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Abstract—Inflammatory tissue damage and the presence of
reactive immunocompetent T lymphocytes, macrophages,
microglia, and dendritic cells (DCs) are characteristic features
in the human chronic inflammatory demyelinating disease,
multiple sclerosis (MS). Together, these cells orchestrate the
inflammation and immunopathogenesis underlying the MS
autoimmune disease processes and all up-regulate the same
voltage-gated potassium (Kv) channel, Kv1.3, when fully acti-
vated. Only microglia, which mediate central nervous system
(CNS) inflammatory processes (possibly playing a dual role of
CNS protection and mediation of neuroinflammation/ neurode-
generation), and DC, which are pivotal to the induction of
T cell responses, express the distinct Kv1.5 prior to Kv1.3 up-
regulation. Although the precise functional roles of first Kv1.5
and then Kv1.3 channels are unclear, their differential expres-
sion is likely a common mechanism used by both microglia
and DC, revealing Kv1.5 (in addition to Kv1.3) as a potentially
important target for the development of new immunomodula-
tory therapies in MS.
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INTRODUCTION

Multiple sclerosis (MS) is a chronic and progressive
neurodegenerative disease for which no cure exists. Con-
sidered a primary inflammatory disease of central nervous
system (CNS) white matter, pathological lesions in MS
are characterized by inflammatory demyelination with
relative sparing of axons [1], perivascular/parenchymal
infiltration of T lymphocytes (T cells) and macrophages
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[1–3], and proliferation and activation of resident micro-
glia and astrocytes [4], as well as peripheral dendritic cells
(DCs) [5]. In addition to inflammation and demyelination
(white and gray matter), axonal damage and loss are now
recognized as contributing to irreversible deficits in MS
[6]. Clinical symptoms include blurred vision, unstable
balance, poor coordination, tremors, numbness, and
slurred speech, for which the underlying physiological
impairment is believed to be conduction block arising
from demyelination and inflammation.

Current approaches to treating MS patients include
symptomatic treatment of neurological deficits and
immunomodulatory therapy to treat neuroinflammation
and possibly limit neurodegeneration. Voltage-gated
potassium (Kv) channels are potential targets for both
types of therapies. As symptomatic therapies, only two
relatively nonspecific blockers of Kv channels, 4-amino-
pyridine (4-AP) and 3,4 diaminopyridine (3,4-DAP),
have been tested clinically for their efficacy in the treat-
ment of patients with MS [7–15]. To date, in vivo immu-
nosuppressive treatments that use nonspecific (4-AP and
quinidine) and various highly selective Kv channel block-
ers (margatoxin, correolide, kaliotoxin, ShK, and Sh-
Dap22) have been restricted to miniswine [16–17] and
rodent experimental allergic encephalomyelitis (EAE)
[18–20] animal models for MS.

The first study implicating a Kv blocker (quinidine)
as a successful therapeutic treatment in an inflammatory
demyelinating disease was an animal model performed
in rats with experimental allergic neuritis (EAN), an
accepted animal model for the human Guillain-Barre
syndrome that is the peripheral nervous system (PNS)
counterpart of EAE in the CNS. Mix and colleagues
demonstrated that injecting EAN rats with quinidine ame-
liorated symptoms of clinical EAN [21]. These neuro-
logical benefits were accompanied with reduced
inflammatory infiltrates in target tissue but not improved
peripheral nerve conduction, thus foreshadowing the
emerging view that Kv blockers may primarily exert their
neurological benefits in MS through immunomodulatory
effects.

TARGETING KV CHANNELS AS SYMPTOMATIC
TREATMENT IN MULTIPLE SCLEROSIS

The original clinical rationale for using Kv channel
blockers to improve neurological function in the symp-

tomatic treatment of patients with MS stemmed from
physiological demonstrations in the PNS in which block-
ing paranodal or internodal Kv channels prolonged action
potential and potentiated synaptic transmission [22–25].
Many intact nonconducting axons in MS lesions can but
do not conduct because their safety factor for conduction
is fractionally below unity [26]. The recruitment of such
axons by simply reducing body temperature [27] or
changing serum-ionized calcium [28] raised hope that
many more axons could be recruited pharmacologically
with the use of Kv channel blockers. Waxman gives a
current review of underlying disease processes and neu-
ronal injury in MS [29]. Judge and Bever provide a current
review of Kv channels as symptomatic targets in MS [30].

