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Abstract—Stroke is the leading cause of disability in the
United States. New evidence reveals significant structural and
metabolic changes in skeletal muscle after stroke. Muscle alter-
ations include gross atrophy and shift to fast myosin heavy
chain in the hemiparetic (contralateral) leg muscle; both are
related to gait deficit severity. The underlying molecular mecha-
nisms of this atrophy and muscle phenotype shift are not known.
Inflammatory markers are also present in contralateral leg mus-
cle after stroke. Individuals with stroke have a high prevalence
of insulin resistance and diabetes. Skeletal muscle is a major
site for insulin-glucose metabolism. Increasing evidence sug-
gests that inflammatory pathway activation and oxidative
injury could lead to wasting, altered function, and impaired
insulin action in skeletal muscle. The health benefits of exer-
cise in disabled populations have now been recognized. Aero-
bic exercise improves fitness, strength, and ambulatory
performance in subjects with chronic stroke. Therapeutic exer-
cise may modify or reverse skeletal muscle abnormalities.
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INTRODUCTION

Stroke is the leading cause of chronic disability in the
United States, and hemiparesis is the most common
chronic disabling sequela after stroke [1–3]. A paucity of
literature exists on skeletal muscle abnormalities and their

clinical relevance after stroke. The majority of conven-
tional stroke rehabilitation occurs during the subacute
period. Unfortunately, little rehabilitation care is prescribed
during the chronic stroke phase. Few or no evidence-based
recommendations promote regular exercise after stroke.
Moreover, the conventional physical therapy administered
during the subacute recovery period likely does not provide
adequate exercise stimulus to reverse the potential skeletal
muscle abnormalities or deconditioning that follow stroke
[4–5]. Skeletal muscle has not been systematically pursued
as a potential target for exercise and/or rehabilitation after
stroke. This article outlines our current knowledge on (1)
alterations of body composition and muscle structure and
function in aging, inactivity, and after spinal cord injury
(SCI); (2) alterations of muscle structure and function
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after stroke; (3) tumor necrosis factor-α (TNF-α) and
inflammatory pathway activation as possible mediators of
muscle atrophy and muscle injury; and (4) the beneficial
effects of exercise interventions on skeletal muscle of indi-
viduals with stroke.

ALTERATIONS OF BODY COMPOSITION
AND MUSCLE STRUCTURE AND FUNCTION
IN AGING, INACTIVITY, AND AFTER SPINAL 
CORD INJURY

Adaptations in Skeletal Muscle Molecular Phenotype: 
Skeletal Muscle Plasticity

Mammalian skeletal muscle fibers have great adap-
tive potential. Muscle fibers have the ability to adjust
their molecular, metabolic, and functional properties in
response to altered functional demands, mechanical load-
ing, or changes in neuromuscular activity. Myosin heavy
chain (MHC) isoforms have different structural, enzy-
matic, and regulatory contractile properties and can
thereby impart functional diversity to muscles. Slow-
twitch muscle (MHC type I) isoform fibers are rich in
mitochondria, resistant to fatigue, and less pH sensitive
because of their highly oxidative metabolism [6–7]. Fast-
twitch fibers vary in metabolic enzymes and fiber diame-
ter. The larger fast-twitch fibers are glycolytic fibers
(MHC type IIx), and the others are glycolytic/oxidative
fibers (MHC type IIa). Both fast-twitch fiber types have
larger diameters and faster force-generation capacity than
slow-twitch fibers (MHC type I). The slow-twitch MHC
type I isoform fibers are fatigue resistant, while the fast-
twitch MHC type IIx isoform fibers fatigue easily and the
fast-twitch MHC type IIa isoform fibers exhibit interme-
diate fatigue resistance. Regulation of MHC gene expres-
sion is controlled by a complex set of processes. Muscle
fiber structural and functional characteristics are not
fixed; they can be modified in response to several physio-
logical and pathological conditions. Muscle MHC pheno-
type is regulated by growth hormone, insulin growth
factor, thyroid, changes in load, innervation patterns, age-
related changes, hypoxia, mitogen-activated protein
kinase (MAPkinase) and stress pathway activation, elec-
trical stimulation, and exercise [8–15]. The type and pro-
portion of MHC isoforms expressed can serve as a
cellular “marker” for muscle plasticity in response to per-
turbations. Muscle fiber properties can also be modified
by pharmacological agents such as beta2-adrenergic ago-

