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Abstract—We performed this review to provide a clearer 
understanding of how to effectively measure ankle-foot orthosis 
(AFO) rigidity. This information is important to ensure appro-
priate orthotic intervention in the treatment of p atients with 
pathological gait. The two main approaches to the investigation 
of AFO rigidity are ( 1) bench-testing analyses, in which an 
AFO is fixed or attached to a measurement device, and (2) func-
tional analyses, in which measurements are taken while a sub-
ject is walk ing with an AFO in  situ. This review summarizes 
and classifies the current state of knowledge of AFO rigidity 
testing methods. We analyzed the strengths and weaknesses of 
the methods in order to recommend the most reliable techniques 
to measure AFO rigidity . The in formation obtained from this 
review article would, therefore, benefit both clinicians and engi-
neers involved in the application and design of AFOs.

Key words: AFO, ankle-foot orthosis, cerebral palsy, flexibil-
ity, hemiplegia, mechanical test, rig idity, spinal cord inju ry, 
stiffness, stroke, testing and measurement.

INTRODUCTION

Ankle-foot orthoses (AFOs) are us ed to improve 
pathological gait [1]. Therefore, the biomechanical func-
tion of a prescribed AFO must closely match the needs of 
the patient [1]. Indeed, evidence in the literature demon-
strates that an optimal ma tch exists between patient’s 
gait-related problems and the rigidity of an AFO [2–4].

The rigidity of an A FO has been measured with the 
use of various parameters, including stiffness, resistive 
moments, and strains [4–6]. The inherent rigidity of an 
AFO plays an important role in determining its biome -

chanical function and needs to  be optimal to positively  
influence the gait of patients  with gait pathologies [7–8]. 
The rigidity of an AFO may be determined by a number 
of factors, such as the mechanical properties of the mate-
rial; the trimlines; the material thickness; and the shape of 
the superstructure, especially at malleoli level [9–12]. An 
enhanced understanding of the interaction between vari -
ous AFO designs and rigidity could therefore improve the 
clinical decision-making process. However, before the  
relationship between AFO designs and rigidity is deter -
mined, the processes used to measure the rigidity charac-
teristics of different AFO designs need to be critiqued.

AFO rigidity measurements have previously involved 
two main methods: (1) bench testing and (2) functional 
analyses [5]. With a bench-testing method, rigidity para-
meters are measured with an A FO fixed or attached to a 
measurement apparatus, while with a functional method, 
these parameters are measured while a subject is walking 
with the aid of an AFO [5]. Various types of apparatuses, 
sensors, or experimental AFOs have been designed to ana-
lyze AFO performance. Although variations in AFO rigid-
ity analysis methods may be due to different requirements 
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in answering the research hy potheses of variou s studies, 
establishing some criteria to provide quality control in  
industry and f acilitate appropriate AFO prescriptions in 
the clinical setting would be advantageous.

The specific ai ms of this article were therefore to 
review studies in the literature regarding methods used to 
investigate AFO rigidity and to analyze and contrast the 
strengths and weaknesses of current techniques as well as 
published reliability and repeatability data. The informa-
tion obtained from this review article will help both clini-
cians and engineers by high lighting the i mportance of 
undertaking rigidity analysis of AFOs. The information 
obtained may be applied in the clinical setting to bet ter 
clarify the relationship between AFO rigidity and patient 
outcomes and in the industrial setting to evaluate new 
AFO designs or develop novel AFO testing methods.

METHODS

A literature search was co nducted in Google Scholar, 
Scopus, CINAHL, MEDLINE, Cochrane Database, and 
RECAL, and cited references  from appropriate articles 
were thoroughly reviewed. Th e key words used were 
“ankle-foot orthosis (AFO),” “bending,” “stiffness,” “rigid-
ity,” and “testing.” Inclusion criteria for this re view article 
included articles in which—
1. Analysis of AFO rigidity was conducted either under 

bench testing or functional conditions.
2. Analysis was conducted mechanically and not compu-

tationally (e.g., finite element analysis) alone.
3. The means of analysis, such as type of sensors used 

and its methods, were clearly explained.
4. The study was published in a peer-reviewed journal in 

English.

