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Abstract—People with motor-incomplete spinal cord injury 
(m-iSCI) can recover basic walking function but still have dif-
ficulty performing the skilled walking required for everyday 
environments. We hypothesized that a robotic-based gait reha-
bilitation strategy founded on principles of motor learning 
would be a feasible and potentially effective approach for 
improving skilled walking in people with m-iSCI. Fifteen indi-
viduals with chronic (>1 yr) m-iSCI were randomly allocated 
to body weight-supported treadmill training (BWSTT) with 
Lokomat-applied resistance (Loko-R) or conventional 
Lokomat-assisted BWSTT (Control). Training sessions were 
45 min, 3 times/week for 3 mo. Tolerance to training was 
assessed by ratings of perceived exertion and reports of pain/
soreness. Overground skilled walking capacity (Spinal Cord 
Injury-Functional Ambulation Profile [SCI-FAP]), as well as 
walking speed and distance, were measured at baseline, post-
training, and 1 and 6 mo follow-up. Our results indicate that 
Loko-R training could be feasibly applied for people with m-
iSCI, although participants in Loko-R tended to report higher 
levels of perceived exertion during training. Participants in the 
Loko-R group performed significantly better in the SCI-FAP 
than Control at posttraining and in follow-up assessments. This 
study provides evidence that Loko-R training is feasible in 
people with m-iSCI. Furthermore, there is preliminary evi-
dence suggesting that Loko-R may help improve performance 
in skilled overground walking tasks.
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INTRODUCTION

It is estimated that almost half of all people with spi-
nal cord injury (SCI) have motor-incomplete injuries 
(American Spinal Injury Association Impairment Scale 
[AIS] C or D) [1–2], meaning that there is some preser-
vation of voluntary motor function below the level of 
injury. It is possible for people with motor-incomplete 
SCI (m-iSCI) to recover basic walking function, espe-
cially with intensive, task-specific gait training [3]. Body 
weight-supported treadmill training (BWSTT) is one 
such approach that has garnered intense interest over the 
years as a promising rehabilitation intervention to pro-
mote the recovery of walking in people with motor-
incomplete SCI [4]. This has even led to the development 
of robotic devices, such as the Lokomat (Hocoma AG; 
Volketswil, Switzerland) [5], to facilitate the implemen-
tation of BWSTT. The key principles of BWSTT have 
included the provision of partial body weight support 
(BWS) through a harness system so that the person bears 
as much weight as possible and the repetitive cycling of 
the leg through gait motions, which is enabled by the 
treadmill and assisted by therapists or robotic devices [6–
8]. The provision of relevant locomotor-related sensory 
cues and the resulting motor activity elicited through this 
type of task-specific training is thought to underlie func-
tional retraining and reorganization of the nervous sys-
tem [3,9].

However, the scientific evidence so far suggests that 
BWSTT is not better than overground gait training in 
people with SCI [4]. In the largest clinical trial in SCI gait 
rehabilitation to date, individuals with subacute m-iSCI
who underwent BWSTT had equivalent outcomes in 
functional walking capacity as those who underwent the 
same intensity of overground gait training [10–11]. 
Although there was some debate as to whether the over-
ground training used in this clinical trial was reflective of 
a realistic “conventional” therapy [12–13], the results 
were consistent with the concept that intensive practice 
and task-oriented gait retraining (whether it is provided 
by BWSTT or overground practice) can improve walking 
outcomes.

For people with chronic (>12 mo) SCI, it is still 
unclear what specific gait training modality provides the 
best outcomes. There is evidence that manually assisted 
BWSTT can significantly improve functional balance 
and ambulation [14]. Others have also shown better out-
comes in walking speed and distance as well as in the 

quality of gait kinematic patterns in people who under-
went BWSTT than in those who received overground 
gait training [15]. However, recent results from one of the 
largest randomized controlled studies in gait rehabilita-
tion for chronic SCI to date have shed some doubt on the 
superiority of this approach. Field-Fote and Roach found 
that overground training combined with functional elec-
trical stimulation (FES) to the ankle dorsiflexor muscles 
was superior to BWSTT, BWSTT with FES, and robot 
(Lokomat)-assisted treadmill training [16]. Indeed, the 
introduction of robotics technology for gait rehabilita-
tion, intended to facilitate the delivery of intensive, task-
oriented gait training, has raised even more questions 
about the clinical utility of expensive technology in reha-
bilitation. A review of clinical studies on the effective-
ness of robotic training devices in SCI concluded that 
robot-assisted gait training is no better than other gait 
training modalities [17]. Studies of robot-assisted gait 
training in other neurological populations have reached 
similar conclusions [18–19].