Although clearly beneficial, both 4-AP and 3,4-DAP
are potent convulsants with narrow therapeutic windows
that have limited their widespread clinical use in MS
treatments. Toxic, epileptogenic side effects likely arise
from the indiscriminate blockade of widely distributed
and varied CNS Kv channels rather than Kv channels
along demyelinated nerve fibers. Initially, the clinical
improvements achieved in MS patients with 4-AP prima-
rily were viewed as likely arising from blockage of Kv
channels exposed on demyelinated nodes. In an experi-
mental in vitro CNS study, Perreault and Avoli showed
that seizure induction by 4-AP results from block of a
synaptic channel [31]. More recently, Smith et al. under-
took the first and only in vivo CNS studies in rats of 4-AP
on experimental demyelination [26]. Their studies indi-
cated that clinical doses of 4-AP probably produced bene-
ficial neurological effects, not by blocking Kv channels in
demyelinated axons, but by blocking Kv channels that
promote synaptic transmission and increase skeletal mus-
cle twitch tension, independent of demyelination. Under-
standing the clinical/therapeutic effects of 4-AP is
complicated: (1) 4-AP blocks a wide variety of Kv chan-
nels that are distributed across multiple cell types in the
CNS (neurons and microglia) and in the immune system
(T cells, macrophages, and DCs) and (2) the molecular
identities of the Kv channels actually targeted by 4-AP,
clinically, remain unknown.

KV CHANNELS IN IMMUNE CELLS INTEGRAL 
TO MULTIPLE SCLEROSIS

Together, reactive immunocompetent T cells, macro-
phages, microglia, and DCs orchestrate the inflammation
and immunopathogenesis underlying MS autoimmune
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disease processes. Each immune cell type is characterized
by a cell-specific repertoire of ionic channels, a state-
specific/differential expression of distinct Kv channels
(Figure 1). 

Macrophages are involved in chemotaxis, active
myelin breakdown, phagocytosis of myelin proteins,
myelin antigen presentation, and cytokine secretion.
Microglia mediate proinflammatory immune responses,
generate nitric oxide (NO)/elevated NO synthase (NOS)
in MS lesions, and are active in myelin breakdown,
phagocytosis of myelin proteins, and myelin antigen pre-
sentation. DCs initiate and regulate T cell responses and
may contribute to inflammation relapses and chronicity
and breakdown of tolerance to autoantigens.

Activated, immunocompetent T cells [18–19,32–37],
macrophages [38–39], microglia [40–46], and DCs [47]
up-regulate the same Kv channel, Kv1.3. Resting DCs
[48], macrophages [49–54], and microglia [41,55–56]
transiently exhibit an inwardly rectifying Kv channel
(Kir). However, only DCs [48,57] and microglia [58]
express the distinct Kv1.5 channel in addition to Kv1.3
following stimulation; microglia express Kv1.5 between
their unstimulated and fully activated states, but DCs
express a mix with Kv1.5 predominant. While murine
bone marrow-derived macrophages have been shown to
express Kv1.5 messenger ribonucleic acid [39], to date,
no Kv1.5 currents have been recorded in macrophages.
Figure 2 outlines functional roles of various potassium
channels in T cells, macrophages, microglia, and DCs.

Apart from the known central role of cell-mediated
immune responses in MS, accumulating evidence indi-
cates that humoral immune responses (i.e., effector B
lymphocytes) may also contribute to the pathogenesis of
MS. Such evidence includes the identification of antimy-
elin antibodies in MS lesions, serum and cerebrospinal
fluid (CSF) [59–63], and clinical observations consistent
with antibody-mediated demyelination in an MS patient
[64]. Furthermore, serum antimyelin antibodies in
patients initially presenting with a clinically isolated syn-
drome may predict early conversion to clinically definite
MS [65–66]. While the clinical and pathological signifi-
cance of antimyelin antibodies in MS remains to be
definitively characterized, activated B cells, like T cells,
macrophages, microglia, and DCs, also up-regulate
Kv1.3 channels that are already recognized as putative
therapeutic targets in MS. First recorded in B cells by
Choquet and Korn [67–68], Kv1.3 currents have been
shown to be functionally important [69–75], indicating
that B cells may constitute yet another immune cell target
for putative immunomodulatory therapies designed to act
via effects on Kv1.3 channels.