RESULTS AND COMMENTS

No comparative reviews regarding measurement 
techniques for AFO rigidity were found in the literature. 
The literature search identifie d 25 suitabl e articles for 
bench testing analyses and 10 articles for functional anal-
yses (Table) [2,4,6–38]. Therefore, a total of 35 articles 
were included in th is review article. From these, current 
measuring techniques and th eir accuracy and reliability 
were compared and analyzed and recommendations were 
made for future studies.

Methods of Testing Ankle-Foot Orthosis Rigidity
The majority of the studies  found in the literature 

involved bench testing analysis and were broadly assigned 
into categories; all used hardware to apply and/or measure 
the force applied or measure the subsequent deflection, 
strain, or bending moments applied to or by the AFO by 
investigating the moment -angle or moment -deflection 
relationships. Methods used to achieve the force applica-
tion and/or measure the su bsequent deflection or strain 
during bench testing included a tensionmeter [4,9–10,13–
16], a dial gauge [12,17–18], a strain gauge or a load cell 
[2,21–24], a forcep late [11], a muscle training machine 
[25–26], and a mechanical testing machine [5,27–30].

Functional analysis involved the use of gait analysis 
and strategies that provide AFO performance  indicators 
using strain gauges [6,31–34] or an  experimental AFO 
[7–8,35–37].

Bench Testing Analysis

Studies Using Tensionmeters 
A tensionmeter can measure the applied load and quan-

tify AFO rigidity by directly applying of force to a specific 
area of the AFO. An analog  or digital tensionmeter has 
been used in combination with a digital goniometer [10,13] 
or a protractor [4,9,16] to examine the force-angle or 
moment-angle relationship. Use of a tensionmeter would be 
the most convenient and inexpensive way to measure rigid-
ity; however, the position and direction  of applied force 
induced by t he tensionmeter would critically affect the 
amount of deformation of the AFO. The evidence in the lit-
erature revealed that a tensionmeter was either attached to 
the superior rim of the posterior wall [9–10,15] or the meta-
tarsal region [13] of the AFO. It was also attached to a bar 
connected to a rotational axis of a surrogate limb, which 
was fitted within the AFO [4,16]. Accurately defining the 
position and direction of force is therefore critically impor-
tant for measurement accura cy and repeat ability. The 
device developed by Sumiya et al. is a goo d example that 
could control both parameters [16]. Clinical use of an appa-
ratus built with a tensionmeter seems realistic once its reli-
ability is established.

Studies Using Dial Gauges
A dial gauge can measure small linear displacement of 

an AFO as a result of deflection. An analog dial gauge has 
been used with weights for controlled application of deflec-
tion. Precedence studies have computed AFO resistance
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Table. 
Summary of reviewed articles.

Author Test Method/Sensor Use of Surrogate Limb AFO ROM Analyzed Velocity Parameter
Braund et al.

2005 [1]
Bench/mechanical

testing machine
Yes NA NA Displacement

Bregman et al.
2009 [2]

Bench/load cells Yes 10 PF–20 DF (Ankle)/0 FX–30
FX (MTP)

NA Stiffness

Bregman et al.
2010 [3]

Bench/load cells Yes 10 PF–20 DF NA Stiffness

Cappa et al.
2003 [4]

Bench/load cells Yes 6 PF–6 DF/10 AB–10 AD NA Stiffness

Cappa et al.
2005 [5]

Bench/load cells Yes 7 PF–15 DF/12 IN–12 EV/15
INT–15 EXT

NA Stiffness

Chu & Feng
1998 [6]

Functional/strain
gauges

Human limb NA NA Strain

Condie & Meadows 
1977 [7]

Bench/mechanical
testing machine

No 15 PF–15 DF NA Stiffness

DeToro
2001 [8]

Bench/tensionmeter
and goniometer

Yes 0 PF–10 PF NA Resistive force

Golay et al.
1989 [9]

Bench/tensionmeter
and protractor

Yes 2 DF–16 DF NA Resistive force

Klasson et al.
1998 [10]

Bench/dial gauge Yes 2 PF–3 DF/3 EV–1 IN/2 INT–
3 EXT

NA Stiffness

Kobayashi et al.
2010 [11]

Bench/torquemeter
and potentiometer

Yes 15 PF–15 DF 10/s Stiffness

Lunsford et al.
1994 [12]

Bench/mechanical
testing machine

Yes 0 DF–10 DF NA Resistive force

Magora et al.
1968 [13]

