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Abstract—In a previous study, we reported that the mean square
displacement calculated from the surface electromyography
(SEMG) signal of low back muscles exhibits a plateaulike behav-
ior for intermediate times 20 ms < t < 400 ms. This property indi-
cates the existence of correlations in the signal for times much
longer than the inverse of the median frequency (MF), which is
calculated from the power spectrum 1/<f> = 1/(100 Hz) = 10 ms,
where <f> is the MF. This result suggests the use of methods
from nonlinear analysis to characterize SEMG time series. In this
study, we applied these techniques to SEMG signals and calcu-
lated the time-dependent entropy. The results showed that the
entropy of physiological time series from nondisabled control
subjects is higher than the entropy from subjects with low back
pain (LBP). The entropy reveals properties of the SEMG signal
that are not captured by the power spectrum. In turn, this suggests
a possible benefit of entropy as a tool for the clinical assessment
of LBP. Because the two groups of subjects were not matched by
age, the physiological origin of the observed differences between
groups could be attributed to either LBP, age, or both. Additional
studies with larger sample sizes and age-matched subjects are
needed to investigate the relationship between LBP and entropy.

Key words: clinical assessment, complexity, disability, elec-
tromyography, entropy, fatigability, fluctuations, low back
pain, nonlinear time series, time correlations.

INTRODUCTION

Low back pain (LBP) is one of the most common
types of musculoskeletal pain [1-2]. The number of phy-
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sician visits resulting from LBP is second only to cardio-
vascular problems among chronic disorders. A clinical
assessment of LBP is important for physicians to objec-
tively identify subjects with genuine pain and to assess
the efficacy of therapeutic interventions. Surface elec-
tromyography (SEMG) is a noninvasive tool that might be
helpful in the assessment of LBP. The signals recorded
during an SEMG test from surface electrodes are the
instantaneous algebraic summations of action potentials
from muscle fibers. These signals are recorded and then
processed with a power spectrum analysis. The median
frequency (MF) is defined as the frequency at which the
spectrum is divided into two equal parts [3]. The typical
MF range is from 70 to 120 Hz [4], which corresponds to
a time scale of 10 to 20 ms.

The connection between fatigue and SEMG spectral
parameters is the basis for the use of SEMG as an objec-
tive and noninvasive method of assessment of back mus-
cle endurance [5-6]. The original study linking LBP with
fatigue was presented by De Luca [6]. He found that sub-
jects with LBP have less endurance and thus smaller MF
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slopes during sustained muscle contractions [4-5,7].
However, contradictory results have been subsequently
reported [4,8-9]. Humphrey et al. reported that MF slope
is not better than chance in predicting LBP in subjects [8].
Thus, despite considerable efforts, a connection between
spectral quantities and musculoskeletal pain and/or dys-
function remains elusive.

Several groups have examined whether other quanti-
ties derived from sEMG signals are better indicators for
LBP. For example, Ng et al. examined changes in the
SEMG amplitude during a sustained contraction [10].
Another study found that amplitude-related characteristics
of motor units can help to avoid misleading interpretations
of SEMG changes [11]. Ravier et al. pursued a different
approach and fitted the SEMG frequency spectrum to P(f)
~ 1/f “behavior, where P is the power of the signal, f is the
frequency, and « > 0 is an exponent [3]. Such behavior was
originally derived for “self-organized” systems such as
avalanches [12]. These results were obtained with nonlin-
ear analysis of physiological time series which, in turn, is
based on the recent discovery that fluctuations in biological
signals are characterized by several time scales and ampli-
tudes [12-13]. Costa et al. suggested that a relatively con-
stant output of a physiological system implies large
fluctuations of other system variables [14]. In this manner,
the physiological system can adapt to sudden changes in
demand and stimulus. The extent of fluctuations in physio-
logical signals can be quantified by entropy calculated
from time series.

In our previous study, we reported the results of a
nonlinear analysis of SEMG time series from low back
muscles [15]. We calculated the mean square displace-
ment A as a function of time t. We found that the mean
square displacement increases diffusively for short times
(t < 30 ms) and then approaches a plateau value. This
crossover implies a transition from an absence of correla-
tions in the signal to antipersistence behavior. Similar
transitions from short- to long-time behavior have been
observed for other physiological time series [16-17].
Because the mean square displacement is related to the
entropy S of the signal, S ~ In A (where In denotes the nat-
ural logarithm), the plateau value can be used to charac-
terize the SEMG signal [15]. This pilot study examined
whether measures of complexity or measures based on
the frequency spectrum are better indicators for differen-
tiating between control subjects (nondisabled) and those
with LBP. Based on the proposed connection between
entropies of physiological time series and disease, we

expect that subjects with LBP have lower entropy than
control subjects.

