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Abstract—Balance problems in hemiparetic patients after
stroke can be caused by different impairments in the physiologi-
cal systems involved in postural control, including sensory
afferents, movement strategies, biomechanical constraints, cog-
nitive processing, and perception of verticality. Balance impair-
ments and disabilities must be appropriately addressed. This
article reviews the most common balance abnormalities in
hemiparetic patients with stroke and the main tools used to diag-
nose them.
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INTRODUCTION

Hemiparesis is the most frequent neurological deficit
after stroke [1]. Hemiparetic stroke patients frequently
present balance abnormalities. Balance impairments
increase fall risk, resulting in high economic costs and
social problems [2–5]. Tailoring efficient therapeutic
approaches depends on appropriate evaluation of specific
needs, but the best tools for balance evaluation in patients
with stroke are still under debate [6–7].

Difficulties in determining individual causes of balance
impairment and disability are related to the diverse mecha-
nisms involved. Decreased muscle strength, range of move-
ment, abnormal muscle tone, motor coordination, sensory
organization, cognition, and multisensory integration can
contribute to balance disturbances at different levels [8–11].
The aim of this article is to review the main postural abnor-

malities and the different tools that can be used to evaluate
balance in hemiparetic patients with stroke.

BASIC BALANCE CONCEPTS AND
ABNORMALITIES IN PATIENTS WITH STROKE

Postural control requires the interaction of many
physiological systems. A simplified outline of posture
control is shown in Figure 1.

Sensory Modalities and Integration
Three sensory modalities are mainly involved in pos-

tural control: somatosensory, visual, and vestibular affer-
ents. Integration of information from these systems is
crucial for adequate postural control.

Sensory information is regulated dynamically and
modified by changes in environmental conditions [12].
Despite the availability of multiple sources of sensory
information, in a given situation, the central nervous sys-
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tem (CNS) gives priority to one system over another to
control balance in the orthostatic position [13]. Nondis-
abled adults tend to use somatosensory information from
their feet in contact with the surface while standing in a
controlled environment with a firm base of support (BS)
[12–14]. Under this condition, somatosensory afferents
account for 70 percent of the information required for pos-
tural control, while vestibular afferents account for 20 per-
cent and visual input for 10 percent [12]. Visual and
vestibular inputs are likely to be more relevant sources of
information when proprioceptive information is unreliable,
for instance, during sway [12,14–16]. The ability to choose
and rely on the appropriate sensory input for each condition
is called sensory reweighting [17–18]. When one is stand-
ing on an unstable surface, for instance, the CNS increases
sensory weighting to vestibular and visual information and
decreases the dependence on surface somatosensory inputs
for postural orientation. On the other hand, in darkness,
balance control depends on somatosensory and vestibular
feedback.

Sensory reweighting is also important in the situ-
ations of sensory conflict that frequently occur in daily
activities; for example, when someone stands next to a
bus in movement. In this situation, the visual system
reports relative movement of the person in relation to an
object, which conflicts with information from the soma-
tosensory and vestibular systems. The CNS must reject
visual information and use vestibular and somatosensory
inputs. The ability to analyze, compare, and select the
pertinent sensory information to prevent falls can be
impaired in hemiparetic stroke patients [8].

In patients with stroke, balance impairments and
decreased ankle proprioception are positively correlated
[19–21]. Abnormal interactions between the three sensory
systems involved in balance could be the source of abnor-
mal postural reactions [8,22–23]. In situations of sensory
conflict, a patient with stroke can inappropriately depend
on one particular system over another [22]. Laboratory
measurements of sensory organization demonstrate that
patients with chronic stroke perform worse in conditions
of altered somatosensory information and visual depriva-
tion or inaccurate visual input [8]. Excessive reliance on
visual input may be a learned compensatory response that
occurs over time [8]. Relying on a single system can lead
to inappropriate adaptations and, hence, balance disturb-
ances. Furthermore, sensory integration and reweighting
can be impaired in patients with stroke, emphasizing
visual input even when it provides inaccurate information
[8,24–25].