Functional/strain
gauges

Human limb
(3 healthy subjects)

NA NA Strain

Major et al.
2004 [14]

Bench/mechanical
testing machine

No 0 DF–14 DF 2.3/s Stiffness

Miyazaki et al.
1993 [15]

Functional/EAFO Human limb
(8 healthy subjects)

20 PF–20 DF NA Stiffness

Miyazaki et al.
1997 [16]

Functional/EAFO Human limb (20 subjects 
with hemiparesis)

Same EAFO as Yamamoto et al.
1993 [31]

NA Stiffness

Nagaya
1997 [17]

Bench/tensionmeter
and goniometer

No 2.0 DF–14.8 DF/1.2 PF–12.2 PF NA Angle

Novacheck et al.
2007 [18]

Bench/forceplate (motion
analysis system)

Yes 20 PF–20 DF NA Stiffness

Ohsawa et al.
1992 [19]

Bench/tensionmeter No 0 PF–5 PF NA Resistive force

Polliack et al.
2001 [20]

Bench/dial gauge Yes NA NA Deflection

Ringleb et al.
2009 [21]

Bench/load cells and
tilt sensor

Yes 1 DF–9 DF/3 PF–10 PF/2 IN–
5 IN

0.5/s Stiffness

Robin et al.
1968 [22]

Functional/strain
gauges

Human limb
(1 healthy subject)

NA NA Strain

Robin & Magora
1969 [23]

Functional/strain
gauges

Human limb (4 subjects
with poliomyelitis)

NA NA Strain
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Author Test Method/Sensor Use of Surrogate Limb AFO ROM Analyzed Velocity Parameter
Robin et al.

1971 [24]
Functional/strain gauges Human limb (4 subjects

with poliomyelitis)
NA NA Strain

Ross et al.
1999 [25]

Bench/dial gauge No NA NA Displacement

Rubin & Dixon
1973 [26]

Bench/tensionmeter No NA NA Resistive force

Singerman et al.
1999 [27]

Bench/strain gauges Yes 10 PF–10 DF NA Stiffness

Sumiya et al.
1996 [28]

Bench/tensionmeter
and protractor

Yes 0 PF–15 PF 2/s Resistive 
moment

Sumiya et al.
1996 [29]

Bench/tensionmeter
and protractor

Yes 15 DF–15 PF 2/s Resistive 
moment

Yamamoto et al.
1993 [30]

Functional/EAFO Human limb (2 subjects
with hemiparesis)

Same EAFO as Miyazaki et al.
1993 [15]

NA Stiffness

Yamamoto et al.
1993 [31]

Functional/EAFO Human limb (15 subjects 
with hemiparesis)

10 PF–20 DF NA Stiffness

Yamamoto et al.
1993 [32]

Bench/muscle training
machine

Human limb 20 PF–15 DF 15 IN–10 EV 5/, 10/,
and 50/s

Stiffness

Yamamoto et al.
1997 [33]

Functional/EAFO Human limb (33 subjects 
with hemiparesis)

Same EAFO as Yamamoto et al.
1993 [31]

NA Stiffness

Yamamoto et al.
1999 [34]

Bench/strain gauges and
potentiometer

No 10 PF–30 DF NA Stiffness

Yamamoto et al.
2005 [35]

Bench/muscle testing
machine

No 10 PF–20 DF 1/, 10/,
and 20/s

Stiffness
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moments in three planes an d plotted a moment-angle hys-
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sagittal plane to evaluate and compare AFO rigidity 
[12,18]. Analog dial gauges can measure the deflection of 
an AFO statically at a certain position, but they cannot mea-
sure it continuously over the range of motion. Compared 
with tensionmeters, dial gauges showed an advantage in 

that they enabled quantification of AFO rigidity in multiple 
planes. However, the designs in the literature that incorpo -
rated dial gauges did not appear feasible in the clinical set -
ting because of their complexit y. Deflection force was 
applied via a surrogate limb in two studies [12,17], while it 
was directly applied at the post erior wall of the AFO in 
another study [18]. Direct attachment of a dial gauge to 
the AFO would be influenced by the geometry, thickness, 
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and deformation of the location of the gauge’s attachment 
to the AFO.

