
1 25.0 75.0 180.0 4.5 6.0
2 24.0 52.0 180.0 2.0 6.0
3 24.0 68.0 175.0 5.0 4.0
4 27.0 60.0 168.0 4.0 6.0
5 22.0 103.0 194.0 5.0 6.0
6 20.0 36.0 150.0 2.0 4.0
7 32.0 68.0 168.0 4.0 6.0
Mean 24.9 66.0 173.6 3.8 5.4
Standard Deviation 3.6 19.2 12.6 1.2 0.9
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Instrumentation

A Top End X-Terminator-type basketball wheel-
chair, weighing 13 kg and measuring 80 cm long, was
selected for use in this study. The angle formed by the
back and the seat was 75°. The back, positioned verti-
cally, was 28 cm high; its width and depth were, respec-
tively, 42 cm and 39 cm. The diameter of the wheels was
64 cm, with tubeless tires inflated to 8 bars. Once all
these parameters had been measured and controlled, they
were not changed. Only wheel camber was varied (9°,
12°, 15°). These variations caused the respective modifi-
cations of the wheelbase (68 cm, 70 cm, and 72 c¢cm) and
the seat height (28 cm, 27.3 cm, and 26.5 cm). After each
camber change, we paid special attention to the align-
ment of the rear wheels to avoid misalignment, also
called “toe in” and “toe out” [22]. The top-to-top wheel
distance remained constant for each camber [4].

The wheelchair was placed on a new model ergome-
ter (VP100 HANDI, HANDISOFT, HEF Tecmachine,
France) (Figure 1). This ergometer, built on the lines of
the recently validated VP100 HTE ergometer, consists of

Front Roller

Rear Roller

Electromagnetic Brake

Figure 1.
Wheelchair on ergometer. Reprinted with permission of HEF
Tecmachine, France.
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a roller system driven by the wheels of the wheelchair
[23]. Two electromagnetic brakes (Type ZS, Friedrichs-
hafen, Germany), one on each side of the roller system,
are mounted on a force sensor that can compel the wheel-
chair to brake, producing a braking torque from 0 Nm to
4 Nm. Two sensors of instantaneous velocity by incre-
mental encoders (3,600 points per rotation) also complete
the ergometer.

The velocity and force signals were sampled at
100 Hz and then transferred to a National Instruments
6024 E data acquisition card in a computer (Victor Tech-
nologies 386SX). These high frequencies allowed the
analyses of the propulsion cycle. The roller system was
calibrated, with the manufacturer’s help, prior to the
beginning of the study.

Data Analysis

In our study, data from all the trials were recorded, but
we only took into account the last five cycles of the 8 s
sprints, when the different variables to be calculated had
stabilized and reached a plateau. All data were filtered by
means of a low-pass filter at cut-off frequency of 10 Hz.
Figure 2 presents a graph of the velocity and power
parameters during an 8 s sprint for one subject. For each
sprint, we calculated the data corresponding to the mean
velocity per arm cycle (Vp,)), the cycle time (Cy), the time
of the propelling phase (P;: pulling and pushing phases
during which the user drives the wheels of his wheelchair),
and the time of the nonpropelling phase (R;: phase during
which the user’s hands are positioned to restart the push
phase). The time parameters (C;, Py, Ry) were determined
according to the acceleration and deceleration phases of
the wheels as observed on the instantaneous speed curve.

Power (W) ---

Velocity (m/s) —

Time (s)

Figure 2.
Velocity and power output developed by one subject during 8 s sprint
test.
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The total power output developed during the push phase
(Pot» Equation (1), below) corresponds to the sum of the
power developed to overcome the total inertia of the roll-
ers (P;) and the total brake power (Py,) according to:

Piot = Pi+Pp 1)

where P; and Py, are, respectively,

Pi:(ﬂ) 2)

Pp = (T)), ®)

and where T; (Nm) is the torque needed to overcome
inertia (mzkg) calculated instantaneously from the two
sensors of force mounted on each side of the roller sys-
tem, and (rad-s™%) is the angular velocity of the rollers
(roller circumference: 502.65 mm) obtained by means of
the two sensors of instantaneous velocity.