So far, it appears that BWSTT and robot-assisted gait 
training have fallen short of their promise [20]. One pos-
sibility is that these training modalities do not provide 
adequate challenge to drive motor learning. It is known 
that sensory input is a key modulator of locomotor output 
[21], and indeed, this concept formed the basis for the 
promise of task-specific locomotor training (such as that 
provided by BWSTT) for improving walking following 
neurological injury [3]. Sustained alterations in the 
movement environment can also mediate longer-term 
locomotor adaptations via feedback-error learning (recal-
ibration of motor commands based on changes in sensory 
feedback) [22–23]. Several studies have shown that sus-
tained (several minutes) exposure to forces that resist 
lower-limb flexion during walking (e.g., using robotic 
devices or attaching weights around the leg) lead to 
changes in the locomotor command that are revealed in 
the aftereffects (e.g., high stepping) that are observed as 
soon as the forces are removed [24–29]. The presence of 
aftereffects suggests the formation of anticipatory loco-
motor commands in response to the resistance and is an 
example of how feedback-error learning can be used to 
enable locomotor adaptations. Feedback-error learning 
during walking can be used to elicit locomotor adapta-
tions in individuals with m-iSCI [30–32]. Following 
short-term adaptation to a robot-applied resistance 
against hip flexion, aftereffects in the form of a longer 
stride length are observed [30,32]. These aftereffects
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persist even when subjects step overground immediately 
after walking against resistance [32].

These results raise interesting possibilities for the 
design of new gait rehabilitation strategies for people 
with m-iSCI. Recent studies have provided some indica-
tion for the potential benefits of a training program based 
on strategies that can elicit locomotor adaptations based 
on feedback-error learning. Using a crossover design, Wu 
et al. compared robot-applied resistance versus assistance 
over an 8 wk BWSTT program [33]. Significant increases
in overground walking speed were observed following 
training, but no differences were found between resis-
tance and assistance training [33]. Given that resistance 
training enables specific aftereffects in the dynamic con-
trol of the swing phase [24–29], it is possible that simple 
tests of overground walking speed may not adequately 
capture the particular advantages of this approach to 
locomotor training, i.e., walking tasks where the dynamic 
control of leg flexion is particularly important (such as 
stepping over an obstacle).

In people with m-iSCI, diminished hip, knee, and/or 
ankle flexion are commonly observed during swing, 
compromising foot clearance height [34–36]. Such 
impairments likely also contribute to deficits in the abil-
ity to adapt to the demands of skilled walking tasks, such 
as walking up slopes [37] or crossing obstacles [38]. 
Given these functional considerations, it seems warranted 
to further investigate the potential benefits of gait train-
ing combined with resistance. In people with chronic 
stroke, we have shown that up to 12 wk of BWSTT com-
bined with leg weights around the paretic limb could 
improve functional ambulation, including the ability to 
climb stairs [39]. A recent case report study of the effect 
of a 3 mo training study using Lokomat-applied resis-
tance in an individual with chronic m-iSCI also showed 
very promising results [40]. Improvements were noted 
not only in overground walking speed and distance but 
also in skilled walking tasks, such as obstacle crossing 
and stair climbing, as well as the kinematic quality of the 
gait pattern [40]. The results from these studies are 
encouraging, but controlled studies are required to under-
stand the potential benefits of resistance training com-
bined with BWSTT. Therefore, the purpose of this pilot 
study was to determine the feasibility and evaluate the 
potential efficacy of Lokomat-applied resistance (Loko-R)
training on functional ambulation, especially skilled 
overground walking, in people with chronic m-iSCI.

METHODS

Participants
Individuals with m-iSCI (AIS C or D) were invited to 

participate in this study. Participants were required to 
have, at minimum, the ability to walk on a treadmill with 
BWS but without manual assistance. The inclusion crite-
ria were (1) m-iSCI at least 1 yr ago and (2) 19 to 65 yr 
old. The exclusion criteria were (1) lesion level below 
thoracic 11 or lower motoneuron injury; (2) inability to 
step even with the help of a treadmill and partial BWS; 
(3) weight > 300 lb or height > 6 ft 1 in. (size limitations 
of Lokomat); (4) presence of cardiac, musculoskeletal, or 
other condition for which exercise is contra-indicated; 
and (5) participation in rehabilitation therapy or other 
research study with exercise or mobility outcomes. All 
participants provided written informed consent and all 
procedures were approved by the University of British 
Columbia Clinical Research Ethics Board.

Study Design
We employed a double-blind, stratified, randomized 

controlled trial design to compare BWSTT with custom 
software control of the Lokomat to apply resistance 
against the hip and knee (Loko-R) [26,40] versus conven-
tional Lokomat-assisted BWSTT (Control) [8,41–42]. 
Participants were not informed about the specific purpose 
or hypothesis of the study; they were told only that the 
amount of assistance provided by the Lokomat would 
differ between the two groups. None of the participants 
had prior experience with Lokomat training. A blinded 
assessor (A.F.) assessed all outcome measures, which 
were recorded at baseline, posttraining, and 1 and 6 mo 
follow-up.

Participants were screened for eligibility prior to 
determining their group allocation. They were then strati-
fied according to the Wheeled Mobility Scale [43]. Par-
ticipants were asked to report which category of the 
Wheeled Mobility Scale applied to them and were strati-
fied based on a score of 5 or above (denoting the ability 
to walk, at minimum, for exercise at home). They were 
then randomized to either Loko-R or Control. Once the 
intervention was assigned, baseline assessment proce-
dures were performed.
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Training Protocol
Training parameters for both groups consisted of 45 min

Lokomat-based training sessions (not including rest 
breaks), 3 times/week for 3 mo.