Studies Using Strain Gauges or Load Cells
Strain gauges can measure strain, while load cells are 

made of strain gauges and can measure the loading force. 
Measuring AFO rigidity with  use of an apparatus con -
structed with strain ga uges or load cells may enable more 
accurate measurement of rigidity because strain gauges and 
load cells are generally more sensitive than tensionmeters 
or dial gauges. An app aratus built with strain gauges or 
load cells allows continuous measuremen t of rigidity at a 
particular speed in the specific range of motion. However, a 
biomechanical model would be required to analyze the data 
[19,21–24]. Although the modeling itself is not essentially 
unfavorable, constructing a model for each different type of 
AFO would be time-consuming and make the test compli-
cated [5]. Moreover, accurate measurement and alignment 
of an AFO on the device would require great ef fort [5]. 
Strain gauges have been used to qu antify the relationship 
between the kinetic and kinematic data acquired from AFO 
deformation by usin g analysis of the foot section motion 
relative to the shank and have demonstrated a direct corre-
lation between the two parameters [19]; they have also 
been used to quantify the moment-angle relationship of an 
AFO together with a potentiometer [20]. Utilizing lo ad 
cells, a fully automatic loading apparatus  has been devel-
oped to apply controlled join t angular displacement a t the 
ankle portion of the AFO and measure correspon ding 
moments in three anatomical planes [23]. Alternatively, a 
manual device that based its design on a surrogate human 
leg model and could measure both ankle and metatarsopha-
langeal (MTP) joint stiffness has been developed [21]. This 
device was the first designed to  measure stif fness of the 
MTP joint region of an AF O and to si mulate the stiffness 
effect of an AFO/footwear combination. The devic e was 
subsequently used to demonstrate the feasibility of match-
ing AFO stiffness to the individual patient’s needs [2]. The 
automated device would be appealing in industry, while the 
manual device would have more potential for clinical use 
because of its portability and convenience.

Studies Using Muscle Training Machines
A muscle training machin e is commonly used for 

rehabilitation in the clinical setting. An apparatus based 
on the muscle training machine has been developed [25]. 
This was the only bench analysis found in the literature in 
which a human limb w as used inste ad of a surrogate  

limb. The viscoelastic properties of a human limb would 
affect the rigidity of an AFO, and the result would have  
been different if a surrogate limb had been used. A simi-
lar device was used to examine mechanical properties of 
an AFO with an oil-damper joint without a surrogate 
limb [26]. Use of a muscle training machine would be an 
attractive alternative to c ustom-made automated appara-
tuses in the clinical setting.

Studies Using Forceplates
Forceplates are commonly installed in gait laboratories 

to evaluate the kinetics of gait performance. Novacheck et 
al. quantified stiffness of AFOs with a device that interfaces 
with a forceplate by designing a jig that fixes the AFO 
firmly to the forceplate with reflective markers attached to a 
surrogate limb and the foot segment of the AFO and then 
applying a manual force [11]. This device enabled the plot-
ting of moment-angle curves. It appeared that an experi-
mental apparatus using a forceplate would be able to obtain 
full three-dimensional measurements. Because the AFO 
stiffness data acquired from the combined use of forceplate 
and infrared camera technology are highly accurate, use of 
this technology is attractive for clinical or research environ-
ments where three-dimensional gait analysis is co nducted 
regularly and is worthy of fu rther investigation. However, 
use of this technology may not be feasible in the regular 
clinical setting because of the equipment’s expense and 
space requirements.

Studies Using Mechanical Testing Machines
Mechanical testing machines are commonly used in 

industry to examine and characterize the fatigue resistance 
of an orth opedic product. Use of a mechanical testing 
machine would be particularly effective for cyclic testing, 
and its in fluence on AFO rigidity has been investigated 
[27,29–30]. Mechanical testing mac hines have a lso 
enabled accurate repetitive measurement of AFO stif fness 
in combination with a torquemeter [5]. Use of a mechanical 
device therefore enables an apparatus to be  built that can 
perform repeatedly und er well-controlled torques, veloci-
ties, or ranges of mo tion. Therefore, a mechanical testing 
machine is preferred  for use in industry but may not be 
ideal in the cl inical setting because of its compl exity, size, 
and cost.