Residual torque (T,) is due to the distortion of the tire
on the rollers, and the rolling resistance of both the roll-
ers and wheelchair ballbearings. The T, value is the
measurement of the deceleration time between initial
velocity and final velocity [23,24].

Procedures

Once settled in the wheelchair fixed to the ergome-
ter, the subject had 10 min to get used to the equipment
before beginning the test. Prior to each sprint, residual
torque was evaluated according to the Thiesen method
[24]. After a familiarization period that also served as a
warm-up, the subject completed two or three maximal
pushes on the hand rim and then maintained the prede-
termined, “standard” position until the wheels came to
a complete stop. The standard position—trunk slightly
tilted forward, elbows on the knees, chin in the
hands—was imposed on all subjects throughout the
testing. T, was directly measured by the ergometer dur-
ing this deceleration phase.

All the subjects were asked to perform three 8 s maxi-
mal sprints in a random order, while positioned on a
wheelchair ergometer. They completed the same test for
the following three wheel cambers: 9°, 12°, and 15°. Ata
signal given by the experimenter, the subjects were
encouraged to sprint as fast as possible for 8 s. A 5 min
rest period was imposed before each new sprint, during
which time the wheelchair and the roller ergometer were

adjusted. No instruction was given to the subjects con-
cerning either the position of their hands on the hand rim
or their chosen propulsion technique.

Statistical Analysis

The averages and standard deviations of all parame-
ters were calculated for each experimental situation. The
use of a nonparametrical statistical test was necessary
because the requirements for parametrical tests—namely,
the normal distribution and the covariance homogeneity
of the source population—were not satisfied. Given these
constraints, the Friedman test appeared the most suitable.
The Spearman method was used for correlation testing.
The level of significance was set at p < 0.05. All statisti-
cal analyses were performed with SPSS (Service Provi-
sioning System Software).

RESULTS

The means and standard deviations of the temporal,
kinetic, and kinematic variables are presented in Table 2.
The increase in wheelchair camber was associated with
significant increases in T, and Py, and a significant
decrease in V,,. As for the temporal variables, no signifi-
cant difference was found for C; and R;. However, signif-
icant differences were observed for P;.

For each subject, two linear relations were verified:
one between V,, and wheel camber (9° to 15°) with a
determination coefficient between 0.95 < R? < 1, and
another between T, and wheel camber with a determina-
tion coefficient between 0.96 < R?< 1 (Figure 3). When
T, increases with wheel camber, V,,, decreases.

Finally, to determine whether a relation exists
between T, and V,,, we performed the Spearman correla-
tion test. This test revealed that these two variables were
linked (p = 0.027 with a negative correlation coefficient
=-0.485).

DISCUSSION

This study, much like the study we completed in
2002 [14], indicates that residual torque T, (0.64 £ 0.12,
0.97 £ 0.16, and 1.35 £ 0.22 Nm) increases in proportion
to the increase in rear-wheel camber, from 9° to 12° to
15°. When changing camber, we paid particular attention
to the parallelism of the rear wheels to avoid “toe in” or
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Table 2.
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Values (mean + standard deviation) of residual torque (T,), mean velacity (V,), inertia power (P;), brake power (P), total power (Pyyy), cycle time (Cy),
propelling time (Py), recovery time (R;) measured on each wheel camber condition.

