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Abstract—Cervical spondylotic myelopathy (CSM) is a 
chronic spinal disorder in the neck region. Its prevalence is 
growing rapidly in developed nations, creating a need for an 
objective assessment tool. This article introduces a system for 
quantifying hand motor function using a handgrip device and 
target tracking test. In those with CSM, hand motor impairment 
often interferes with essential daily activities. The analytic 
method applied machine learning techniques to investigate the 
efficacy of the system in (1) detecting the presence of impair-
ments in hand motor function, (2) estimating the perceived 
motor deficits of patients with CSM using the Oswestry Disabil-
ity Index (ODI), and (3) detecting changes in physical condition 
after surgery, all of which were performed while ensuring test-
retest reliability. The results based on a pilot data set collected 
from 30 patients with CSM and 30 nondisabled control subjects 
produced a c-statistic of 0.89 for the detection of impairments, 
Pearson r of 0.76 with p < 0.001 for the estimation of ODI, and 
a c-statistic of 0.82 for responsiveness. These results validate 
the use of the presented system as a means to provide objective 
and accurate assessment of hand motor function impairment 
and surgical outcomes.

Key words: cervical spondylotic myelopathy, classifier, hand 
impairment, hand movement, machine learning, motor deficit, 
patient monitoring, quantification, spinal cord disorder, track-
ing test.

INTRODUCTION

Cervical spondylotic myelopathy (CSM) is a degen-
erative spinal disorder in the cervical (i.e., neck) region. 
It is the most common spinal cord dysfunction in adults 
over 50 yr of age in North America [1–2]. Chronic disc 
degeneration, inflammatory diseases, or other soft tissue 
abnormalities caused by CSM often result in significant 
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pressure on the spinal cord or nerve roots [1]. A major 
complaint of patients with CSM is the impairment of 
hand motor function [3], including symptoms such as 
loss of dexterity, numbness, stiffness, weakness, fatigue, 
and tremor. Specifically, previous studies in patients with 
CSM observed force overshoot during the initiation 
phase of gripping followed by an immediate correction 
response [4–5], which may significantly restrict fine hand 
motor control. This overshooting response results from 
exaggerated command signals adopted to compensate for 
biomechanical changes due to chronic cervical spinal 
cord injury, and it was further shown that cervical decom-
pression surgery attenuates these overshooting responses 
[4]. These symptoms may develop into severe weakness 
or complete paralysis of hand movements [6]. Thus, fre-
quent monitoring of physical conditions in patients with 
CSM is essential for assessing the impairment level, eval-
uating the results of medical treatment, and preventing 
possible onset of impairments.

Unfortunately, frequent radiographical testing (e.g., 
X-ray or magnetic resonance imaging) is extremely 
costly. Consequently, current methods for clinically 
assessing the progress or level of impairment rely on 
patient-reported outcomes such as the Oswestry Disabil-
ity Index (ODI) [7] or Japanese Orthopedic Association 
(JOA) [8] measurements. However, these methods suffer 
from variability among responders and, most impor-
tantly, are known to carry response shift. Response shift 
refers to changes in an individual’s internal standard of 
perceived health status, which often occurs after treat-
ment such as a surgical intervention [9]. This reduces the 
reliability of using these methods for longitudinal track-
ing of patient progress [10–11].

Consequently, a simple, inexpensive, objective, and 
reliable assessment method for quantifying the physical 
condition of patients with CSM is needed [12]. Handgrip 
motor function has received attention as an area of focus 
for such an assessment method [13] since functional 
impairment of the hand closely relates to the quality of 
life of spinal disorder patients and to their ability to per-
form activities of daily living (ADL), such as eating, 
writing, or picking up small objects [12]. For instance, 
Sisto and Dyson-Hudson investigated various methods 
for using handgrip strength to determine mobility and 
self-care ability [12]. However, their work only consid-
ered the patients’ abilities to exert a certain level of grip 
force rather than their abilities to control their fine hand 

movement [12], which has a greater correlation with 
ADL [14–16].