Biomechanical Constraints
Postural stability can be understood as the ability to

keep the center of gravity (CG) within the limits of the
BS, or stability limits; these limits are not fixed, but
rather can be modified according to tasks, movements,
individual biomechanics, and environmental aspects
[17]. Thus, impairments in range of movement, tone,
strength, and muscle control can influence postural con-
trol. The CNS has an internal representation of stability
limits and uses it to determine how to move and maintain
balance [18].

The most important biomechanical constraint to bal-
ance is the quality and the size of the BS [18]. In hemi-
paretic patients, weakness and impaired muscle control
of the affected lower limb, decreased range of motion,
and pain can lead to changes in the BS [11]. The center of
pressure (CP) can be displaced anteriorly in the paretic
leg because of anteroposterior muscle imbalance in the

Figure 1.
Important resources required for postural control. CNS = central ner-
vous system.
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ankle joint (equinus foot). A positive correlation exists
between balance impairments and decreased lower-limb
strength [4,19–21,26–27]. In addition, poor trunk control
negatively influences overall balance [19,28–29].

Movement Strategies
Studies in the 1980s demonstrated that the human

body has postural strategies that are general sensorimotor
solutions for postural control and include ankle, hip, and
step strategies [30–31]. These strategies involve muscle
synergies, movement patterns, joint torques, and contact
forces [32]. In the ankle strategy, muscle activation
occurs from distal to proximal and the center of mass
(CM) is moved with torques mainly in the ankle [33]. In
the hip strategy, muscle activation occurs mainly in the
hip and trunk, adding torques to the hip joint, knee, and
ankle. In the step strategy, muscle activation starts with
contraction of hip abductor muscles and with cocontrac-
tion in the ankle joint, leading to asymmetric discharge of
weight in the lower limbs in order to move the BS during
CM movement [31]. The ankle strategy is more effective
at keeping the trunk in a vertical position during small
perturbations while standing. The hip strategy is excel-
lent for faster and larger CM movements. This strategy
requires adequate vestibular information, while the ankle
strategy depends more on accurate somatosensory infor-
mation [32]. The ankle strategy cannot be used properly
when the BS is reduced, for instance, on a narrow sur-
face, or when ankle muscle weakness exists [31,34]. Dur-
ing changes in posture, harmonic transitions from the
ankle to the hip strategy frequently occur. The step strat-
egy, in turn, represents a completely independent strategy
[32], since it adapts the BS to CM movement; in contrast,
the other strategies keep the CM inside the BS.

Balance control can be reactive (in response to exter-
nal forces that displace the CM) or anticipatory (volun-
tary or in automatic anticipation of internally generated
forces during gait or performance of movements, such as
raising an arm) [33]. It depends on the capability of the
CNS to predict and detect instabilities and program
appropriate patterns of muscle activation [32,35]. Delays
in postural responses may be caused by a slow increase in
muscle activity or changes in spatiotemporal coordina-
tion of synergies [32,36].

Patients with stroke use compensatory strategies,
including holding objects or walls, and use the step strat-
egy more frequently than do age-matched controls [37].
To maintain the same BS, patients with stroke predomi-

nantly use the hip strategy and use the ankle strategy to a
lesser extent [5]. However, these strategies are often not
efficient for stability [17], as indicated by the high inci-
dence of falls in patients with stroke [2–4].

Although hemiparetic patients can display some
anticipatory control in the orthostatic position, their per-
formance is often inferior to age-matched controls. Gen-
eration of propulsive forces to initiate displacements of
the CM or interruption of these forces so that the CM
does not advance beyond the limits of the BS can be
inadequate [38]. Patients with mild motor impairments
and high functional levels show better anticipatory pos-
tural reactions, in spite of abnormal movement activation
patterns [39–41].