Functional Analysis
Functional analysis has involved the use of strain 

gauges [6,31–34] or experimental AFOs [7–8,35–37] to 
quantify the effect of an AFO intervention.
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Studies Using Strain Gauges
When attached at the area of interest, strain gauges can 

measure the stresses or loads acting on an AFO. The first 
series of functional analyses of AFOs used strain gauges to 
measure stresses or loads on the uprights of metal AFOs 
[31–34]. Tensile and comp ressive stresses arou nd the 
ankle region of thermop lastic AFOs were subsequently 
quantified [6]. Using strain gauges to evaluate and iden -
tify the location where m echanical failure may occur 
through examination of the loca tion of peak stress within 
the newly designed AFO appears reaso nable in industry; 
however, their clinical use seems limited.

Studies Using Experimental Ankle-Foot Orthoses
A series o f functional studies have b een conducted 

with experimental AFOs whose ankle joint resistance to 
plantar flexion and dorsiflexion directions could be 
adjusted in an attempt to quantify an optimal AFO rigidity 
for patients with a gait-limitin g pathology [7–8,35–36]. 
These studies developed techniques to quantify the 
moment generated by an AFO separately from the moment 
generated by the floor reaction force and muscles during 
gait. The results of these studies indicated that the dorsi-
flexion assistive moment at  initial contact was compara -
tively larger than tha t during swing phase to prevent 
drop-foot in patients with hemiplegia; recommendations 
for AFO design were therefore pro posed [37]. The desir-
able AFO for patients with hemiplegia was recommended 
to have an articulated orthotic ankle joint to provide a fair 
amount of inversion and eversion corrective moment, an 
initial dorsiflexion angle between 0° and 10°, an adjustable 
range of motion between 30° of dorsiflexion and 10° of 
plantar flexion, no p lantar flexion assistive moment, and 
dorsiflexion assistive moment during ankle plantar flexion 
(5–20 N·m/10 of plantar flexion) [37] . A dorsiflexion 
assist controlled by spring (DACS) AFO [20] and an AFO 
with an oil-damper joint [26] were subsequently developed 
based on these studies and tested for efficacy. These crite-
ria have indicated the ankle joint moments to be expected 
when a patient is walking with an AFO and should inform 
the development of appropriate mechanisms to mechani-
cally test AFOs with appropriate loading rates. An experi-
mental AFO would be a useful asset in the clinical setting 
once redesigned to be more user-friendly and cosmetic 
than current designs an d once a method  could be estab-
lished to transfer the information from the ex perimental 
AFO to a definitive AFO. In industry, evaluating the spe-
cific requirement of a newly designed AFO in a tar get 
group of patients would also be useful.

Fixation of Ankle-Foot Orthoses for Bench Analysis
Those studies that used a surrogate limb encapsulated 

by the AFO during bench testing applied the deformation 
force indirectly via a longitudinal bar positioned through 
the center of the shank [2,4,9–11,16,21,23] or an angled 
wedge connected to its proxim al end in an  attempt to 
simulate both static and dynamic loading of an AFO dur-
ing nondisabled gait [12] (Table). Using a surrogate limb 
has its merits because, feasibly, it could more accur ately 
reflect loading during functional ambulation, especially if 
the AFO being tested were molded to accurately fit the 
surrogate limb profile and, i f mechanically controlled, 
could provide a cceptable repeatability. Some authors  
have reported possible weaknesses in their testing 
method by not including a mechanical ankle joint in their 
surrogate leg model [5,24].

Most articles that used a  tensionmeter or other  
mechanical means to a pply a bending moment to th e 
AFO also used bolts or clamps to fix the footplate of the 
AFO to a measurement apparatus or a baseplate. How-
ever, in those cases where the AFO was not strapped to a 
surrogate lower-limb model but left free to deflect 
between the application point and the clamped or bolted 
footplate, unwanted axial to rsional effects could have 
occurred during deflection testing. In addition, fixation of 
the footplate of the AFO to the device would result in 
testing of only the ankle and calf region [12]. One study, 
however, not only secured the base of the AFO to a flat 
surface but also provided a pi vot point equivalent t o the 
metatarsal head level to simu late the effect of footplate 
deflection at the MTP joint [21]. Another study left the 
footplate free to interface with a level surface while being 
loaded proximally to more accurate ly simulate ambula-
tory effects of AFO/footwear combinations using a surro-
gate limb via a wedge applicator at the proxima l aspect 
to simulate walking [12]. The superstructure was not 
clamped at the footplate, which allowed use of footwear  
on a low-friction contact plate [12].