nists and corticosteroids. We would like to understand the
factors regulating contractile protein, MHC, and skeletal
muscle adaptations in response to altered use, loading
states, and neural activation patterns after stroke. This
information would inform efforts to assess the effect of
various rehabilitation strategies that target skeletal muscle
for chronic stroke.

Muscle Changes Related to Aging, Immobility,
and Spinal Cord Injury

Sarcopenia of aging is a multifactorial process that
affects skeletal muscle, including that of individuals with
chronic stroke (Figure 1). Aging is associated with
reduced strength, contraction velocity, and injury recovery
[16–17]. Aging also results in decreased synthesis of myo-
fibrillar components, increased production of catabolic
cytokines, atrophy, and altered muscle metabolism [18–
21]. With aging, motor unit dropout is coupled with
increased motor unit size. The motor unit size increases
because of reinnervation of adjacent denervated muscle
fibers. Fast-twitch fibers are the most vulnerable to dener-
vation and then reinnervation by slow-twitch motor neu-
rons [22]. Normal aging leads to larger slow-twitch and
smaller fast-twitch motor units, with an overall increase in
slow-twitch fiber mass. This age-related increase in slow-
twitch muscle is in opposition to our finding of increased
fast-twitch MHC isoforms after stroke [23]. Aging also
results in single fibers coexpressing multiple MHC iso-
forms [24]. Independent of age-related MHC isoform phe-
notype changes, calcium-activated myosin adenosine
triphosphatase (ATPase) activity and maximum unloaded
shortening velocity are reduced and contribute to age-
related slowing of muscle contraction [25]. In humans, a
decline in muscle strength begins at age 40 and is more
dramatic after age 65. Although muscle mass decreases by
30 to 40 percent with sarcopenia of aging, muscle force
and power decrease to a much greater extent, which sug-
gests further alterations in muscle contractile properties
and metabolism [20].

The disability of stroke leads to a relative inactivity,
especially in the hemiparetic contralateral limb. Immobi-
lized muscle has reduced eccentric, concentric, and iso-
metric strength [26]. Physical inactivity results in
reduced muscle mass and function, which parallel the
declines that occur with aging. Muscle unloading pro-
duces a net deficit in quadriceps muscle total RNA, total
messenger RNA (mRNA), and specific MHC mRNA
levels, which can be partially restored with exercise [27].
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Muscle immobilization reduces muscle fiber cross-
sectional area [26] and downregulates MHC type I
mRNA expression, while it upregulates MHC type IIx
mRNA expression [26]. Physical inactivity produces
similar degrees of muscle atrophy in young and old ani-
mals; however, recovery from the muscle atrophy is sig-
nificantly delayed and reduced in older versus younger
animals, thereby limiting recovery potential [16–17,28].
Exercise may prevent or delay sarcopenia by reducing
the loss of muscle mass and strength through changes in
myosin expression, even in aged mammals. However, the
response to exercise is decreased in aged muscle.
Because recovery from disuse atrophy is delayed with
aging, minimizing the period of unweighting and immo-
bilization is optimal. These biological processes that
occur in muscle with aging and inactivity are essentially
unexplored areas in stroke rehabilitation and have poten-
tially great clinical relevance.