METHODS

Selection of Subjects

Because of sex differences and variability in elec-
tromyographic amplitude and MF, only male subjects were
included in this study. Subjects were recruited from a com-
munity in Cleveland, Ohio. The subjects in the control
group did not report a recent history of LBP based on ques-
tionnaires. Subjects with LBP were defined as individuals
who reported the continued presence of LBP symptoms for
at least 2 months [18]. The characteristics of subjects are
shown in Table 1. The two groups were matched except for
age, with control subjects significantly younger than LBP
subjects.

Subjects in the LBP group were eligible to participate
if they (1) reported LBP with or without pain referral into
the lower limbs, (2) were at least 21 years old, and
(3) indicated a willingness to participate in the study.
Patients were ineligible to participate if they had (1) overt
neurological signs (sensory deficits or motor paralysis);
(2) a diagnosed psychological illness that might interfere
with the study protocol; (3) difficulty understanding writ-
ten or spoken English (which precluded them from com-
pleting questionnaires); (4) any spinal muscle damage or

Table 1.
Summary of control (n = 10) and low back pain (LBP) (n = 10)
subjects with selected demographics (Mann-Whitney U test).

Variable Control LBP p-Value
Age (yr)
Range 23-42 28-63 0.01*
Mean + SD 30.20 £4.91 49.70 +£ 10.82
Height (cm)
Range 167-191 165-184 0.68
Mean + SD 177.12£8.62 175.25+7.05
Body Weight (kg)
Range 67-95 60-109 0.79
Mean + SD 77.14+10.27 80.81+16.18
Body Mass Index
Range 22.2-27.3 19.7-32.6 0.31
Mean + SD 2450 +1.73 26.17+4.11
*p < 0.05.

SD = standard deviation.




601

weakness from previous surgery around the trunk, or
open abdominal surgery; or (5) spinal fractures and acute
neurological symptoms. Volunteers without LBP were
eligible to participate if they met the study inclusion cri-
teria. Participants were removed from the study if they
asked to withdraw.

Since results from an earlier study indicated the
effect of hand dominance on back pain, we used a modi-
fied Edinburgh Handedness Inventory to determine the
dominant side for activities of daily living [19]. All sub-
jects received information about the purpose and meth-
ods of the study and signed a consent form that the
Cleveland State University (CSU) Institutional Review
Board approved.

Level of Disability

Patient disability was inferred from self-reported scores
on the Oswestry Disability Index (ODI), which was given
to each subject during the initial testing sessions. The ODI
is one of the most frequently used tools for measuring
chronic disability and is presented as a percentage [20-21],
where 0 percent indicates no disability and 100 percent
indicates the worst possible disability [22]. The mean ODI
score for the LBP group was 21.2 + 3.2 percent, with a
range of 16.1 to 23.5 percent (values are shown as mean *
standard deviation [SD] unless otherwise noted). The con-
trol group did not report any level of pain or disability.

Electromyographic Recording

We used the modified Sorenson isometric fatigue test
introduced by Mayer et al. [23]. Subjects were asked to lie
in a prone position on a table and to sustain their unsup-
ported trunks horizontally against gravity for 1 minute
while their lower body was strapped to the table at a 0°
angle [24]. The subjects’ upper bodies were positioned
with their iliac crests at the edge of the table. Their lower
bodies were secured at the ankles with seat belt straps.
The subjects held their arms across their chests with each
hand placed on the opposite shoulder, and they held a hor-
izontal position until exhausted (Figure 1). We discontin-
ued the tests once the subjects could no longer maintain a
horizontal position level to the table. The subjects were
allowed to reposition their upper bodies one time during
the tests. Verbal encouragement was given throughout
the test for all subjects.

The SEMG electrodes were placed bilaterally over
the erector spinae muscles at the lumbar 4-5 level, with a
10 cm distance between electrodes of each pair. We pre-
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Figure 1.