Angular Range Used in Testing
The range of motion of the ankle joint has  been 

shown to fall within 10 of dorsiflexion to 5 of plantar 
flexion in patients with stro ke hemiplegia wearing an 
articulated AFO [39]. Evidence in the literature has dem-
onstrated a large variety in the ranges of motion in the 
sagittal plane used during testing protocols, which ranged 
from 20 of plantar flexion to 30 of dorsiflexion (Table). 
An articulated AFO was tes ted over the range of 15° of 
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plantar flexion to 15 of dorsiflexion, because this suffi-
ciently covered the range of its t ypical orthotic ankle 
joint movement during ambulation in patients with hemi-
plegia [5]. In general, the range used in testing should 
cover the physiological range of motion of the ankle joint 
of a target group of patients for a tested AFO.

Angular Velocity Used in Testing
The reported range of angu lar velocities used in the 

test is 0.5 /s to 50 /s [4–5,16,24–26,30] (Table). How-
ever, angular velocity reportedly does not affect the stiff-
ness of a thermoplastic AFO [11,25]. One study using a 
muscle testing apparatus reported no effect on the stif f-
ness (moment vs deflection angle) of various thermoplas-
tic AFOs when tested at different velocities between 5 /s 
and 50 /s [25], while another study that used a forceplate 
to test AFOs also reported no effect of the applied veloc-
ity on their stiffness [11]. However, an AFO with oil-
damper joint revealed a veloc ity-dependent effect in its 
stiffness [26]. Therefore, te sting at different levels of 
velocity would be requi red to evalu ate an AFO co n-
structed of a material with velocity-dependent properties.

Accuracy and Repeatability
Hand-held tensionmeters alone [15], using a protrac tor 

via a winc h [9], or in p arallel with a pro tractor [4,16] or 
goniometer [10,13] may have inherent errors, which can be 
quantified but may also af fect repeatability, especially if in 
series, giving a cumulative effect. The reliability of the 
majority of testing devices found in the literature remains 
questionable [21]. However, some articles published during 
the last 10 years have demonstrated numerical accuracy or 
repeatability in the testing methods used [5,21,23–24]. This 
has been assessed by uncertainty [23], standard de viations 
[5], generalizability study (G-study) [21] or coefficient of 
repeatability [24]. The G-study determines the influence of 
multiple sources of error variance in measurements by 
using error of measurement or the smallest detectable dif-
ference [21], while the coefficient of repeatability quantifies 
the measurement repeatability of the testing method [24].

DISCUSSION AND RECOMMENDATIONS

This article reviewed studies on the analysis of AFO 
rigidity properties via bench testing and functional condi-
tions. The advantages of fu nctional analysis studies are 
that they can analyze the rigidity properties of a dynamic 

system consisting of an AFO/footwear combination and 
determine how the system af fects lower-limb joint kine-
matics and kinetics [5]. However, a number of factors 
that would derive from patients’  characteristics, such as 
the nature of pathology or the level of gait disabili ty, 
might influence the results obtained; therefore, compari-
sons between subjects with different conditions would be 
difficult to interpret [5]. Moreover, transferring the stif f-
ness characteristics logged from an experimental AFO to 
a definitive AFO would be necessary because its design 
is currently uncosmetic [7–8].

Conversely, bench-testing analysis would enable more 
accurate control of the experi mental conditions and theo -
retically improve repeatability [5]. The issue with bench 
testing is how accurately it reflects the loading experi-
enced by an AFO when different patient g roups wear it 
during ambulation [5]. Recent articles have suggested that 
the required accuracy might be achieved [12,21]—but a 
cost-effective clinical device is needed to evaluate patients 
as well. Moreover, most of the testing methods developed 
to quantify the rigidity characteristics of AFOs are com-
plex and th erefore would be dif ficult to apply clinically. 
The feasibility of conducting AFO rigidity testing with the 
use of portable equipment should therefore be further 
explored.