A target tracking test using handgrip force investigates 
patients’ abilities to control their fine hand movement. Its 
clinical effectiveness has been well studied in other condi-
tions, such as stroke [17–19], Parkinson disease [18,20], 
brain injury [14,21], and chronic inflammatory demyelinat-
ing polyneuropathy (CIDP) [19]. The target tracking test 
visualizes a predefined waveform that a subject must track 
by adjusting handgrip force in order to minimize the error 
between the waveform and the subject’s response. Kurillo 
et al. showed that the tracking error was significantly larger 
in patients with neuromuscular diseases (e.g., stroke) than 
control subjects [18]. Lee et al. showed that patients’ 
responses from the target tracking test contained motor 
characteristics that were specific to conditions such as 
stroke and CIDP [19]. Getachew et al. investigated the use 
of target tracking to quantify the level of hand impairment 
in patients with chronic spinal cord disorder, but their 
method employed a rather simple, single-dimensional 
metric (i.e., tracking error), which had considerable limita-
tions in examining various aspects of hand impairments 
and their correlations to comprehensive quantification of 
motor deficits [22].

The goal of this work is to thoroughly investigate per-
formance characteristics of the target tracking test in 
quantifying hand motor deficits in patients with CSM 
using machine learning techniques. Unlike previous 
works that used a simple and comprehensive metric, the 
method used in this work incorporates machine learning 
algorithms that mathematically combine multiple metrics 
(features) that are designed to represent known symptoms 
of CSM. We hypothesized that the quantification enabled 
by incorporating the target tracking test and machine 
learning techniques has the potential to serve as an effec-
tive screening and monitoring tool for hand motor func-
tion in patients with CSM. This work specifically aimed 
to investigate a number of important criteria for validating 
the medical efficacy of the target tracking test [23], 
including (1) detecting the presence of hand motor 
impairment and quantifying its severity [24], (2) estimat-
ing perceived motor deficits in performing daily activities 
using the ODI [7,25–26], and (3) detecting changes in 
physical conditions of patients after receiving surgical 
intervention (i.e., responsiveness [27–28]), all while 
ensuring the test-retest reliability of the quantification.
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METHODS

Participants
A total of 30 patients with CSM (18 males), mean 

age 59.5 ± 16.0 yr, were recruited from the University of 
California Los Angeles (UCLA) Spine Center, excluding 
younger patients (<45 yr) and those with comorbidities 
affecting their hand motor function. All patients’ evi-
dence of CSM (e.g., location or level of the cervical spi-
nal injury) was verified using conventional X-ray imaging. 
The average duration of overall back pain (both cervical 
and lumbar) of the participating patients was 49.9 mo, and 
the average duration of arm pain was 9.61 mo (until the 
date they received the surgical intervention). Radiculopa-
thy (i.e., pinched nerve root) was found in 72.4 percent of 
the patients, while 68.9 percent had severe neck pain. All 
patients received spinal cord decompression to alleviate 
pressure on their impacted nerve roots, improving associ-
ated pain and motor function. The surgical intervention 
was performed by a single neurosurgeon, Daniel C. Lu 
(one of the coauthors of this article). Of the 30 patients, 
17 returned to the clinic for follow-up within 3 mo of sur-
gery. A total of 30 age-matched control subjects (14 
male), mean age 57.5 ± 9.2 yr, were recruited from the 
general population.

Examination Protocol
This work used a handgrip device that has been 

described previously (Figure 1) [5]. 

Figure 1.
(a) Handgrip device and the two tracking waveforms used in this study (left: step; right: sine). (b) Patient with cervical spondylotic 

myelopathy performing the test before her surgical operation.

The major compo-
nents of the handgrip device include the springs, the han-
dle, and the displacement sensor embedded in the body. 
The handle of the device was connected to the main 
frame by three springs, which provided physical resis-
tance for grasping performance. The length of the handle 
could be customized using the adjustable pins to accom-
modate subjects with varying hand sizes. The springs 
could also be replaced to accommodate participants with 
varying grip strengths. This study used five springs with 
different tension forces: 0.38 lbs/in., 0.88 lbs/in., 1.94 lbs/
in., 5.10 lbs/in., and 10.7 lbs/in. The displacement sensor 
was embedded in the bottom of the frame, and it captured 
the absolute position of the handle at a sampling rate of 
32 Hz.