Modified Sorenson test for fatigue measurements. Subjects, with EMG
electrodes attached over muscles of low back, lay prone while lifting
and holding their trunks off of table until completely exhausted.

pared the skin by shaving excess hair and rubbing the
skin with alcohol to reduce impedance (typically 10 kQ).
Predetermined landmarks were used as a guideline for
electrode placement. The electrodes were placed over the
erector spinae muscle parallel to the orientation of the
muscle fibers. The electrode sites and the distance of the
electrodes were carefully determined for each subject
according to Zipp [25]. We collected SEMG data using
differential (interelectrode distance of 20 mm with 8 mm
diameter), preamplified (gain of 35), silver-silver chlo-
ride SEMGs (Therapeutics Unlimited, Inc; lowa City,
lowa) during the approximately 1-minute testing period.
The analog signal was converted digitally at a rate of
1024 Hz (AT-MIO-64E-3, National Instruments, Austin,
Texas) and bandpass-filtered at 10 to 400 Hz. We per-
formed data acquisition using Acqknowledge® software
(BIOPAC Systems, Inc; Goleta, California), and ana-
lyzed the resulting data in MathCAD (The MathWorks,
Inc; Natick, Massachusetts). Standard recommendations
of SEMG procedures were followed with regard to myo-
electric manifestations of muscle fatigue during sustained
contractions [26].

We used fast Fourier transform (FFT) to obtain the
frequency spectrum for each 1-second time interval, from
which we found the MF. Using linear regression, we then
calculated the extrapolated value of the initial MF and the
MF slope during the 1-minute testing period.

Nonlinear Time Series Analysis

We imported SEMG data files into the MathCAD pack-
age, which we then used for the subsequent mathematical
analysis. The variance of the SEMG signal during 1-second
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time intervals was calculated and is shown in Figure 2 for
the control and LBP groups, respectively. The variance
remained constant and did not exhibit any significant time
dependence during the 1-minute test. However, the vari-
ance peaked sharply at the beginning and/or end of the test
period for some subjects. Because of this peak, the raw
SEMG time series y; was averaged during a 10 ms moving
window: X; = (Yj + Vi1 * - . - + Yj+9)/10. The reduced time
series consisted of approximately 6,000 values x; (in milli-
volts), where subscript i equals 0.01 s time increments. As a
result, the short-time behavior of the signal (t < 10 ms) was
averaged.

Since the variance showed no systematic time depen-
dence, the SEMG time series is consistent with a stationary
random process. However, more stringent tests are needed
for confirmation of these results. The description of the
SEMG signal at a random walk (Brownian motion) is
based on the interpretation of the signal x; at time j as ran-
dom jumps at discrete times. It follows that the sum X(t) =
Xj +Xj+1 + ... + Xj4¢ in between times j and j + t. The mean
square displacement is defined as A(t) = ([X(t) — X(1))]).
Here, () indicates the average with respect to the initial
time j.

The Shannon (information) entropy (S) of the time
series quantifies the degree of “noisiness” of a signal.
After dividing the range of X(t) into 100 equal-sized bins,
we determined the probabilities P; from the histogram.
The entropy was calculated as S = —XP; InP;. Following
standard practice, entropy was reported in arbitrary units
(dimensionless). If the displacement X follows a Gaussian
distribution, the entropy is approximately proportional to
the logarithm of the variance; e.g., S(t) ~ In[A(t)]. Figure 3
shows the plateaulike behavior, which is followed by dif-
fusive behavior for the control and LBP groups, respec-
tively. This plateau value of S(t) is referred to as entropy.

Statistical Analysis

We completed statistical analyses using SAS 8.2
(SAS Inc, Cary, North Carolina). Nonparametric data
analyses were used, since the data were not normally dis-
tributed. We inspected descriptive statistics for sample
characteristics and scatter plots of the data to ensure that
no outliers existed in the data set. We analyzed the MF,
its slope change, and the level of entropy with a Mann-
Whitney U test to compare differences between groups.
We used the Spearman correlation analysis (rg) to ana-
lyze the degree of association between variables. For all
statistical tests, type | error rate () was set at 0.05.
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Figure 2.

Variance (logarithmic scale) versus time for (a) control and (b) low
back pain groups.
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Entropy (logarithmic scale) versus time for (a) control and (b) low
back pain groups.