TARGETING KV CHANNELS AS
IMMUNOSUPPRESSIVE THERAPY

While the toxic, epileptogenic side effects resulting
from 4-AP likely arise from the indiscriminate blockade

Figure 1.
Complement of distinct voltage-gated potassium (Kv) channels expressed in immune cells integral to multiple sclerosis. The 2002 International
Union of Pharmacology (IUPHAR) and American Society for Pharmacology and Experimental Therapeutics standardized nomenclature for Kv

channels is used. Earlier Kv channel names and Human Gene nomenclature developed by Human Genome Organization are listed in parentheses.
For a more detailed listing of earlier names and standardized nomenclatures, check IUPHAR Web site (http://www.iuphar-db.org/iuphar-ic/) and
Judge SI, Bever CT Jr. Potassium channel blockers in multiple sclerosis: Neuronal K(v) channels and effects of symptomatic treatment.
Pharmacol Ther. Epub 2006 Feb 8. [PMID: 16472864]
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of various CNS Kv channels, blockade of 4-AP-sensitive
Kv channels in immune cells has emerged as a promising
candidate because of its neurological benefits. Beneficial
4-AP effects could arise not only from blockade of CNS
synaptic channels [26] but also from effects on microglia
[43,58] and/or T cells [33–34]. Notably, the Kv1.3 is the
predominant Kv channel in both activated T cells [34,76]
and activated microglia [58]. The identification of Kv1.3
in mature antigen-presenting DCs [47] implicates these
cells as an additional likely candidate contributing to the
beneficial neurological effects of 4-AP or 3,4-DAP treat-
ment in MS patients. Recently, high Kv1.3 expression
was demonstrated in the perivenular and parenchymal
inflammatory infiltrates in postmortem MS brain, as well
as on CSF T cells from MS patients [77].

T Cells
Studies of Kv1.3 in activated T cells predate the clon-

ing of Kv channels. Dating back to the mid-1980s, the first
recordings in human peripheral blood T cells showed
inhibition of mitogen-stimulated activation by nonspecific
Kv channel blockers [32–33,37]. This finding was
followed by the first studies in myelin basic protein
(MBP)-reactive rat T cells [35–36,78–80] and the first
demonstration that 4-AP and other nonspecific Kv chan-
nel blockers (e.g., tetraethylammonium, methoxyvera-
pamil) could inhibit the adoptive transfer of relapsing-
remitting EAE in rats [35–36,80].

More recent studies have determined the molecular
identities of T cell Kv channels and shown differential
expression of these channels in response to acute versus

Figure 2.
Known function roles of distinct voltage-gated potassium (Kv) channels in immune cells integral to multiple sclerosis (MS). Reference numbers
refer to Appendix, available online only at www.rehab.research.va.gov.
*For review, see Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD. K+ channels as targets for specific
immunomodulation. Trends Pharmacol Sci. 2004;25(5):280-89 [PMID: 15120495] and Gallin EK. Ion channels in leukocytes. Physiol Rev.
1991;71(3):775–811. [PMID: 1711700]
†For review, see Gallin EK. Calcium- and voltage-activated potassium channels in human macrophages. Biophys J. 1984;46(6):821–25 [PMID:
6097318] and Gallin EK. Ion channels in leukocytes. Physiol Rev. 1991;71(3):775–811. [PMID: 1711700]
‡For review, see Eder C. Ion channels in microglia (brain macrophages). Am J Physiol. 1998;275(2 Pt 1):C327–42. [PMID: 9688586], Eder C.
Regulation of microglial behavior by ion channel activity. J Neurosci Rev. 2005;81(3):314–21 [PMID: 1592907], and Farber K, Kettenmann H.
Physiology of microglial cells. Brain Res Rev. 2005;48(2):133–43. [PMID: 15850652]
NADPH = nicotinamide adenosine dinucleotide phosphate, TNF-α = tumor necrosis factorα.

http://www.vard.org/jour/06/43/1/pdf/judge-append.pdf
http://www.vard.org/jour/06/43/1/pdf/judge-append.pdf
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chronic MBP stimulation [18–19,81]. Considerable
advances have been made in identifying potent toxins
[34,79,82–83] that are highly selective blockers for the
T cell Kv1.3 channel, with better selectivity/potency
profiles and experimental therapeutic effects [18–19]
than 4-AP [35–36,78,80]. While proving successful,
systemic administration of highly selective Kv1.3 block-
ing agents in EAE still has not shown whether it produces
beneficial neurological effects by blocking Kv1.3 in T
cells, microglia, macrophages, neurons, and/or DCs.