Skeletal muscle following stroke may be affected by
the altered central neural activation and spasticity, similar
to the muscle changes that occur after SCI. The weakness

and spasticity have an interesting influence on the muscle,
causing both reduced motor unit recruitment and exces-
sive cocontraction, with an overactive stretch reflex. SCI
induces a rapid loss of muscle mass and replacement with
intramuscular fat [29]. MHC transcriptional activity is
reduced and a shift to a fast-twitch MHC isoform profile
occurs, especially an increase in MHC type IIx isoforms
[30–31]. Skeletal muscle sodium-potassium ATPase con-
centration is reduced in spastic muscle [32]. The
increased shortening velocity and fatigability of the para-
lyzed quadriceps muscles after SCI and other conditions
that result in spasticity are probably secondary to the shift
to fast-twitch MHC isoforms, reduced sodium-potassium
ATPase concentration, reduced capillary density, and
reduced oxidative capacity [32–36]. In addition, gene
expression of enzymes that affect protein degradation
(calpain-1 and enzymes associated with polyubquitina-
tion) is increased [30], which could contribute to muscle
wasting after SCI. These findings suggest that muscle
atrophy after SCI is likely a multifactorial process that
affects transcription, translation, and protein degradation.

Figure 1.
Schematic overview of potential influences on skeletal muscle in individuals with chronic stroke.
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ALTERATIONS OF MUSCLE STRUCTURE
AND FUNCTION AFTER STROKE

Muscular Atrophy and Phenotype Shift After Stroke: 
Relation to Fitness and Function

Traditionally, upper motor neuron injury, as occurs in
stroke, is not believed to result in muscular atrophy. Few
studies have examined muscle abnormalities after stroke
and their relationship to fitness and function. We exam-
ined relationships between gait deficit severity, peak oxy-
gen consumption (VO2), and body composition using
dual X-ray absorptiometry (DXA) in 60 chronic hemip-
aretic stroke patients and found that lean mass of the con-
tralateral limb was lower than that of the ipsilateral limb
(mean ± standard error of the mean [SEM] = 8.3 ± 1.6 kg
vs 8.6 ± 1.7 kg, p < 0.001) [37]. Stepwise regression
revealed that both contralateral thigh lean mass (r = 0.61)
and walking speed (cumulative r = 0.79) were indepen-
dent and robust predictors of reduced fitness (VO2) and
accounted for 62 percent of the observed variance (p <
0.01). In contrast, the National Institutes of Health Stroke
Scale, the modified Ashworth spasticity scale, stroke
onset latency, and percent body fat were unrelated to
VO2. These DXA results are substantiated by bilateral
midthigh computed tomography cross-sectional area mea-
surements in 30 chronic stroke patients. The contralateral
midthigh area (mean ± SEM = 86.1 ± 29.3 cm2) had 20 per-
cent lower muscle cross-sectional area (p < 0.001) than the
ipsilateral midthigh area (mean ± SEM = 100.9 ± 27.9 cm2)
(Figure 2) [38]. The reduced thigh muscle mass predicted
lower VO2 in these patients [37]. The contralateral thigh
muscle also had 25 percent higher intramuscular area fat
deposition (p < 0.001) (Figure 2), a finding strongly

associated with insulin resistance and its complications
[38–40]. The reduced muscle mass and increased intra-
muscular fat are similar to recent findings in individuals
with incomplete SCI [29]. Although these results suggest
that reduced muscle mass is fundamentally related to
poor fitness and physical performance capacity after
stroke, they do not establish causality and do not account
for reduced central muscle activation.

Altered Muscle Phenotype in Stroke
Little is known about skeletal muscle phenotypic

abnormalities after stroke. Mechanisms for skeletal mus-
cle alterations are probably similar in stroke and incom-
plete SCI, with reduced neuromuscular activation and
muscle unloading but retained neuromuscular connectiv-
ity. Basic pathological studies reveal variable results with
altered fiber type proportions, including selective fast-
twitch MHC fiber atrophy and specific loss of slow-
twitch MHC fibers in hemiparetic limbs of stroke patients
[36,41–44]. The most comprehensive study by Landin et
al. revealed (1) a shift to greater fast-twitch fiber propor-
tions in the contralateral leg vastus lateralis (VL) muscle
based on ATPase staining and (2) a reliance on anaerobic
metabolism with rapid lactate generation during isolated
contralateral or hemiparetic limb exercise in contrast to
the oxidative metabolism during isolated ipsilateral leg
exercise [44]. These findings are concordant with the
major shift to fast-twitch MHC that we found in our
recent study using routine ATPase staining at pH 4.6 and
MHC immunohistochemistry and gel electrophoresis of
bilateral leg VL muscle biopsies (Figures 3 and 4). Bilat-
eral VL biopsies from 13 untrained stroke patients
showed a significantly elevated proportion of fast-twitch