SUNG et al. Spectral and entropic measures for SEMG time series

RESULTS

Table 1 indicates the anthropometric data of the two
groups. We note that the two groups differ by age (p <
0.01). No significant differences were found between
groups for height, weight, and body mass index, how-
ever. To clarify the age relationship within groups, we
analyzed Spearman correlation coefficients (rg). The
results for the MF, MF slope, and entropy are summa-
rized in Table 2. The mean MF was 98.5 + 20.0 Hz for
the control group and 88.3 + 29.4 Hz for the LBP group;
this difference was not significant (p < 0.32). The highest
and lowest MFs in this study were found among subjects
in the LBP group, and the two distributions completely
overlapped (Figure 4).

The mean + SDs of the MF slope for the control and
LBP groups were —0.40 + 0.16 Hz/s and —0.18 £ 0.15 Hz/s,
respectively. In Figure 5, the distribution of the MF slope

Table 2.
Measurement results of median frequency (MF), MF slope, and
entropy for control and low back pain (LBP) groups.

. MF MF Slope Entro
Subjects (H2) (Hz/s)p (dimensio%lless)
Control (n=10)
A 113.0 -0.39 2.51
B 82.0 -0.34 2.86
C 112.0 -0.63 2.75
D 119.8 -0.46 3.23
E 102.2 -0.37 2.42
F 71.4 -0.32 3.68
G 106.3 -0.43 2.55
H 97.5 -0.12 1.89
| 118.3 -0.62 3.08
J 62.7 -0.23 3.39
LBP (n=10)
A 121.6 -0.38 0.92
B 84.5 -0.29 1.32
C 83.8 -0.11 1.56
D 147.9 -0.36 1.62
E 106.2 -0.21 1.39
F 58.2 -0.01 1.13
G 59.6 0.05 0.82
H 59.2 -0.02 1.00
| 73.9 -0.14 1.55
J 87.8 -0.27 0.79
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Figure 4.

Histogram of median frequency for control and low back pain (LBP) groups.

for the two groups demonstrated significant overlap.
Results show that the MF slopes for subjects with LBP
tend to be smaller than those for subjects in the control
group. A statistical analysis of the MF slopes suggested
that this difference was significant (p = 0.07).

Figures 2 and 3 indicate that both the variance and
entropy were higher for the control group than for the
LBP group. Indeed, the variance and entropy provide the
identical ordering of subjects, which suggests that these
quantities are related to each other. The histogram of the
entropy for the two groups is shown in Figure 6. The
entropy was significantly higher for the control group
(2.8 £ 0.5) than for the LBP group (1.2 + 0.4) with p =
0.001. The distributions demonstrated peaks at S = 2.75
and S = 1.25 for the control and LBP groups, respec-
tively. The small entropy tail of the distribution for the
control group overlaps with the large entropy tail of the
distribution for the LBP group.

We then examined whether the entropy of the SEMG
signal is related to parameters calculated from the FFT
spectrum of the time series. In Figure 7, we plotted the
MF versus the entropy with open circles representing sub-
jects with LBP and solid circles representing control sub-
jects. The two groups are separated by the vertical line S =
2.0, with S > 2.0 for the control group and S < 2.0 for the
LBP group. We conclude that the two groups are differen-
tiated by entropy but not by MF values. A statistical analy-
sis showed no significant correlation between MF and
entropy (rg = 0.169, p > 0.05). In Figure 8, the MF slope
versus the entropy was plotted. Of the 10 control subjects,
8 fall within the quadrant S > 2.0 and MF slope <-0.3,
while 8 of the 10 LBP subjects fall within the quadrant S <
2 and MF slope > —0.3. These results showed that the MF
slope and the entropy are weakly correlated; subjects with
LBP tend to have larger (i.e., less negative) MF slopes and
smaller entropies than control subjects. A statistical analy-
sis yielded rg = -0.41 with p < 0.04.
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Histogram of median frequency slope for control and low back pain (LBP) groups.

DISCUSSION

The results of this study indicated that the entropy
clearly differentiated the two groups. However, the results
of power spectrum analysis based on the distributions of
MF and MF slope indicated a significant overlap with con-
tradictory results between the two groups. In this pilot
study, we focused on the complexity of the SEMG signal
and calculated the entropy of the time series. Our results
indicated that the control subjects revealed significantly
larger entropy values than the subjects with LBP. Thus, our
findings consistently demonstrated a connection between
physiological “health” and complexity [14,27-28].