Experimental Intervention: Lokomat-Resisted Body-
Weight Supported Treadmill Training (Loko-R)

BWSTT was implemented using custom software 
control of the Lokomat [26]. The drives were pro-
grammed to apply a velocity-dependent resistance 
against the hip and knee with the amount of resistance at 
each joint defined by M = –B × v, where M is the amount 
of resistance, B is the viscous coefficient (in N-m-s/rad), 
and v is the joint angular velocity. When B = 0, no force 
is applied and the participant can step freely on the tread-
mill. (Note that in this software control mode, the 
Lokomat never assists leg movements.) When a value is 
assigned to B, the Lokomat applies a resistance propor-
tional to the instantaneous joint angular velocity.

To determine the resistance level, participants first 
performed isometric muscle testing using the Lokomat’s 
“L-Force” feature [44]. Participants were secured to the 
Lokomat and lifted above the treadmill with the BWS har-
ness. For L-Force testing, the Lokomat’s legs were fixed, 
with the hips at 30° of flexion and the knees at 45° of flex-
ion, and participants were asked to push as hard as possi-
ble against the device. The hip and knee were tested 
separately, and three trials each were performed to calcu-
late an average maximum voluntary contraction (MVC) 
for the hip and knee flexors bilaterally. Second, the partic-
ipant walked with the Lokomat at his or her current tread-
mill training speed with B = 0. One to two minutes of data 
from the Lokomat’s hip and knee joint position sensors 
were recorded at 1,000 Hz. Using a custom-written MAT-
LAB routine (MathWorks; Natick, Massachusetts), the 
average hip and knee angular velocity during swing were 
determined. These values were then used to determine the 
desired B values for training by defining M as 10 percent 
of MVC of each joint. B values were reassessed in this 
way every four to six training sessions.

The level of BWS was adjusted to the minimum tol-
erated by the participant while ensuring appropriate 
stance phase kinematics [8,42,45]. In the first training 
session, the speed was initiated at 1.0 km/h (the lowest 
speed in the Lokomat). Treadmill speed was subse-
quently increased by increments of 0.1 km/h. Tolerance 
to a given speed was evaluated by observing the partici-
pant’s ability to place his or her feet anterior to the hip 

joint at foot contact. If the participant was able to keep up 
with the treadmill speed for at least 5 min, another incre-
ment of 0.1 km/h was added. In participants with weak or 
paralyzed ankle dorsiflexion, the Lokomat’s passive foot 
lifters were used to maintain the ankles in a neutral posi-
tion and ensure that the foot cleared the treadmill during 
swing.

Tolerance to training was gauged by using the rating 
of perceived exertion (RPE) with the Borg CR10 scale 
[46]. The Borg CR10 was administered at the beginning 
of each rest break. Participants were also asked to report 
any pain or symptoms related to autonomic dysreflexia 
(e.g., excessive sweating, dizziness, nausea, blurred 
vision) and whether any of these interfered with their 
ability to continue the training session. Participants took 
rest breaks as desired.

Control Intervention: Lokomat-Assisted Body Weight-
Supported Treadmill Training (Control)

Participants in this group underwent “conventional” 
Lokomat-based training, as reported in previous studies, 
where the Lokomat provides assistance to gait move-
ments [8,41–42]. In this mode, the Lokomat’s hip and 
knee joint motors move the participants’ legs along a pre-
set trajectory that is based on normative gait kinematics. 
Progression of BWS and treadmill speed followed the 
same protocol as described previously.

Outcome Measures
To compare training parameters between groups, we 

calculated a weighted average BWS and treadmill speed 
(taking into account the amount of time at each BWS/
treadmill speed) for each session. Tolerance to training 
was estimated by recording the total session duration 
(giving an indirect measure of the amount of rest 
required) and RPE. For RPE, values recorded at approxi-
mately the midpoint and end of each training session 
were averaged to obtain a session RPE. We also calcu-
lated an “exercise score,” modified after Foster et al. 
[47], to quantify the volume of exercise for comparison 
between groups. The exercise score was calculated by 
multiplying session RPE by training duration. Tolerance 
to training was also gauged by the reports of pain or 
symptoms related to autonomic dysreflexia.

The primary outcome measure to assess the potential 
efficacy of Loko-R was skilled walking capacity, as 
assessed by the Spinal Cord Injury-Functional Ambula-
tion Profile (SCI-FAP) [48]. The SCI-FAP consists of 
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seven walking tasks: (1) 5 m carpet walk, (2) Timed “Up 
and Go” test, (3) 5 m obstacle-crossing task, (4) walking 
up and down a set of four stairs, (5) opening a door and 
walking through a doorway, (6) stepping up and off a 21 cm
high block, and (7) walking 5 m while carrying a bag 
weighing 5 lb. The time required to complete each task 
was multiplied by a factor reflecting the use of assistive 
aids or personal assistance, and the values for each task 
were then summed to provide a total score. Lower scores 
reflect better performance. The SCI-FAP has been shown 
to be valid and reliable in people with m-iSCI [48]. We 
also assessed the 10 m walk test (10MWT), taking an 
average of three trials at self-selected pace, and 6 min 
walk test (6MWT), which are both valid and reliable 
measures of walking capacity in SCI [49].