AFO stiffness is defin ed as the moment aro und the 
ankle joint exerted by the AFO per degree of ankle joint 
rotation and should be computed as a slope of the moment-
angle curve (newton-meters/degree) [5]. Some studies used 
stiffness as a parameter of AFO rigidity [5,2 1,23], while 
other studies instead chose to state the maximum bending 
moment resisted or applied by the AFO tested and the angle 
at which this occurred in plantar flexion and/or dorsiflexion 
[4,10,16]. Stiffness of AFOs has been mostly measured in 
the sagittal plane; however, measurement in the coronal 
plane [17,22–25] or transverse plane [17] has also been 
reported. Yamamoto et al. (1997) reported that for patients 
with stroke hemiplegia, an optimal articulated AFO should 
allow adjustment of plantar flexion resistive stiffness in the 
range of 0.5 N·m/  to 2.0 N·m/  [37] and  subsequently 
developed a DACS AFO (0.20 N·m/ to 1.70 N·m/) 
[20] and an AFO with an oil-damper joint (0.50 N·m/ to 
1.40 N·m/) [26]. Bregman et al. (2009) reported that the 
stiffness of nonarticulated AFOs ranged from 0.20 N·m/to 
1.56 N·m/, depending on the material and design  [21]. 
This result suggests that an appropriately designed nonar -
ticulated AFO could achieve the plantar flexion resistive 
stiffness range suggested by Yamamoto et al. [37]. The 
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advantage of using stiffness as a parameter of measurement 
is that it enables the AFO rigi dity to be easi ly compared 
with gait or other biomechanical analysis data, such as joint 
moment or stiffness [38]. Therefore, using stiffness as a 
measurement parameter will be  especially ef fective for 
matching AFO stiffness to individual need based on these 
data.

AFO design factors, such as geometric configuration 
and material selection, plus experimental factors, such as 
consistency in the experimental procedures among differ-
ent trials, accuracy of the sensors, and methodologies 
used, could introduce errors in  the results obtained. Vari-
ous types of surrogate legs were also used to simulate a 
human limb in bench-testing analyses. However, the reli-
ability of the measurement methods and apparatuses were 
generally lacking [21]. A reliability test of the measure-
ment should therefore be included in future studies.

The type of mechanical ankle joint used in an AFO 
should be as congruent as possible to the center of rota -
tion of a huma n ankle joint, and the material of a surro -
gate leg should be as si milar as possible t o that of a 
human limb. However , the surrogate limbs used in the 
past studies were simple ones that rotated in the sagittal 
plane [4,9,11–13,16–17,19,21,23–24]. Only one study 
was conducted in which a human limb was used to mea-
sure the stiffness of an AFO in a bench-testing condition 
[25]. This was significant because the viscoelastic prop-
erties of a human limb will undoubtedly af fect the 
mechanical performance of an  AFO. Therefore, even a 
bench analysis of AFOs should replicate these effects.

In one study, an apparatus to simulate the physiological 
forces acting on an AFO during ambulation was developed 
[12]. This study was in contrast to most other studies in 
which AFOs were simply clamped and deflected. The 
method of conducting bench analyses should therefore 
mimic forces experienced during a gait cycle as closely as 
possible. Thus, considering the effect of an AFO on ga it, 
the following factors at d ifferent phases of the gait cycle 
should be considered and quantified when the bench analy-
sis is conducted:
1. The presence of appropriate AFO ankle-region stiff-

ness to allow smooth plantar flexion at initial contact 
(heel rocker).

2. Adequate AFO ankle-region stiffness to allow  good 
control of dorsiflexion at midstance (ankle rocker).

3. Ankle- and MTP-region stiffness to enable smooth 
transition from t erminal stance to swing phase ( fore-
foot rocker).

4. Ankle-region stiffness for enough  clearance in  the
swing phase.

An ankle-foot stimulator constructed with a surrogate 
limb, a forceplate, a se rvo motor, and infra red cameras 
was developed to investigate AFO fatigue failure [40]. It 
attempted to simulate a gait cycle during bench test ing 
and, therefore, appea red to be able to incorporate the 
above factors. [40]. Therefore, a further study on the fea-
sibility of using this apparatus to investigate AFO stiff-
ness is appealing.