Camber 9° 12° 15° p-value
T, (Nm) 0.64 +0.12 0.97 +£0.16 1.35+£0.22 0.001"
Vy, (km/h) 14.46 + 1.16 1340+ 1.21 12.56 + 1.39 0.001"
P; (W) 112.90 £ 26.70 141.54 + 26.05 167.06 + 30.86 0.002"
Py (W) 60.14 + 10.29 87.12 +13.81 109.69 + 13.16 0.001"
Piot (W) 173.03 + 35.68 228.65 + 36.19 276.75 + 37.26 0.002"
C; (ms) 414.29 + 28.35 412.86 + 38.05 424.43 £ 27.15 0.664
P (ms) 145.71 + 25.50 150.00 + 15.52 157.14 £ 10.24 0.008"
R¢ (ms) 268.57 £ 32.45 262.86 + 26.06 267.14 £ 25.36 0.692

*Significant difference (p < 0.01).

_ .V, T
13 e »=0.3463x +0.3304 T 160
. R?*=0.9931
— —Linear (V,)
~ ---- Linear (T) ey
~ e
—_ 12 - +1.20
< ~ =
£ \r[:v:_"\ E
< ) T - B‘-.
N T
. + 0.80
L »y=-0.65x + 13.046
. R?=0.998
10 " 0.40
o 12° 15°
Wheel Camber (°)
Figure 3.

Linear regressions between V,,, and wheel camber, and T, and wheel
camber, for one subject.

“toe out,” a misalignment of the wheels that would have
increased rolling resistance [2,12,22,25]. Despite these
precautions, our results tend to confirm Weege’s hypoth-
esis that rolling resistance would increase proportionally
with the increase in wheel camber [13], rather than the
results of Veeger et al, who maintained that rolling resis-
tance decreased with increasing camber angle in a minor
effect [4]. There are several possible reasons for the dif-
ferences between our results and those of Veeger et al.
[4]. In the Veeger study, a treadmill was used to take the
rolling resistance of the wheelchair casters into account,
which is impossible when it is used an ergometer [26]. In
addition, the Veeger study, done in 1989, examined
wheel cambers between 0° and 9°, while in our study
camber varied from 9° to 15°; these values were chosen
because these are the wheel cambers most often used in

the present-day French handibasket championship.
Finally, Veeger et al. tended to ascribe their results to a
minor change in wheel alignment for which they could
not compensate. However, in our study, the alignment of
the wheels was controlled. Therefore, the difference in
rolling resistance is not due to a misalignment of the
wheels. One of the most suitable hypothesis is that when
increasing wheel camber, the contact between the tires
and the court surface increases proportionally, causing an
increase of rolling resistance. A limitation of our study is
that, on an ergometer, this phenomenon tends probably to
be amplified for two reasons. First, the contact between
the tires and the rollers is more important on an ergome-
ter [26]. Second, on a two-roller system, wheel camber is
likely to lead to misalignment to one of the rollers and
therefore to an increase in rolling resistance. Thus, the
end of this discussion is only valid in tests in the labora-
tory on roller ergometers and cannot be generalized to
field tests. It would be interesting, in a future study, for
investigators to conduct a field test to assess rolling resis-
tance [27] in order to compare the results with those
obtained in our study.

In our study of wheel camber varying from 9° to
15°, the mean velocities per arm cycle V, were 14.46 +
1.16, 13.40 + 1.21, and 12.56 + 1.39 km/h, respectively.
These velocity values are comparable to those found by
Veeger et al., during 20 s sprints (15.19 + 1.22 km/h),
where no braking was imposed by the ergometer [28].
According to Sanderson and Sommer, at such a velocity,
the hand of the athlete moves more slowly than the
wheel, which causes a braking force at the moment of
initial hand-to-wheel contact [29]. Had we chosen to use
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video analysis techniques in our study, this hypothesis
could have been verified.

The statistical data obtained in this study have shown
significant differences between the V,, and T, parameters,
for the different wheel cambers (Table 2). In fact, there
are significant linear relations between these two parame-
ters and wheel camber for all the subjects (Figure 3). A
significant relationship has also been established between
Vi, and T, (p = 0.027, with a negative correlation coeffi-
cient = —0.485). Our results are closely akin to those of
others authors, who have noted that increasing rolling
resistance brought about a proportional decrease of the
angular velocity of the wheels [28,30]. However, these
authors deliberately increased rolling resistance by suc-
cessively increasing the load, whereas in our study, the
increase in rolling resistance was both involuntary and
much less important than that of the other studies.