Statistical Analysis
All statistical analyses were assessed at a signifi-

cance level of 0.05 and conducted using SPSS version 20 
(IBM Corporation; Armonk, New York). Descriptive sta-
tistics were used to characterize the age, weight, height, 
time postinjury, and incidence of negative symptoms 
reported by participants. Student t-tests (for parametric 
measures) or Mann-Whitney U-tests (for nonparametric 
measures) were used to test for differences in outcome 
measures at baseline between the two groups.

To compare training parameters between groups, 
BWS and treadmill speed averaged over the first and last 
three training sessions were compared using a 2 × 2 analy-
sis of variance (ANOVA). Inspection of the data showed 
steady progression of BWS and treadmill speed over the 
training program across all subjects, so we felt that using 
the first and last three training sessions would appropri-
ately represent these data. Similarly, to compare toler-
ance to training between groups, averaged session 
durations, session RPEs, and exercise scores over the 
first and last three training sessions were compared using 
a 2 × 2 ANOVA.

For the ambulation outcomes, we conducted a pre-
liminary efficacy analysis involving all participants who 
did not miss any of the assessment sessions. We also con-
ducted an intention-to-treat analysis in which missing 
data were imputed by estimation-maximation [50]. Miss-
ing data were confirmed to be missing completely at ran-
dom using Little Chi-square statistic prior to imputation.

We used an analysis of covariance (ANCOVA) to 
evaluate the potential efficacy of the intervention on the 
primary dependent variable, SCI-FAP, at posttraining. 

Baseline scores were used as the covariate, while group 
(Loko-R, Control) was the independent factor. Secondary 
analyses using ANCOVA were also undertaken to deter-
mine the effect of the intervention on the SCI-FAP at 1 
and 6 mo follow-up, as well as on the 10MWT and 
6MWT at posttraining and 1 and 6 mo follow-up. Data 
were log-transformed prior to performing the ANCOVA 
if they were not normally distributed, as determined by 
the Shapiro-Wilk test of normality. The effect size of 
group differences was calculated by η2 to determine the 
amount of variability in outcome measurements that can 
be accounted for by the independent variable (group).

RESULTS

Figure 1 illustrates the enrollment and flow of partic-
ipants through this pilot randomized controlled trial. 
Eight individuals were randomized to Loko-R and seven 
to the Control group. All participants received the treat-
ment to which they were allocated. Two participants who 
were in the Control group withdrew from the study after 
the second week of training; one cited difficulties in her 
personal life and the other contracted pneumonia. One 
participant in the Loko-R group could not attend the 6 mo 
follow-up assessment because of his relocation to another 
city. Baseline demographics and characteristics of study 
participants are summarized in Table 1. There were no 
significant between-group differences in any of the 
demographic or outcome measures.

Training Parameters
There was no significant between-group difference in 

BWS (F(1,11) = 4.3, p = 0.06). BWS significantly 
decreased from the first to last week of training (F(1,11) =
17.0, p = 0.002). In the Control group, BWS decreased 
from 25.2 ± 14.0 percent in the first week to 12.9 ± 
6.8 percent in the last week of training. In the Loko-R 
group, BWS decreased from 37.9 ± 11.9 percent in the 
first week to 19.1 ± 7.7 percent in the last week of training.

Treadmill speed was significantly lower in the Loko-
R group (F(1,11) = 23.1, p = 0.001) and significantly 
increased from the first to the last week of training 
(F(1,11) = 41.6, p < 0.001). In the Control group, average 
treadmill speed increased from 1.6 ± 0.2 km/h in the first 
week to 1.9 ± 0.3 km/h in the last week of training. In the 
Loko-R group, average treadmill speed increased from 
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Figure 1.
Flow of participants through study. Loko-R = Lokomat-applied resistance.

1.2 ± 0.1 km/h in the first week to 1.7 ± 0.2 km/h in the 
last week of training.

Tolerance to Training
Among the participants in the Control group, there 

were 6 reports of fatigue, 2 reports of light-headedness, 

and 23 reports of pain/soreness (primarily low back) over 
the course of the training program. Among the subjects in 
Loko-R, there were 3 reports of excessive sweating, 1 
report of excessive headache, 15 reports of fatigue, 2 
reports of light-headedness, 1 report of blurred vision, 
and 38 reports of pain/soreness (primarily low back and 



119

LAM et al. Gait training with robot-applied resistance
Subject Sex Age (yr) AIS
Injury 
Level

Etiology Chronicity (yr)
Baseline Scores

SCI-FAP
10MWT 

(m/s)
6MWT 

(m)
Control
S1 M 34 AIS C C4/5 Trauma 5 176 0.24 63
S2 M 63 AIS D C5 Trauma 2 58 0.33 164
S3 M 59 AIS D C4 Trauma 5 1,605 0.05 23
S4 F 61 AIS D C2 Trauma 2 446 0.53 134
S5 F 26 AIS D C4/5 Trauma 3 8 1.03 405
S6 F 52 AIS C C4/5 Trauma 2 1,800 0.03 9
S7 F 55 AIS C T7 Trauma 20 587 0.12 43
Experimental (Loko-R)
S8 F 53 AIS D T3 Hemorrhage 2 83 0.34 139
S9 M 28 AIS C C6 Trauma 2 1,607 0.15 26
S10 M 38 AIS D C1/2 Trauma 4 88 0.59 221
S11 M 57 AIS D C4 Trauma 2 365 0.15 55
S12 F 27 AIS D T10 AVM 15 38 0.84 281
S13 M 28 AIS C C5/6 Trauma 7 946 0.06 23
S14 M 60 AIS D T10 Viral 4 1,087 0.12 36
S15 M 31 AIS D T4 Trauma 6 601 0.09 22