Dendritic Cells
DCs are a major component of the innate immune

system and play a pivotal role in the adaptive immune
response by providing necessary costimulatory signals
for the induction of T cell responses, surface-expressed
complexes of antigen peptide, and major histocompatibil-
ity class II (MHC II) molecules. Immature DCs are profi-
cient at antigen endocytosis and processing but poor at
stimulating T cells. Terminally mature DCs are proficient
antigen-presenting cells highly specialized for stimulat-
ing T cells to initiate antigen-specific effector cell func-
tion [84–85]. During the functional maturation process,
in response to inflammatory or microbial stimuli,
changes occur in the profile of DC surface markers and
cellular immune functions that define distinct immature
versus mature immunofunctional phenotypes. Kv chan-
nels number among state-specific up-regulated trans-
membrane proteins known to play prominent roles in the
cellular activation of a wide variety of immune system
cells of both lymphoid and myeloid lineage.

In spite of the importance of DCs as immunoregula-
tors of T cells, studies of DC Kv channels have only just
begun. The presence of functioning Kv1.3 channels [47]
was first described in murine DCs that were terminally
matured and exhibited a high surface-membrane expres-
sion of MHC II molecules. Studies are currently under
way examining human DCs throughout the full process
maturation. Preliminary results indicated that a sequential
and state-specific up- and down-regulation of three dis-
tinct Kv channels: first Kir, followed by Kv1.5, and ulti-
mately Kv1.3 [57]. More detailed studies have since
revealed that stimulated DCs express a mix of both Kv1.3
and Kv1.5 channels, with Kv1.5 predominating in
matured DCs. Furthermore, these studies demonstrated
that blockade of Kv1.3 and Kv1.5 impaired clusters of dif-
ferentiation 83 (CD83), CD80, and CD86 up-regulation
and interleukin 12 (IL12) and IL6 production, indicating

that these channels play a functional role in DC matura-
tion [48]. DCs are attractive alternate MS therapeutic tar-
gets to T cells for two reasons. First, DC stimulation and
maturation precede DC-initiated stimulation of T cells.
Second, DCs constitute a peripheral systemic (CSF,
meninges, choroid plexus, and deep cervical lymph
nodes), as well as a CNS (MS lesions) target for the
development of future clinical treatments in MS. Thus,
targeting select DC Kv channels to interfere with DC mat-
uration may offer an early and unique opportunity to
inhibit T cell effector function by aborting the induction
of T cells as autoimmune effector cells in MS.

TARGETING KV CHANNELS AS ANTI-
INFLAMMATORY THERAPY

The hallmark of neuroinflammation is a microglial or
microglial/macrophage response that has been observed in
several neurodegenerative diseases, including MS, mak-
ing it reasonable to consider anti-inflammatory therapy
for MS to inhibit microglial activation. Specifically, clini-
cal benefits following anti-inflammatory treatment have
been demonstrated in mice with a genetic motor-neuron
disease in which microglia are prominent [86–88]. In
another model of neuroinflammatory disease, PVC-211
murine leukemia virus (MuLV)-induced spongiform neu-
rodegenerative disease in rats, a highly reactive micro-
glial/macrophage response is associated with severe free-
radical injury, motor neuron injury, and death. Vitamin E
pretreatment of rat pups delays the appearance of free-rad-
ical injury and delays but does not inhibit disease expres-
sion [89]. Furthermore, minocycline, an antibiotic with
inhibitory effects on macrophages and microglia, inhibits
the reactive microglial/macrophage response and delays
the expression of PVC-211 MuLV disease [90] and is
effective in slowing the disease course in superoxide dis-
mustase (SODI)G93a mutant motor-neuron disease [88].
The presumed mechanism is inhibition of microglial/mac-
rophage function. More recently, the cycloxygenase-2
inhibitor celecoxib has been effective in slowing the dis-
ease course in SOD1G93a mice. This has led to an ongoing
clinical trial of this compound in patients with Lou Geh-
rig’s disease. While these broadly reactive anti-inflamma-
tory compounds may show partial effects in animal
models and, we hope, in clinical trials, a need clearly
exists for more targeted therapy. Thus, microglial and/or



116

JRRD, Volume 43, Number 1, 2006
macrophage Kv channels may represent a possible target
for intervention.