From the statistical analysis of the results, we have
observed significant differences in the power output
parameters (Table 2). The results demonstrate that P;,
Py, and Py increase in proportion to the three different
degrees of wheel camber (9°, 12°, 15°). To our knowl-
edge, no other study has examined these parameters in
terms of wheel camber. For this reason, it is difficult to
compare our results with those in the literature because
the values obtained may be very different from one study
to another. In fact, Veeger et al. have shown an important
variability in the power developed by the subject during
the push phase, when the rolling resistance imposed by
the ergometer is modified [28]. Their values, obtained
from the left arm only, were between 93.3 = 23.4 and
186.0 + 41.7 W. In addition, the power values shown in
the literature often correspond to the power levels calcu-
lated over the total time of the cycle.

The temporal parameters, C, and Ry, do not seem to
vary with wheelchair wheel camber; at least, no signifi-
cant difference was observed (Table 2). However, there
was an increase in P; proportional to the wheel camber
(respectively, 145.71 £+ 25.50 ms, 150.00 £ 15.52 ms, and
157.14 + 10.24 ms for 9°, 12°, and 15°). This increase can
be explained in two ways. Either an increase of R;, due to
the increase of wheel camber, modifies the push time, or
the increase in wheel camber has a direct effect on P;. In
defense of the first explanation are the observations of
Veeger et al., who maintain that stronger rolling resistance
leads to prolonged hand-wheel contact, which makes the
push time longer [28]. However, the second explanation
tends to support another Veeger et al. study, in which it
was demonstrated that wheel camber has significant

effects on push time, because increasing wheel camber
causes changes in the athlete’s grip on the hand rim [4].

CONCLUSION AND PERSPECTIVES

We have used an ergometer to estimate the influence
of wheelchair wheel camber on several of the kinetic
and kinematic parameters of wheelchair propulsion
cycles. Our results have demonstrated an increase in
residual torque (T,) proportional to the increase in wheel
camber (from 9° to 12° to 15°). This increased rolling
resistance could explain the other results produced in
this study, which showed a decrease of mean velocity
(Vi) and an increase of power output in relation to the
wheel camber. As far as temporal parameters are con-
cerned, the time of the propelling phase (Py) is the only
parameter that tends to increase in proportional to the
increase in wheel camber.

These results would appear to prove that, at least in
laboratory tests using roller systems, a wheelchair’s
wheel camber influences the various parameters just
mentioned. Even though an increase in wheel camber has
numerous advantages (for example, better stability, and
an improvement of a basketball player’s turning speed),
the seemingly negative effect of camber angle on propul-
sive action must also be taken into account to obtain the
optimal regulation of the wheelchair.

Careful consideration of the camber angle becomes
even more important when one realizes that 64 percent of
wheelchair basketball gametime is spent in propulsive
actions [31]. Players have to find the best compromise, in
terms of their handicap, their position on the court, and
their playing level. In addition, it is important to remem-
ber that while camber angles differ, the basketball wheel-
chair wheels are all the same. The contact between the
tires and the court surface is modified by the wheel cam-
ber, which may explain why rolling resistance also
increases. Wheelchair builders could take this into
account and propose wheels and tires appropriate to each
camber angle.

Several directions for future research are possible.
For example, the use of a three-dimensional analysis sys-
tem, interfaced with a wheelchair ergometer, would
allow a more precise analysis of the propulsion cycles.
Thus, it would be possible to verify the hypothesis that
increased wheel camber is likely to improve the applica-
tion of hand rim force during the push phase. But before,
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it would be interesting for the rolling resistance on court
to be measured [27] so the results could be compared
with those obtained in our study.
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