legs). All subjects in both groups reported experiencing 
one of these symptoms at least once during the 3 mo 
training program, and there was an average of six reports 
of pain/soreness per subject in both groups. There were 
19 instances across four participants (1 from the Control 
group and 3 from Loko-R) where headache, fatigue, or 
pain/soreness in the low back or leg interrupted training. 
However, all participants included in the final analysis 
completed 36 training sessions, except for one in Loko-R 
who ended at session 33 (due to scheduling conflict).

The average total session duration (including rest 
breaks) was not different between groups (F(1,11) = 0.11, 
p = 0.75) nor from the first to the last week of training 
(F(1,11) = 2.5, p = 0.14). In the Control group, average 
total session duration in the first week was 66 ± 16 min 
and in the last week was 59 ± 12 min. In the Loko-R 
group, the average total session duration in the first week 
was 71 ± 12 min and in the last week was 76 ± 13 min.

Session RPE was significantly different between the 
groups (F(1,11) = 8.7, p = 0.01) but not between the first 
and last week of training (F(1,11) = 0.06, p = 0.81). Aver-
age session RPE in the Control group in the first week 
was 2.5 ± 1.2 and in the last week was 2.6 ± 0.5. In the 
Loko-R group, average session RPE in the first week was 
4.0 ± 1.6 and in the last week was 4.1 ± 1.2.

The overall exercise score was also significantly dif-
ferent between the two groups (F(1,11) = 5.6, p = 0.04), 
but not between the first and last week of training 
(F(1,11) = 3.1, p = 0.10). The average exercise score in 
the Control group in the first week was 94.5 ± 41.5 and in 
the last week was 116.2 ± 30.2. In the Loko-R group, the 
average exercise score in the first week was 163.3 ± 71.2 
and in the last week was 191.1 ± 64.9.

Skilled Walking
Results for the SCI-FAP at posttraining are shown in 

Table 2, and raw data are shown in Figure 2(a). The 
Loko-R group showed a significantly greater improve-
ment in the SCI-FAP at posttraining than the Control. 
Compared with baseline, posttraining SCI-FAP scores 
decreased by 204 points (standard deviation [SD]: 207, 
95% confidence interval [CI]: 348 to 61) in the Loko-
R group but only by 18 points (SD: 36, 95% CI: 50 to 
14) in the Control group.

Improvements in the SCI-FAP were retained at 1 and 
6 mo follow-up (Table 2). In the Loko-R group, SCI-FAP 
scores at 1 and 6 mo follow-up were 217 (SD: 213, 95% 
CI: 364 to 69) and 220 (SD: 249, 95% CI: 404 to 36)
points less than baseline, respectively. In the Control 
group, the SCI-FAP scores at 1 and 6 mo follow-up were 

Table 1.
Subject characteristics.

6MWT = 6 min walk test, 10MWT = 10 m walk test, AIS = American Spinal Injury Association Impairment Scale, AVM = arteriovenous malformation, C = cervi-
cal, F = female, Loko-R = Lokomat-applied resistance, M = male, T = thoracic, SCI-FAP = Spinal Cord Injury-Functional Ambulation Profile.
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Analysis Mean ± SD
ANCOVA

Adjusted Mean F p-Value 2

Efficacy Analysis
Baseline — — —
   Control (n = 7) 669 ± 738 —
   Loko-R (n = 8) 602 ± 570 —
Posttraining* F1,10 = 19.6 0.001 0.66
   Control (n = 5) 711 ± 864 645
   Loko-R (n = 8) 397 ± 365 438
1 mo Follow-Up* F1,10 = 8.6 0.02 0.46
   Control (n = 5) 694 ± 859 629
   Loko-R (n = 8) 385 ± 367 425
6 mo Follow-Up F1,9 = 5.4 0.046 0.37

Control (n = 5) 679 ± 827 620
Loko-R (n = 7) 382 ± 393 424

Intent-to-Treat Analysis
Posttraining* F1,12 = 30.2 <0.001 0.72
   Control (n = 7) 652 ± 714 623
   Loko-R (n = 8) 397 ± 365 423
1 mo Follow-Up* F1,12 = 14.3 0.003 0.54
   Control (n = 7) 635 ± 710 606
   Loko-R (n = 8) 385 ± 367 411
6 mo Follow-Up* F1,12 = 10.3 0.008 0.46
   Control (n = 7) 624 ± 683 595
   Loko-R (n = 8) 382 ± 364 406

36 (SD: 70, 95% CI: 97 to 25) and 50 (SD: 131, 95% 
CI: 165 to 65) points less than baseline, respectively. 
There was a significant effect of group at all assessment 
time points with respect to baseline. Intent-to-treat analy-
sis revealed the same pattern (Table 2).