Of the immune system cells considered integral to MS
autoimmune processes, the study of Kv1.3 in activated
microglia and macrophages has only recently garnered
attention. Microglia play a central role in mediating CNS
inflammatory processes and as the only resident brain
immune system cells, activated microglia can proliferate,
migrate to sites of injury, present antigen, phagocytize,
secrete proinflammatory cytokines and cytotoxins, and
undergo a nicotinamide adenosine dinucleotide phosphate
(NADPH)-mediated respiratory burst producing cytotoxic
reactive oxygen and nitrogen species.

Three lines of evidence suggest a central role for
microglia in the disease processes leading to demyelina-
tion and irreversible axonal damage underlying conduc-
tion deficits in MS. First, active MS lesions contain
reactive microglia [91–92]. Second, throughout active
demyelinating lesions and along the borders of chronic
active lesions [93], NOS catalytic activity is elevated, as
are levels of NO, a proinflammatory reactive nitrogen-
free radical generated by activated microglia [94–99].
Third, NO donors can produce reversible conduction
block in normal and experimentally demyelinated axons
and morphological changes consistent with acute Walle-
rian degeneration [100–101]. Thus, reactive microglia
and a proinflammatory microglial activation product are
implicated in the long-established conduction deficits and
newly recognized axonal damage associated with MS.

As seen in other immune system cells (T cells and
macrophages), Kv channels appear to regulate prolifera-
tion and cellular activation in microglia. Two distinct Kv
channels are expressed differentially in microglia: Kv1.5
in resting, nonproliferating cells and Kv1.3 in activated,
proliferating cells [58,102]. While Kv1.3 up-regulation
has been associated with various effector cell functions
following microglial activation [40,44,55], the precise
role of Kv1.3 versus Kv1.5 channels in microglial func-
tion remains unclear. To date, Kv1.3 up-regulation is
associated with granulocyte macrophage-colony stimu-
lating factor, interferon-γ, and lipopolysaccharide-
stimulated activation [40,44,55], transforming growth
factor-β stimulated microglial deactivation [56], and the
NADPH-mediated respiratory burst [43], a metabolic
cascade, the products of which have been identified in
MS [43,103–104].

CONCLUSION: FUTURE POTENTIAL FOR
TARGETING KV CHANNELS IN MULTIPLE 
SCLEROSIS

Two mononuclear phagocytes, CNS microglia and
peripheral DC, are critical players in CNS inflammation.
As such, microglia and DCs are important immune cell
targets for new MS therapies aimed at modulating cell
function by blocking Kv channels. In the CNS, activated
microglia are the primary effector cells underlying the
immune-mediated pathogenesis of inflammation, demy-
elination, and breakdown of the blood-brain barrier (BBB)
leading to neuronal injury and dysfunction [103]. Periph-
erally, mature DCs are essential for initiating and regulat-
ing primary T cell responses, which require peripheral
stimulation to cross the BBB [105].

Given the known preferential Kv1.3 up-regulation in
effector T cells, activated microglia and macrophages,
and mature DCs, beneficial therapeutic effects resulting
from the use of highly selective Kv1.3 blockers could
arise from modulation of any or all of these immune cells.
Even though highly selective peptide toxins have been
identified that are better blockers of the Kv1.3 channel
than 4-AP or 3,4-DAP, they are, at present, handicapped
as viable therapeutics because of their short half-life of
approximately 20 min [19]; synthetic toxin analogues are
being developed to overcome such limitations [106].

Distinct from T cells and macrophages following
stimulation, microglia up-regulate Kv1.5 during early
stages of cellular activation prior to the up-regulation of
Kv1.3 at terminal stages of activation, while DCs predomi-
nantly up-regulate Kv1.5 over Kv1.3 in their mature immu-
nocompetent state. Although the precise functional roles of
the Kv1.5 and Kv1.3 Kv channels remain unclear, their dif-
ferential expression reveals Kv1.5 as an earlier and,
thereby, potentially more important therapeutic target than
Kv1.3 in microglia, and a primary target in DCs that distin-
guishes them from T cells. Studies to modulate the immune
and neuroinflammatory response by affecting Kv1.5 and
Kv1.3 activation are in progress in animal models. Trans-
lating these studies to MS offers a new therapeutic
approach to this inflammatory neurodegenerative disease.
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