Cognitive Processing
Motor responses and activation of muscle synergies

are influenced by sensory feedback and also by expecta-
tion, attention, experience, environmental context, and
intention [17]. Greater attentional demands can be required
from patients with stroke in tasks of static postural control,
particularly as task difficulty increases. Inadequate alloca-
tion of attention can lead to increased instability risk and
greater fall probability [11,42–43].

Perception of Verticality
Adequate orientation in space is critical for postural

control. Nondisabled persons are able to identify gravita-
tional verticality within 0.5° without using visual feed-
back. Perception of visual verticality is independent of
postural verticality. Postural perception of verticality has
multiple neural representations [44] and may be abnor-
mal in patients with stroke, particularly in the presence of
visuospatial neglect [45–46].

A subset of patients with stroke who have balance
problems are distinguished by resistance to support weight
on their nonparetic side, a phenomenon historically referred
to as “pushing” or “pusher syndrome” [47]. Pushing is
clinically characterized as a tendency to adopt postures
aligned toward the affected side and a fear of falling toward
the nonparalyzed side [48]. Investigation of patients with
severe pushing behavior has shown that their perception of
body posture in relation to gravity is altered. The patients
experience their body as oriented upright when the body
actually is tilted to the side of the brain lesion (to the ipsile-
sional side). Interestingly, patients with pusher syndrome
show no disturbed processing of the visual and vestibular
inputs determining visual vertical [49].
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Influence of Lesion Location
Whether or not lesion side is a key determinant of

balance impairment after stroke is still a matter of contro-
versy. In most of the studies, balance disturbances have
been found to predominate in lesions involving the right
cerebral hemisphere [24,50–53]. Integration of spatial
information by the right posterior parietal cortex may
explain this finding [51]. However, no difference [8,11]
or opposite results [10] with worse scores of static and
dynamic balance control in individuals with lesions of
the left hemisphere have been described. Definitive con-
clusions about possible effects of lesion side await fur-
ther investigations.

Effects of Aging on Balance Control
Stroke incidence and prevalence are greater in older

adults [54]. Aging is associated with balance disturb-
ances as a result of functional decline of the three sensory
afferent systems [17,55], as well as in strength, range of
motion, and the neuromuscular system, with a disruption
in the organization of muscle responses characterized by
activation of proximal before distal muscles [56]. Older
adults, as compared with younger adults, use the hip and
step strategies more frequently than the ankle strategy
[17,57]. The contribution of vision to balance control
increases with advancing age, especially under challeng-
ing situations [58].

BALANCE EVALUATION IN STROKE

Understanding physiological systems and their differ-
ent contributions to balance control allows therapists to
systematically evaluate the particular impairment, combi-
nation of impairments, and disabilities that affect a patient.
Impairments alone cannot describe functional deficits.
According to the strategies that can be used to compensate
for the impairment, two persons with the same impairment
can present different functional levels [18]. Identifying
specific impairments and limitations in activities of daily
living through clinical and laboratory tools is important.
Each hemiparetic patient with stroke can have unique
combinations of postural abnormalities [18].

Different methods have been developed to evaluate
balance in patients with stroke. Some important factors
must be considered. An accurate medical history, includ-
ing history of falls and medications in use, is crucial. Con-
sidering the time since stroke is also important. In the

acute and subacute phases, particularly during the first
3 months poststroke [59], physiological changes related to
spontaneous recovery of paretic leg muscles can contrib-
ute to improvement in balance [7,59]. However, recovery
of balance, documented by the absence of enhanced func-
tion of paretic leg muscle and other mechanisms and last-
ing for longer than 3 months, may also be important.
Balance gains can be mediated by improved stabilization
of the head and trunk, better muscular compensation
through the nonaffected leg, improved multisensory inte-
gration, and progressive and increased self-confidence [7].