Participants started the test by measuring their maxi-
mum voluntary contraction (MVC), which represented 
the maximum grip force that participants could volun-
tarily exert. The measured MVC was used to normalize 
the maximum amplitude of the target waveform such that 
participants’ fine motor function (rather than their abso-
lute grip strength) could be investigated. The unit of the 
waveform amplitude was percent MVC. The waveform 
within the screen moved to the left while the horizontal 
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position of the circle was fixed in the middle of the x-axis 
as shown in Figure 1(a). The vertical position of the cir-
cle changed according to the grip force generated by the 
participants. The screen also displayed a trace history of 
the patient’s response for visual feedback. The length of 
the test was 45 s.

Participants were tested using two different targets: 
sine and step waveforms. The sine waveform had a 
period of 6.17 s (0.16 Hz), which resulted in approxi-
mately seven sine cycles per test. The amplitude of the 
waveform changed from 0 to 100 percent of the subject’s 
MVC, as illustrated in Figure 2. 

Figure 2.
Sample test results collected from (a) patients with cervical spondylotic myelopathy before surgery and (b) age-matched control 

subjects. MVC = maximum voluntary contraction.

The sine waveform 
investigated participants’ ability to predict and control 
the muscle movements required for grasping perfor-
mance to be repeated at a constant rate [29]. The step 
waveform had a period of 3 s (0.33 Hz), with 50 percent 
duty cycle, which resulted in 15 cycles per test (Figure 
2). The higher amplitude was equal to 80 percent MVC, 
and the lower amplitude was equal to 20 percent MVC. 
The step waveform investigated predictive tracking and 
the ability to produce handgrip force at a constant veloc-
ity [29]. Participants repeated each waveform three times 
per clinical visit, generating a total of six test results. The 
UCLA Institutional Review Board approved the exam-
ination procedure, and all participants provided consent 
after an explanation of the study protocol and the associ-
ated risks.

Patient-Reported Functional Outcomes
Patients with CSM reported their perceived level of 

motor impairment in performing ADL using the ODI [7] 
and the modified JOA (mJOA) at their preoperative and 
postoperative visits. ODI is one of the well-known mea-
sures of perceived motor function and quality of life for 
patients with spinal injuries [7,30]. It contains 10 multi-
ple-choice items assessing the degree of interference 
from pain in performing various daily activities such as 
personal care, lifting, walking, sitting, standing, sleeping, 
sex life, social life, and traveling. The accumulated score 
ranges from 0 (no dysfunction) to 50 (completely dis-
abled). In this work, the accumulated score was linearly 
scaled in reverse from 0 (completely disabled) to 1 (no 
dysfunction) to comply with the general systems perfor-
mance theory that all dimensions of human performance 
should be in a form for which a higher numerical value 
represented superior performance. The mJOA is another 
well-known measure of motor deficits in patients with 
CSM [31]. This survey contains four multiple-choice 
items relating to upper-limb and hand motor function. 
The accumulated score of the mJOA ranges from 0 (com-
pletely disabled) to 18 (no dysfunction), which was again 
linearly scaled to 0 to 1.
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Other Clinical Variables
Ten clinical variables that may have close correlation 

to hand motor impairment were collected. These vari-
ables included age, sex, overall back pain duration (how 
long had the current episode of back pain, both in cervi-
cal and lumbar areas, been present?), arm pain duration 
(how long had the current episode of arm pain been pres-
ent?), presence of severe neck pain, presence of radicu-
lopathy, herniated disks (i.e., C1 to C7), smoking or 
nonsmoking, packs of cigarettes smoked per year, and 
alcohol consumption (drinks per week). For nondisabled 
control subjects, age and sex information were collected.