Research in biology and medicine has shown that
fluctuations in physiological systems may play a signifi-
cant role [29-31]. In fractal physiology, the apparent ran-
dom, or chaotic, signal is observed on different (time)
scales. Research has found that the signal looks similar,

or self-similar. This means that a single time scale (i.e.,
the period of oscillation) is replaced by a family of time
scales. It follows that the single state of the system is
replaced by multiple nonequilibrium states that are corre-
lated with each other. If the signal is completely random
with no characteristic time scale, it would be modeled by
“white noise” and the frequency spectrum would be flat
P(f)~f 9 In general, the frequency spectrum is fitted to a
power law P(f) ~ 1/f ¢, with 0 < « < 2. In this case, the
power spectrum does not define an MF. Other studies
reported that for physiological systems, a constant “out-
put” requires other variables to fluctuate so that the sys-
tem can adapt to sudden changes in demand or stimulus
[14]. This extent of fluctuations in physiological signals
can be quantified by entropy calculated from their time
series. Costa et al. suggested that the value of the entropy
reflects the adaptability of biological systems [29];
healthy systems are thus expected to have higher values
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Figure 6.
Histogram of entropy for control and low back pain (LBP) groups.

of entropy than unhealthy systems. Nonlinear analysis is
used to characterize “hidden” properties of physiological
time series. Following this approach, we interpreted the
SEMG signal as a 1-dimensional random walk in discrete
time. We found that the mean square displacement
increased linearly for short times t < 20 ms and is nearly
flat for intermediate times 20 ms <t < 400 ms. This pla-
teau behavior has been found for other biological systems
and implies the existence of correlations in the signal
[14,30]. However, these correlations cannot be explained
within a linear model and thus support the use of nonlin-
ear analysis for SEMG time series. This finding may also
explain why the MF fluctuates during a sustained con-
traction and why the connection between MF slope and
LBP has proven elusive despite considerable efforts.

The aim of the study was not to identify the underly-
ing physiological origin of the observed values of
entropy. Rather, this pilot study examined whether meas-

ures of complexity or those based on the frequency spec-
trum are better indicators to differentiate between control
subjects and those with LBP. In this study, the group of
subjects with no history of LBP was referred to as the
“control” group and the group with LBP included older
subjects with at least a 2-month history of LBP. That is,
the two groups differ by both chronological age and his-
tory of LBP. Thus, the observed differences could be
attributed to LBP, age, or both. We note that the design
of the study does not allow for identifying the underlying
physiological reason for observed differences between
the two groups. Other anthropometric data (height,
weight, and body mass index) showed no significant dif-
ferences between the two groups. Further studies are
needed to consider the effects of anthropometric data on
spectral and entropic measures for SEMG time series. For
example, an interesting study would be the examination
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Median frequency versus entropy for control and low back pain (LBP)
groups.

of the differences in entropy, if any, between the right
and left sides of the body [24].

The small sample size of this study is not sufficient to
establish a cause-and-effect relationship between com-
plexity measures of SEMG and a clinical diagnosis of
LBP. However, future studies should have larger sample
sizes and exclude confounding variables reflected in indi-
vidual variations. Furthermore, this study does not address
the reliability of both the spectral and entropic measures of
SEMG time series, since the signal was recorded only dur-
ing a single testing session for each subject.

CONCLUSIONS

We applied methods from nonlinear analysis to
SEMG time series of low back muscles. The Shannon
entropy is a standard measure of complexity and has been
applied in cognitive science research, aging studies, heart
failure research, and other fields [14,28,30-32]. The
time-dependent entropy of the SEMG signal exhibits a
plateaulike behavior that indicates the presence of long-
time correlations in the signal.

We found that the plateau value of the entropy was
lower for subjects with LBP than for individuals in the
control group. This connection might prove useful in a
clinical assessment of LBP.

The existence of long-time correlations in the signal
explains the large variability in the MF and MF slope
obtained from the power spectrum. The entropy clearly
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Median frequency slope versus entropy for control and low back pain
(LBP) groups.

differentiated the two groups, whereas the MF and MF
slope exhibited significant overlaps between the groups.
Further studies are needed to identify the physiological
origin of the observed difference in the plateau entropy.
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