Evaluation approaches can focus on impairments or
functional activities and include observational scores
(such as clinical scales) and laboratory measurements.
Tests based on observational methods can be biased
sometimes by subjective judgment [9], but their applica-
tion is cheaper and easier in clinical practice [60]. Most
of the time, laboratory measurements involve force plat-
forms that supply kinetic data of postural reactions [61].

Observational Methods
Clinical tests to evaluate balance have been classified

according to the level of postural control required to
accomplish the tasks assessed in each test or combination
of tests [62]. Static balance tests evaluate patients’ ability
to keep their CG within the BS in steady stance. Dynamic
tests are used to evaluate balance in response to voluntary
movement or external perturbations [63]. In functional
balance tests, patients have to keep their balance while
performing functional tasks of different ranges of diffi-
culty according to the kind of activity demanded, such as
rolling, sitting over the side of the bed, supported sitting,
sitting to standing, standing in different positions, and
walking. The most frequently used evaluation tools are
summarized in the Table.

The World Health Organization International Classi-
fication of Functioning, Disability, and Health (ICF) [64–
65] provides a multidimensional framework for health
and disability suited to classification of outcome instru-
ments. ICF identifies three primary levels of human func-
tioning. Outcomes may measure different domains of
each of three levels: body functions/structure (impair-
ment), activities (refers to the whole person), and partici-
pation (formerly referred to as handicap). In the Table,
ICF levels and domain numbers are given for each test.

Sensory conflicts can be provided by particular obser-
vational methods. In the Clinical Test of Sensory Integra-
tion and Balance [66], the individual has to maintain
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Table.
Properties of balance tests and scales used in stroke population.

Test/Scale Evaluation
Established

Reliability &
Validity

Score Limitations ICF Level &
Domain*

Berg Balance Scale 
(BBS) [1–6]

14 items requiring subjects
to maintain positions or
complete movement tasks
of varying difficulty: sitting,
sit-to-stand & stand-to-sit, 
transfers, standing unsup-
ported, standing with eyes 
closed, standing with feet 
together, reaching forward 
with outstretched arm, turn-
ing to look behind, picking 
up object from floor, turning 
360°, placing alternate foot 
on stool, one foot forward,
& single-limb stance.

Internal consistency:
Cronbach α = 0.92–0.98;
Interrater reliability:
ICC = 0.95–0.98;
Intrarater reliability:
ICC = 0.97;
Test-retest reliability:
ICC = 0.98;
Validity (r):
Barthel Index = 0.8–0.94; 
Balance subscale of Fugl-
Meyer Test = 0.62–0.94.

5-point ordinal scale, 
range of 0–4 for each 
item. Total score ranges 
from 0–56.

Floor & ceiling
effects. May have 
decreased sensitivity
in early stages post-
stroke among severely 
affected patients, 
because scale includes 
only 1 item relating to 
balance in sitting
position.

Activities (limitations 
to activity-disability):
mobility = changing & 
maintaining body posi-
tion (d410–d429).

Timed Get Up & Go
Test (TUG) [1,7–11]

Single-item test that
requires subject to stand up, 
walk 3 m, turn back, & sit 
down again.

Test-retest reliability:
ICC = 0.95.

Score = time (s) subject 
takes to complete test 
activity.

Large floor effect in
frail elderly individu-
als with cognitive 
impairment. Addresses 
relatively few aspects 
of balance.

Activities (limitations
to activity-disability): 
mobility = changing 
basic body position 
(d410) & walking 
(d450).

Tinetti Balance Test [3,
12–17]: Part of Tinetti 
Assessment Tool
(contains balance &
gait sections)

Ordinal scale assessing
balance as follows: sitting,
sit-to-stand & stand-to-sit, 
standing, response to chal-
lenge, eyes closed, turn in 
place, turn head, lean back, 
unilateral stance, reach
object from high shelf,
& pick up object from floor.

Reliability & validity 
established only for
elderly population
Interrater reliability:
κ = 0.40–1.0;
Validity (r):
BBS = 0.91; TUG = 0.75; 
stride length = 0.62–0.68.