Figure 2.
Computed tomography (CT) images show atrophy of (a) paretic leg midthigh muscle area compared with (b) nonparetic thigh. Low-density CT
lean-tissue imaging of same individual shows increased intramuscular fat content in (c) paretic compared with (d) nonparetic thigh after stroke.
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MHC isoforms in the contralateral (mean ± SEM = 68% ±
14%, range 46%–88% of total MHC) versus ipsilateral
leg (mean ± SEM = 50% ± 13%, range 32%–76%, p <
0.005) [23]. Interestingly, this shift to fast-twitch MHC
composition in the contralateral muscle parallels that seen
in animals and humans after SCI [45–46]. This result sug-
gests that neurological alterations may be partially
responsible for the muscle phenotype shift. The shift to
fast-twitch MHC is in contrast to the shift to slow-twitch
MHC in aging, where fast-twitch fibers are lost through
denervation and slow-twitch fiber density increases
through reinnervation [22]. The shift to fast-twitch MHC
after stroke in contralateral leg muscle would be expected
to result in a more fatigable muscle fiber type that could
be more insulin resistant. In the contralateral leg only, the

proportion of fast-twitch MHC isoform is strongly and
negatively correlated to self-selected walking speed (r =
–0.78, p < 0.005), which suggests that neurological gait
deficit severity may be a major contributor to MHC iso-
form expression and account for as much as 61 percent of
its variance. The findings suggest that shifts in muscle
phenotype may be fundamentally related to neuromuscu-
lar function. In our cohort, the muscular atrophy and the
shift to the fast-twitch MHC isoform in the contralateral
leg were both strong predictors of gait deficit severity
[23,37]. Unfortunately, the current studies cannot explain
the direction of these relationships; i.e., whether the atro-
phy and the shift in MHC expression are caused by or are
a result of the gait deficit.

TNF-α AND INFLAMMATORY PATHWAY
ACTIVATION AS POSSIBLE MEDIATORS OF 
MUSCLE ATROPHY AND ALTERED MUSCLE 
METABOLISM AFTER STROKE

TNF-α and nuclear factor-κB (NF-κB) have been
implicated with muscular atrophy in models of disuse,
cachexia, and sarcopenia. TNF-α may contribute to atro-
phy through a number of mechanisms, including inhibi-
tion of protein synthesis and reduced expression of
MyoD, a transcriptional regulator of myofiber gene
expression and accelerated protein breakdown through
activation of ubiquitin proteases and NF-κB and apop-
totic cell death [47–52]. TNF-α appears to preferentially
downregulate adult slow-twitch MHC protein synthesis
and enhance its degradation [53], which may in part
explain our findings of elevated fast-twitch MHC in the
hemiparetic leg. TNF-α also activates NF-κB transcrip-
tional factor [54], which may increase inducible nitric

Figure 3.
Muscle tissue cross-sectional samples from (a) paretic and (b) nonparetic
vastus lateralis (VL) muscle after stroke were stained with adenosine
triphosphatase at pH 4.6. In paretic muscle, clear lack of slow-twitch
myosin heavy chain (MHC) isoform (type I [dark]) fibers and relative
atrophy of fast-twitch MHC isoform (type IIa [light] and type IIx
[medium]) fibers were present compared with normal mosaic equal
distribution of slow- and fast-twitch MHC isoform fibers in
nonparetic VL muscle.