Figure 3 illustrates the change in SCI-FAP scores at 
posttraining compared with baseline plotted against ini-
tial 10MWT speed. Five of the eight participants in the 
Loko-R group showed changes in SCI-FAP scores that 
exceeded the 95 percent minimal detectable change 
(MDC95) of 92 points [51]. No one with an initial walk-
ing speed >0.35 m/s nor anyone from the Control group 
showed changes in SCI-FAP scores beyond the MDC95.

Overground Walking Speed and Distance
Raw data from the 10MWT and 6MWT at pre- and 

posttraining are shown in Figures 2(b) and (c). There 

was an increase in the 10MWT and 6MWT across time, 
but there was no significant difference in these outcomes 
between groups (Tables 3 and 4). Across all subjects in 
both groups, the 10MWT increased by 0.10 m/s (SD: 
0.10, 95% CI: 0.05 to 0.16) compared with baseline. 
Walking speed at 1 mo and 6 mo follow-up assessments 
increased by 0.12 m/s (SD: 0.12, 95% CI: 0.05 to 0.18) 
and 0.09 (SD: 0.11, 95% CI: 0.03 to 0.15), respectively 
(Table 3). For the 6MWT, posttraining walking distance 
increased by 19.6 m (SD: 18.9, 95% CI: 9.3 to 29.9) 
compared with baseline. Walking distance at 1 mo and 6 
mo follow-up assessments increased by 42.5 m (SD: 
62.1, 95% CI: 8.8 to 76.2) and 56.9 m (SD: 54.5, 95% CI: 
26.1 to 87.7), respectively (Table 4). Intent-to-treat analysis
revealed the same pattern in 10MWT and 6MWT out-
comes at all time points between groups (Tables 3 and 4).

Table 2.
Efficacy and intent-to-treat analysis of Spinal Cord Injury-Functional Ambulation Profile (SCI-FAP) scores.

Note: ANCOVA results are between-subjects comparison of SCI-FAP between Control and Loko-R at each of outcome assessment time points. For efficacy analy-
sis, analyses were performed with case-wise deletion of missing data (13% for posttraining and 1 mo follow-up comparisons, 20% for 6-month follow-up compari-
sons). For intent-to-treat, missing data were imputed by expectation-maximation method. Adjusted mean values were obtained from ANCOVA output and estimate 
mean values after controlling for covariates.
*Statistically significant differences.
ANCOVA = analysis of covariance, Loko-R = Locomat-applied resistance, SD = standard deviation.
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Figure 2.
Raw data of (a) Spinal Cord Injury-Functional Ambulation Profile (SCI-FAP), (b) 10 m walk test (10MWT), and (c) 6 min walk test 

(6MWT) at pre- and posttraining from all participants. Data from participants in Control group are plotted in left column and those 

from Lokomat-applied resistance (Loko-R) group are plotted in right column on same vertical axis scale. Black symbols in Control 

group plots represent pretraining data from two participants who dropped out after second week of training.
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DISCUSSION

In this pilot study, we showed that

Figure 3.
Change in skilled walking function following Lokomat-applied 

resistance (Loko-R) training. Change in Spinal Cord Injury-

Functional Ambulation Profile (SCI-FAP) scores at posttraining is 

plotted against initial walking capacity (10 m walk test [10MWT]) 

for each participant. Dotted horizontal line denotes 95% minimal 

detectable change of SCI-FAP.

 Loko-R could fea-
sibly be combined with BWSTT in people with chronic 
m-iSCI. Loko-R is more intensive than standard Lokomat 
training, and there were more reports of pain/soreness 
among the participants in the Loko-R group. Neverthe-
less, there were no dropouts during Loko-R training and 
all participants could complete the prescribed number of 
training sessions. Our results also suggest that Loko-R 
may be beneficial for enhancing skilled walking function 
in people with chronic m-iSCI. For the relatively simpler 
tests of overground walking speed and distance, we 
observed significant improvements with training, but 
there were no differences between groups. Further stud-
ies are warranted to help us understand how best to inte-
grate Loko-R training along the continuum of gait 
training strategies and whether a lower intensity of Loko-
R training (e.g., less resistance) can enable similar func-
tional benefits while reducing the incidence of pain/sore-
ness experienced by participants.

Methodological Considerations
This was a small pilot study and, after accounting for 

drop-outs, included five subjects in the Control group and 
eight in Loko-R (with another drop-out at 6 mo). How-
ever, the reasons for dropping out were unrelated to the 

training, and there were no drop-outs from the Loko-R 
group during the training period, supporting the feasibil-
ity of this approach. Despite the small sample size, we 
could still detect a statistically significant difference in 
SCI-FAP scores between groups and across time. How-
ever, further trials with larger sample sizes are certainly 
warranted to confirm the effect of Loko-R on skilled 
walking function.

There were some differences between the groups in 
terms of their training parameters and tolerance. There 
were more reports of fatigue and pain/soreness from par-
ticipants in the Loko-R group. The exercise scores as 
well as session RPE were higher in the Loko-R group 
than in the Control, suggesting that they experienced a 
higher training intensity. Higher training intensity would 
presumably affect overall gait function, including endur-
ance. While we did observe differences in SCI-FAP 
scores, there were no differences in the 10MWT or 
6MWT between the groups. If the differences in intensity 
had an effect, one would expect that the Loko-R group 
would have shown better outcomes in all of the walking 
measures, not just the SCI-FAP.