16-point ordinal scale. 
Total score ranges from
0–24.

Not described for
stroke population.

Tinetti Assessment 
Tool mainly assesses 
body structure (impair-
ments), but Tinetti Bal-
ance Test evaluates 
activities (limitations to 
activity-disability): 
mobility = changing & 
maintaining body posi-
tion (d410–d429).

Functional Reach Test
(FR) [3,18–20]

Single-item test to detect
balance problems in older 
adults. Subject stands
with feet shoulder distance
apart & arm raised in 90°
of flexion. Subject reaches as 
far forward as possible while 
maintaining balance in same 
base of support. Lateral reach 
test was developed to evaluate 
mediolateral postural control.

Within-session reliability:
ICC = 0.98;
Interrater reliability:
ICC = 0.99;
Test-retest reliability:
ICC = 0.95;
Validity (ρ): BBS = 0.7.

Score = distance (cm)
that patient can reach
forward.

Addresses relatively
few aspects of balance. 
Weak measure of sta-
bility limits.

Activities (limitations
to activity-disability): 
changing & maintain-
ing body position 
(d4106, shifting body’s 
center of gravity).

Balance Subscale of
Fugl-Meyer Test
(FM-B) [2,21–22]:
1 of 6 FM-B subscales 
(designed to evaluate 
impairment after
stroke)

7 items, 3 for sitting & 4
for standing: sitting without 
support, parachute reaction 
(both sides), standing without 
support, unilateral stance 
(both sides).

Interrater reliability:
ICC = 0.93.

3-point ordinal scale, 
items range from 0–2. 
Total score ranges
from 0–14.

Floor & ceiling 
effects.

Fugl-Meyer Assess-
ment mainly assesses 
body structure (impair-
ments), but FM-B evalu-
ates mainly activities 
(limitations to activity-
disability): mobility = 
changing & maintain-
ing body position 
(d410–d429).



1220

JRRD, Volume 45, Number 8, 2008
Test/Scale Evaluation
Established

Reliability &
Validity

Score Limitations ICF Level &
Domain*

Postural Assessment
Scale for Stroke
Patients (PASS) [2,23]

12 items that grade perform-
ance for situations of varying 
difficulty in maintaining pos-
ture: sitting without support, 
standing with & without
support, unilateral stance
(both sides); or changing
posture: supine to affected
side lateral, supine to unaf-
fected side lateral, supine to
sitting up on edge of table,
sitting on edge of table to 
supine, sit-to-stand & stand-
to-sit, standing, picking up 
pencil from floor. Developed 
specifically for patients with 
stroke.

Internal consistency:
Cronbach α = 0.95;
Interrater reliability:
κ = 0.88;
Test-retest reliability:
κ = 0.72;
Validity (r): Functional 
Independence Measure = 
0.73.

4-point scale ranging 
from 0–3. Total score 
ranges from 0–36.

Not described. Activities (limitations
to activity-disability): 
mobility = changing & 
maintaining body posi-
tion (d410–d429).

Dynamic Gait Index 
(DGI) [24–25]

8 items: walking, walking 
while changing speed,
walking while turning head 
horizontally & vertically,
walking with pivot turn,
walking over & around 
obstacles & stair climbing 
(evaluation of dynamic 
balance).

Interrater reliability:
ICC = 0.96;
Test-retest reliability:
ICC = 0.96;
Validity in chronic stroke 
patients (ρ): BBS = 0.83; 
ABC = 0.68; TUG = 0.77.

4-point ordinal scale 
ranging from 0–3. Total 
score ranges from 0–24.

Can only be applied to 
population able to walk 
unassisted, although
with assistive device
(if necessary).

Activities (limitations
to activity-disability): 
mobility = walking & 
moving (d450–d469).