Figure 4.
Silver-stained gel electrophoresis for slow- and fast-twitch myosin heavy chain (MHC) isoforms in paretic and nonparetic vastus lateralis
muscles. (a) Rat extensor digitorum longus (predominantly fast-twitch MHC: upper band), (b) rat soleus (predominantly slow-twitch MHC:
lower band), (c) and (f) hemiparetic limb of subject with stroke (absent slow-twitch MHC), and (d) and (e) nonparetic limb of subject with stroke
(equal proportions of slow- and fast-twitch MHC).
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oxide [55–56] with subsequent formation of reactive
oxygen species [57] and oxidative injury [58–62]. In
vitro studies show that oxidative stress activates p38
MAPkinase signaling pathways, which regulate gene
expression that could potentially influence muscle struc-
ture and function [63]. The presence of reactive oxidative
species disturbs muscle redox status and can result in
muscle fatigue and/or injury and further activates NF-κB
[62]. Cytokine-independent activation of NF-κB is also
associated with muscle atrophy [64]. These inflammatory
mediators can negatively affect muscle mass, structural
proteins, and performance.

Although TNF-α is negligibly expressed in skeletal
muscle, we found that TNF-α mRNA expression is ele-
vated in the contralateral VL muscle of patients with stroke
compared with the ipsilateral leg of patients with stroke and
age-matched nonneurological control subjects [65]. TNF-α
mRNA levels were three times higher in contralateral leg
muscle of patients with stroke than in control muscles. A
trend existed for almost two times higher TNF-α in the
ipsilateral leg muscle compared with nondisabled control
subjects. The finding of elevated TNF-α in both the con-
tralateral and ipsilateral leg muscles suggests a systemic as
well as local inflammation that could augment hemiparetic
leg muscular atrophy and increase insulin resistance after
stroke. Three-quarters of these subjects with stroke and ele-
vated skeletal muscle TNF-α were on anti-inflammatory
medications, such as aspirin, or hydroxy-3-methyl-
glutaryl-CoA reductase medications and insulin sensitiz-
ers, which suggests that these medications are not capable
of completely countering inflammation at the level of the
skeletal muscle. We also found, using a complementary
DNA NF-κB signaling gene miniarray (GE SuperArray,
General Electric, Co; Fairfield, Connecticut), that NF-κB
inflammatory pathway gene activation is differentially
upregulated in the contralateral compared with the ipsilat-
eral VL muscle (N = 6).* Products of NF-κB activation
could mediate atrophy, accelerate oxidative injury, and alter
important structural proteins. Elevated TNF-α protein and
mRNA in frail elderly skeletal muscles can be decreased
with strength training [66]. Thus, interventions aimed at
attenuating elevated skeletal muscle inflammatory path-
ways may represent new targets for reducing both disability
and cardiovascular disease risk after stroke.

A remarkably large incidence of insulin resistance and
type 2 diabetes is present in individuals who had stroke
[67–68]. New evidence from the Dutch Transient Ischemic
Attack Trial reveals a two- and threefold increased risk of
stroke for individuals with impaired glucose tolerance and
type 2 diabetes, respectively [68]. Circulating levels of
TNF-α and interleukin-6 are elevated in subjects with type
2 diabetes and impaired glucose tolerance [69–70]. Sys-
temic and muscle-specific elevations in TNF-α are
strongly linked to insulin resistance and diabetes [71].
TNF-α directly impairs insulin signaling in muscle [72]
and is inversely related to maximum glucose disposal rate
[71–74]. Exercise can reduce TNF-α and improve skeletal
muscle metabolism and systemic insulin sensitivity [75].
Hence, better understanding of the molecular mechanisms
of accelerated inflammation in the contralateral leg muscle
of subjects with stroke and effects of exercise may have
important implications for cardiovascular health of people
who remain at high risk for stroke recurrence.