Motor Learning in Gait Rehabilitation
The ability to generalize is considered a hallmark of 

learning, as opposed to rote memorization [52]. An inter-
esting result from this pilot study was that it may be pos-
sible to improve skilled, overground walking with a 
treadmill-based intervention. Previous studies in chronic 
SCI indicated the superiority of overground to treadmill-
based training paradigms on walking speed [16] or the 
equivalence of overground versus treadmill-based train-
ing in subacute SCI [10]. One of the hypothesized bene-
fits of overground gait training is that it challenges 
dynamic balance control during functional gait tasks 
[53]. Overground task-specific training programs provid-
ing explicit practice of different walking skills have been 
introduced for people with SCI [53] as well as stroke 
[54]. Musselman et al. compared BWSTT with an over-
ground training program involving practice of a variety 
of walking tasks, including negotiating obstacles, stairs, 
steps, and sloped surfaces [53]. While improvements in 
walking outcomes were observed after both types of 
training, subjects tended to show greater improvements in
skilled walking following the overground training program.

The possibility of improvements in overground 
skilled walking with treadmill-based Loko-R training could
be indicative of task- and context-related generalization 
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Analysis Mean ± SD
ANCOVA

Adjusted Mean F p-Value 2

Efficacy Analysis
Baseline — — —
   Control (n = 7) 0.33 ± 0.35 —
   Loko-R (n = 8) 0.29 ± 0.28 —
Posttraining F1,10 = 0.57 0.47 0.05
   Control (n = 5) 0.44 ± 0.45 0.41
   Loko-R (n = 8) 0.40 ± 0.31 0.42
1 mo Follow-up F1,10 = 0.04 0.85 0.004
   Control (n = 5) 0.48 ± 0.47 0.45
   Loko-R (n = 8) 0.39 ± 0.29 0.41
6 mo Follow-Up F1,9 = 0.005 0.95 0.001
   Control (n = 5) 0.45 ± 0.45 0.44
   Loko-R (n = 7) 0.40 ± 0.30 0.41
Intent-to-Treat Analysis
Posttraining F1,12 = 0.48 0.50 0.04
   Control (n = 5) 0.44 ± 0.39 0.41
   Loko-R (n = 7) 0.40 ± 0.31 0.42
1 mo Follow-Up F1,12 = 0.004 0.95 0.00
   Control (n = 5) 0.47 ± 0.40 0.45
   Loko-R (n = 7) 0.39 ± 0.29 0.41
6 mo Follow-Up F1,12 = 0.004 0.95 0.00
   Control (n = 5) 0.44 ± 0.39 0.42
   Loko-R (n = 7) 0.37 ± 0.29 0.39

of locomotor gains. Task-related generalization is indi-
cated by the improvements in walking capacity general-
ized to skills (e.g., obstacle crossing) that were not 
specifically trained. Context-related generalization is 
suggested by the fact that improvements transferred from 
the treadmill to an overground situation. In considering 
the role of robotics in rehabilitation, Huang and Krakauer 
raised the important issue of whether training with 
robotic devices only facilitates learning of the use of a 
new tool (i.e., the robot) as opposed to (re)learning con-
trol of the limbs [55]. Our results are consistent with the 
notion that robot-resisted treadmill training engages feed-
back-error processes to facilitate relearning. Loko-R 
training, and indeed other robot-based flexible-trajectory 
training paradigms [32,56], provides several training char-
acteristics that would facilitate motor learning in this man-
ner. These include (1) enhanced sensory input, (2) greater

variability during training, and (3) more active participa-
tion in the production of locomotor activity.

Sensory Feedback Enhances Flexor Muscle Activity
Many skilled walking tasks require the ability to pre-

cisely control foot trajectory height during swing and 
advance the foot to an appropriate landing position. Dur-
ing swing, foot clearance height is especially sensitive to 
changes in knee flexion [57], and the higher stepping 
required for obstacle crossing is primarily because of a 
knee flexor strategy [58–60]. Adaptations to Lokomat-
applied velocity-dependent resistance include strategies 
that enhance swing phase initiation and foot clearance 
height, such as increased hamstrings and rectus femoris 
activity [26]. Moreover, we and others have shown that 
when the resistance is removed aftereffects are elicited, 
suggesting feedforward adaptation to the new dynamic 

Table 3.
Efficacy and intent-to-treat analysis of 10 m walk test (10MWT).

Note: ANCOVA results are between-subjects comparison of 10MWT between Control and Loko-R at each of outcome assessment time points. For efficacy analy-
sis, analyses were performed with case-wise deletion of missing data (13% for posttraining and 1 mo follow-up comparisons, 20% for 6 mo follow-up compari-
sons). For intent-to-treat, missing data were imputed by expectation-maximation method. Adjusted mean values were obtained from ANCOVA output and estimate 
mean values after controlling for covariates.
ANCOVA = analysis of covariance, Loko-R = Lokomat-applied resistance, SD = standard deviation.