Multi-Directional
Reach Test (MDRT)
[26]

Subjects perform maximal 
reaches with outstretched
arm forward (FR), to right 
(RR), to left (LR), &
leaning backward (BR),
with feet flat on floor.

Internal consistency:
Cronbach α = 0.84;
Reliability & validity
established only for
elderly population;
Validity (ICC): FR = 
0.942; BR = 0.929; RR = 
0.0926; LR = 0.0947.

Score = distance (in.
or cm) that patient can 
reach in each direction.

Not described. Activities (limitations
to activity-disability): 
changing & maintain-
ing body position 
(d4106, shifting body’s 
center of gravity).

Activities-Specific
Balance Confidence 
(ABC) Scale [27]

16-item self reported 
questionnaire that asks 
subjects to rate their balance 
confidence in performing 
everyday activities: walking 
in different environments, 
reaching, bending, sweeping 
floor, getting in or out of car, 
climbing stairs & ramps, & 
stepping on or off escalator.

Internal consistency:
Cronbach α = 0.94;
Test-retest reliability:
ICC = 0.85;
Validity (ρ):
BBS = 0.36; gait
speed = 0.48.

11-point scale ranging 
from 0% (no confidence)
to 100% (complete
confidence). Item scores 
are summed & averaged
to yield mean ABC. 
Scale score ranging from 
0–100.

Not described. Activities (limitations
to activity-disability): 
mobility = changing
& maintaining body 
position (d410–d429); 
carrying, moving,
& handling objects 
(d430–d449); walking 
& moving (d450–d469).
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upright standing under six conditions. In conditions 1, 2,
and 3, subjects stand on a fixed surface with eyes open,
with eyes closed, and while wearing a visual dome that
restricts their peripheral vision and moves along with their
head, respectively. The visual dome leads to sensory con-
flict. In conditions 4, 5, and 6, the subject stands on foam
in order to distort somatosensory information from the
support surface and the visual conditions described for
conditions 1 through 3 are repeated. Trials in each of the
six conditions are timed and the contribution of different
sensory modalities can be evaluated. In hemiparetic
patients, a positive correlation exists between results of
this test and sensory and motor functions [67]. The test
approximates the sensory conflict situations provided by
the sensory organization part of dynamic posturography.

However, lack of quantification of load in each foot, CP
excursions, and magnitude of external disturbances are
limitations of this method.

Force Platforms and Computerized Dynamic
Posturography

Balance problems are frequently masked during sim-
ple tasks. Laboratory measures of postural reactions can
assess balance control with greater sensitivity than obser-
vational methods [32,68]. Postural reactions can be quanti-
fied in situations of less stability on force platforms: while
keeping the feet together, standing on one leg, or during the
Romberg’s maneuver [69–70]. In addition, a sensory
modality can be removed or attenuated and the effect of
these changes in postural control can be evaluated [71].
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Removal of sensory information complicates the esti-
mation of CM dynamics (position and speed) [71] and,
thus, increases the average amplitude of body oscillations
in nondisabled adults [69,72]. Different systems were
developed to challenge balance: platforms that slide and
incline and equipment that pulls or pushes body segments.
Laboratory tools that quantify very small amounts of pos-
tural sway, complex body kinematics, and dynamics
enable the therapists to identify specific disordered pos-
tural subcomponents [73].

Pressure cells have been incorporated into force plat-
forms to measure oscillations unnoticed by the human
eye. Using two platforms of force allows the evaluation
of the relative contribution of each leg in balance control
[11]. In computerized dynamic posturography (CDP),
illustrated in Figure 2, analog signals from these devices
are sampled and stored for offline processing [74].