BENEFICIAL EFFECTS OF EXERCISE
INTERVENTIONS ON SKELETAL MUSCLE
IN CHRONIC STROKE

A number of aerobic and resistive exercise training
strategies have proven beneficial for patients with
chronic stroke. These exercise strategies include tread-
mill, robot-assisted walking, and strength training [76–
80]. Exercise may have many beneficial effects at the
level of skeletal muscle after stroke. It may prevent
changes associated with physical inactivity. Exercise in
nonneurological populations and animal models can pre-
vent or delay sarcopenia through changes in myosin
expression and reduce loss of muscle mass and strength
[37,81]. Elevated TNF-α protein and mRNA in frail eld-
erly skeletal muscles can be decreased with strength
training [66]. Aerobic exercise can produce skeletal mus-
cle adaptations that protect myocytes and muscle fibers
from muscle injury, improve muscle performance, and
delay muscle fatigue [27,81–84]. To our knowledge, the
effects of exercise on muscle structure and function have
never been systematically studied after stroke.

We and others have reported that treadmill aerobic
exercise, as a task-oriented training model, improves fit-
ness and mobility function in patients with chronic stroke
[76,85–90]. Our results show that treadmill exercise is
superior to a program with components of “conventional
rehabilitation therapy” for improving fitness and mobility*Hafer-Macko CE, Unpublished observations, 2008.
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function levels in patients with chronic stroke [85–90].
Aerobic exercise can induce profound molecular changes
in “neurologically intact” muscle [91], promoting fast- to
slow-twitch MHC fiber conversion. Treadmill exercise
had a significant effect on MHC expression. The total
MHC concentration and proportion of slow- and fast-
twitch MHC type IIa isoforms in the contralateral limb sig-
nificantly increase after 6 months of treadmill exercise
(Figure 5).* In contrast, the control stroke group that was
enrolled in a 6-month time-matched stretching program
did not have a significant change in the MHC concentra-
tion or profile distribution. In a small cohort of patients
with chronic stroke, these data suggest that treadmill exer-
cise can reverse the contralateral leg MHC profile abnor-
malities. The beneficial effects of aerobic exercise training
have also been demonstrated in SCI [83,92–93]. Func-
tional electric stimulation can induce skeletal muscle
changes, such as a shift to a fast-twitch MHC phenotype in
SCI [94–95]. Transcranial electrical nerve stimulation can
improve H reflex response and reduce spasticity after
stroke and, in combination with task-related training,
improve walking function [46,96]. Finally, pharmaceutical
agents can also target skeletal muscle. Beta2-adrenergic
agonists can induce skeletal muscle hypertrophy by induc-
ing myocyte proliferation, myogenic differentiation, satel-
lite cell recruitment into muscle fibers, and the initiation of
translation that increases protein synthesis [97–98]. As our
understanding of the ability of exercise rehabilitation
strategies to improve skeletal muscle structure and func-
tion increases, we will be better poised to prescribe
specific rehabilitation protocols that reduce the muscu-
loskeletal component of disability after stroke.

SUMMARY

 Stroke is the leading cause of disability in the United
States. This disability is traditionally attributed to the
brain injury and the high risk for recurrent stroke
ascribed to preexisting cardiovascular disease risk factors.
We propose a new hypothesis that secondary biological
abnormalities of muscle atrophy, altered contractile pro-
tein expression, and inflammation in the contralateral leg
skeletal muscle propagate disability. While animal mod-
els and clinical data show that both disuse and abnormal

neural innervation can produce such abnormalities, little
is known about their presence after stroke and their poten-
tial for reversal with exercise. We report altered major
structural skeletal muscle proteins and activation of
inflammatory pathways in bilateral VL muscle biopsies
from untrained hemiparetic stroke patients. Contralateral
leg muscle biopsies obtained after the 6-month treadmill
exercise program can help us determine the training com-
ponents of the aerobic treadmill exercise program that
produce the greatest beneficial adaptations in skeletal
muscle. Study results may provide a biological rationale
and new molecular targets for novel pharmacological
therapeutics aimed at improving muscle structure and
metabolic function after stroke. The biological relevance
and potential for clinical applications in both disability
reduction and secondary cardiovascular disease preven-
tion will likely extend to other neurological conditions
that engender disuse and abnormal neural innervation,
such as multiple sclerosis, closed head injury, and SCI.
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