The method of fixation and a lignment of an AFO as  
well as the application of forces will affect the deflection 
measurements during bench analysis. Bregman et a l. 
reported that previous studies have neglected to measure 
the neutral angle of an AFO [21]. Therefore, a recent arti-
cle demonstrated the use of a plumb line to determine the 
neutral angle of an articula ted AFO [5]. Some studies  
require the drilling of holes to fix the AFOs to the appara-
tus, which is undesirable in the clinical setting [17–18]. 
Thus, the apparatus should be designed to fix the AFOs 
in a nondestructive manner.

Two patterns of  force application techniques were 
used in precedence bench-testing analyses [5]: (1) exert-
ing force to a certain region of an AFO [10,15,18] or 
(2) exerting force via a surroga te limb [4–5,9,11–13,16–
17,19,21,23–24]. Application of force via a surrogate  
limb could simulate the loading pattern of a lower limb, 
as discussed earlier. Footwear would also influence the 
mechanical behavior and alignment of an AFO; however, 
its influence on AFO gait biomechanics has only recently 
been studied [41]. Development of a proper surrogate  
leg, whose joint is properly aligned to a physiological 
ankle joint and surface finishing closely replicates the 
viscoelastic properties of skin and its underlying tissues, 
is required so that it truly reflects the dynamic mechanics 
experienced by AFOs  combined with shoes for bench-
testing analyses [5]. Once a reliable method is estab-
lished, exploring how to interpret a measurement result to 
match the need of an individual patient in the clinical set-
ting will be necessary [2–4].  In the industry setting, 
establishing a pathway to apply the bench-testing tech-
nique for quality control of an AFO will be required.

Functional analyses need to es tablish repeatable 
experimental methods with high reliability that minimize 
alteration to external parameters from human ambulation 
and internal parameters from type of disease and disabil-
ity of a patient. Once a reli able method is established, 
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exploring a way to transfer stiffness from an experimen-
tal AFO to a definitive AFO will be necessary.

Therefore, the following aspects of AFO stiffness 
analysis will require further investigations:
  • Optimal fixation and alignment of an AFO to the 

apparatus.
  • Development of a better surrogate limb system with a 

properly aligned joint and surface finishing that repli-
cates human skin.

  • Influence of AFO/footwear combinations on stiffness 
and gait biomechanics.

  • Control of parameters that influence functional analyses.
  • Transfer of stiffness from an experimental AFO to  a 

definitive AFO.
  • Establishment of the accuracy and reliability of a 

measurement method.
  • Clinical application of the measurement result to 

assist a prescription. 
  • Matching of stiffness of an AFO to each patient.
  • Pathways toward quality control of an AF O in the 

industrial setting.
The following recommendations for development of 

appropriate AFO s tiffness measurement protocols have 
therefore evolved from this literature review:
  • Evidence to match AFO stiffness to individual patient 

requirements in the clinical setting should be consid-
ered and further explored [2–3].

  • The simulation of MTP joint motion or use of AF O/
footwear combinations should  be used in the testing 
method to more accurately reflect human gait [12,21].

  • Measurement of the  AFO neutral angle should be  
included when AFO stiffness at the ankle and metatar-
sal head regions are analyzed [5,21].

  • Moments and angles should be  defined to compute  
stiffness as routinely documented in gait laboratory 
reports [17,25].

  • A portable and low-c ost device that demonstrates 
acceptable repeatability and reliability for clinical use 
should be developed [16,21].

  • The angular velocity and range of motion used in bench 
testing should reflect those of the ankl e joint docu -
mented for nondisabled or pathological gait [5,26].

  • The method used to de flect the A FO should mimic 
human walking and be modeled accordingly [12,40].

  • Accuracy and repeatability analyses should be included 
in the testing [21,24].

  • AFO stiffness should be defined by the computation of 
the slope of the moment-angle curve (newton-meters/
degree) acquired following testing [11,23].

CONCLUSIONS

The feasibility of matching AFO stiffness to the 
patient’s requirement for optimal gait based on gait analy-
sis data must be explored. However, recent studies have 
suggested the possibility of collecting such data through 
combined functional and bench testing: the motions mea-
sured during pathological walking by gait analysis can be 
applied to a bench-testing apparatus.

We conducted a literature review of AFO rigidity analy-
sis. AFO rigidity analysis may be grouped into bench and
functional techniques. Understanding the strengths and 
weaknesses of each method is crucial to establishing an 
analysis method practical for clinical use in the develop -
ment of a patient-centered AFO prescription system and 
for AFO quality assurance in industry.
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