CDP was developed by Nashner, and the first com-
mercial version was developed in 1987 [75]. CDP allows
manipulation of somatosensory and visual afferent infor-
mation. In addition, the patient’s ability to use and
reweight each of the available sensory modalities to con-
trol balance can be evaluated [74–76]. Angles of body
oscillation can be estimated from vertical projections of
the CM [77], and ankle and hip strategies in each of the
conditions imposed by the device can be checked [74].
CDP contains three protocols. The Sensory Organization
Test (SOT) (NeuroCom International; Clackamas, Ore-
gon), illustrated in Figure 3, has the great advantage of
objectively measuring postural responses under six dif-
ferent sensory conditions. During SOT, useful informa-
tion delivered to the patient’s eyes, feet, and joints is
effectively eliminated through calibrated “sway referenc-
ing” of the support surface or visual surround, which tilt
to directly follow the patient’s anteroposterior body sway.
By controlling sensory (visual and proprioceptive) infor-
mation through sway referencing and/or eyes open/
closed conditions, the SOT protocol systematically elimi-
nates relevant visual and/or support surface information
and creates situations of sensory conflict. In short, it
quantifies either inability to effectively use individual
sensory systems or inappropriate adaptive responses.
CDP (Figure 3) predicts balance control during daily life
activities [20].

Clinical and laboratory evaluation in hemiparetic
patients can show asymmetrical distribution of weight in
the lower limbs, with deviation of the CM to the unin-
volved side [8–11,24,63,78], difficulty in actively transfer-

ring and keeping the CM in the hemiparetic side [63,79],
in the lateral and anterior directions [80]; and decreased
frontal plane stability; impaired muscle selection [66],
with consequent increase in body oscillations during
standing [11,24,81–84]. Hemiparetic stroke patients may
present difficulties in weight transfer from the affected to
the unaffected side [38,80]. During the gait cycle, body
weight must be transferred to the affected leg in the swing
phase [80]. Asymmetry and difficulty in active redistribu-
tion of weight in the orthostatic position are the main con-
tributors to abnormalities in the gait of hemiparetic
individuals and influence independence, safety, and per-
formance of activities of daily living [78]. Weight distribu-
tion is more symmetrical in patients recovering from mild
strokes than in those with more severe lesions [41].

In hemiparetic patients a few weeks after stroke,
force platforms can reveal excessive postural oscillations
and instability that occur mainly in the frontal plane and
are worsened by visual deprivation [11]. These abnor-
malities may improve over time, reflecting better soma-
tosensory integration, with gradual increase in use of
proprioceptive and exteroceptive afferent information of

Figure 2.
Computerized dynamic posturography. Source: Photograph reprinted
with permission from NeuroCom International (Clackamas, Oregon).
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the paretic lower limb. However, stability often remains
worse than in age- and sex-matched controls. Laboratory
measurements show worse scores in dynamic situations
in which subjects have to lean in the sagittal and frontal
planes: speed is decreased and there are more deviations
from the CG [10]. When lateral forces are applied [9],
patients with stroke demonstrate larger hip displacements
and require more time to restore balance.

Laboratory tools can measure sensory integration in
different situations and can quantify body sway and
latency of muscle response in each leg after balance per-
turbations. This information can be used in the first
evaluation of the hemiparetic patient and during follow-
up to show changes over time [11,41].

CONCLUSIONS

Balance is a complex motor skill that depends on
interactions between multiple sensorimotor processes and
environmental and functional contexts. Stroke can affect
different functions independently or in combination, caus-
ing heterogeneous neurological impairments and compen-
satory strategies. Because of such diversity, individualized
rehabilitation is likely to benefit from precise assessment
of each patient’s impairments in motor, sensory, and cog-
nitive aspects of postural control, as well as the functional
implications. Different tools for balance assessment have
been validated and should be chosen according to individ-

ual characteristics of patients with stroke. Although labo-
ratory measurements are not widely available, they can
provide precise information and should be combined with
clinical evaluation whenever possible to enhance compre-
hension of postural impairments and disabilities in hemi-
paretic stroke patients. Further studies are necessary to
investigate whether the use of particular tools of evalu-
ation to guide balance rehabilitation affects function,
activity, and participation outcomes.
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