124

JRRD, Volume 52, Number 1, 2015
Analysis Mean ± SD
ANCOVA

Adjusted Mean F p-Value 2

Efficacy Analysis
Baseline — — —
   Control (n = 7) 120 ± 138 —
   Loko-R (n = 8) 100 ± 102 —
Posttraining F1,10 = 1.18 0.30 0.11
   Control (n = 5) 149 ± 170 127
   Loko-R (n = 8) 122 ± 117 136
1 mo Follow-Up F1,10 = 0.002 0.96 0.00
   Control (n = 5) 197 ± 177 179
   Loko-R (n = 8) 129 ± 90 140
6 mo Follow-Up F1,9 = 0.44 0.52 0.05
   Control (n = 5) 191 ± 172 179
   Loko-R (n = 7) 167 ± 122 176
Intent-to-Treat Analysis
Posttraining F1,12 = 1.11 0.31 0.08
   Control (n = 5) 139 ± 143 125
   Loko-R (n = 8) 122 ± 117 132
1 mo Follow-Up F1,12 = 0.08 0.78 0.01
   Control (n = 5) 185 ± 148 176
   Loko-R (n = 8) 129 ± 90 138
6 mo Follow-Up F1,12 = 0.55 0.47 0.04
   Control (n = 5) 179 ± 144 169
   Loko-R (n = 8) 155 ± 118 164

environment [24–31]. Aftereffects persist even when 
subjects subsequently step overground [32]. Thus, given 
that adaptive strategies to Loko-R include responses that 
facilitate the initiation of swing and enhance foot clear-
ance height [26,31], repeated exposure to Loko-R over 
the course of training could have resulted in enhanced 
dynamic control of the lower limb, facilitating the func-
tional improvements in skilled walking.

Movement Variability During Training
There is increasing evidence that providing more 

variable practice conditions during training enhances 
motor performance [56,61–63]. This is also implied from 
clinical research showing that overground gait training or 
therapist-assisted BWSTT enables better ambulatory out-
comes in people with SCI or stroke than with robot-
guided training [16,61]. The rigid imposition of move-
ment trajectories by robot-assisted training limits the 

variability with which the lower limbs are moved and 
consequently could interfere with the nervous system’s 
ability to effectively relearn gait patterns [61–62]. 
Indeed, variability during practice is seen as a key feature 
for facilitating learning because the nervous system is 
presented with repeated (and varied) opportunities to 
experience errors and solve motor problems [55], as 
opposed to simply learning how to reproduce an imposed 
trajectory [63]. Others have also suggested that variability 
or “noise” during training provides a stochastic resonance 
to help reinforce convergent synaptic connections from 
central and sensory inputs to the locomotor circuitry [62].

Active Engagement in Training
Lokomat-applied resistance would also have required 

greater engagement during training to avoid toe drag and 
stumbling. In contrast, subjects in the Control group 
would not be as compelled to be actively involved in 

Table 4.
Efficacy and intent-to-treat analysis of 6 min walk test (6MWT).

Note: ANCOVA results are between-subjects comparison of 6MWT between Control and Loko-R at each of outcome assessment time points. For efficacy analysis, 
analyses were performed with case-wise deletion of missing data (13% for posttraining and 1 mo follow-up comparisons, 20% for 6 mo follow-up comparisons). 
For intent-to-treat, missing data were imputed by expectation-maximation method. Adjusted mean values were obtained from ANCOVA output and estimate mean 
values after controlling for covariates.
ANCOVA = analysis of covariance, Loko-R = Lokomat-applied resistance, SD = standard deviation.
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their training. Our results are consistent with and extend 
those of Yen et al., who found that after a single bout of 
robot-resisted treadmill walking, subjects showed afteref-
fects (longer stride length) when subsequently asked to 
step overground [32]. They also speculated that the trans-
fer of locomotor aftereffects from resisted treadmill 
walking to overground stepping could have been related 
to the level of active engagement.

Greater cognitive engagement during training could 
have elicited greater involvement of cortical regions 
associated with gait, which are particularly involved in 
the adjustments of motor output during swing [64–66]. 
Indeed, it has been shown that corticospinal excitability 
is tuned according to the level of cognitive engagement 
during gait [67–68]. In addition, the improvement in 
locomotor control in people with m-iSCI is associated 
with increased corticospinal drive to leg muscles [69–
70]. Thus, given the role of the primary motor cortex in 
the control of skilled locomotion [64–66], as well as evi-
dence that corticospinal excitability is modulated with 
locomotor adaptations [71–73] and associated with loco-
motor recovery following SCI [69–70,74–75], it is possi-
ble that the improvements in skilled walking following 
Loko-R training was associated with enhanced cortical 
excitability secondary to greater active engagement dur-
ing training.

CONCLUSIONS

There has been some controversy surrounding the 
effectiveness of BWSTT over “conventional” rehabilita-
tion; however, the results of this pilot study suggest new 
promise for the value of robotics-based BWSTT incorpo-
rating principles of motor learning. Training with Loko-R 
can be feasibly implemented in people with chronic m-
iSCI. This study also highlights the importance of includ-
ing outcome measures that assess walking skills that rep-
resent the requirements of everyday mobility. To our 
knowledge, this study is the first to suggest that improve-
ments in skilled walking following a treadmill-based gait 
rehabilitation program may be possible. Given the prom-
ising results of this pilot study, a larger randomized con-
trolled trial with more subjects is warranted to confirm 
the effects of locomotor training with Loko-R.
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