Data Analysis
Figure 3 shows a schematic

Figure 3.
Schematic representation of the data analyses that were used to address the aforementioned objectives: (1) ensuring the test-retest 

reliable of the quantification, (2) detecting the presence of hand motor impairment and quantifying the severity, (3) estimating per-

ceived motor deficits in performing activities of daily living, and (4) responsiveness. Pre-op = preoperative, Post-op = postoperative.

 representation of the 
data analytics that were used to address the aforemen-
tioned objectives in a test-retest reliability manner. 
Impairment was detected by investigating the ability to 
differentiate the handgrip data collected from 30 preoper-
ative patients with CSM (with impairments) from the 
data collected from 30 age-matched control subjects 
(without impairments). The estimation of the perceived 
motor deficits investigated the ability to estimate the ODI 
scores using handgrip data based on the data collected 
from 30 preoperative and 17 postoperative patients (i.e., a 

total of 47 data points from 30 patients). Finally, respon-
siveness investigated the ability to differentiate the 
patients whose perceived motor functions improved after 
the surgical intervention from those who did not improve. 
These objectives were addressed using the same data 
analytic platform, except that detection of impairments 
employed a binary classifier, estimating the perceived 
motor deficits employed a regressor, and responsiveness 
employed a binary classifier. For all objectives, employ-
ing a preprocessing step that eliminated those features 
that were unreliable ensured the test-retest reliability. All 
the components of the data analytics summarized in Fig-
ure 3 are discussed in detail in the following subsections. 
Note that this work employed a leave-one-subject-out 
cross-validation (LOSOCV) to provide a fair evaluation 
of the quantification results; the data belonging to a sub-
ject was left out as a testing set, which was evaluated 
based on the classification/regression model constructed 
using the training data set belonging to the rest of the 
subjects. This approach avoids problems of overfitting 
and provides fair estimations of the expected diagnostic 
and estimation accuracy for the binary classifier and the 
regressor, respectively [32].



1012

JRRD, Volume 53, Number 6, 2016
Figure 4.
Example of over-reaction responses that are illustrated with a 

sudden peak at the initiation and a sudden drop at the releasing 

of grip forces. MVC = maximum voluntary contraction.

Hand Motor Features

Sine waveform. The following features were 
extracted from the sine waveform: Mean absolute error 
(MAE) (MAE-SINE) computed the average error 
between the target sine waveform and the patient’s 
response over the length of the signals: k | wt [k] – wr 
[k] |, where wt and wr represented the target waveform 
and the patient’s response, respectively. The level of the 
overshooting response during the initiation phase of grip-
ping was uniquely observed in patients with CSM [4–5]. 
We further extended this finding by also considering the 
overshooting response during the release phase, as illus-
trated in Figure 4. The overshooting response from initi-
ating gripping was quantified using two features: 
FirstQMeanErr and FirstQMaxErr. FirstQMeanErr and 
FirstQMaxErr computed the MAE and the maximum 
error between the target waveform and the patient’s 
response during the first quarter of a sine cycle, respec-
tively. The first quarter of the sine cycle, as annotated in 
Figure 4, was used to estimate the time period of initiat-
ing the gripping action. ThirdQMeanErr and ThirdQ-
MaxErr were derived in a similar manner as 
FirstQMeanErr and FirstQMaxErr to quantify the over-
shooting response when releasing the grip during the 
third quarter. PhaseShift was designed to estimate how 
quickly patients reacted to correct the error caused by the 
overshooting response. PhaseShift computed the time to 
reach the grip force that was equal to the amplitude of the 
target waveform at the end of each quarter (i.e., 50% 

MVC). Since a single test contained seven sine cycles, 
features related to the overshooting response were aver-
aged over the seven cycles. Muscle fatigue, which is 
defined as the temporary inability of muscles to perform 
optimally [33], was assessed using two measures: LAST-
PK-SINE and ∆PK-SINE. LAST-PK-SINE computed the 
peak amplitude of the patient’s response during the last 
sine cycle. ∆PK-SINE computed the difference in the 
peak amplitudes between the first and the last sine cycles. 
Tremor was quantified using the following three features, 
which were all computed in the frequency domain: 2nd-
Freq, ∆Freq, and ∆Gain. 2ndFreq computed the fre-
quency with the second largest gain after the fundamental 
frequency of the patient-generated waveform; the funda-
mental frequency should be very close to that of the tar-
get waveform (i.e., 0.16 Hz). ΔGain was the gain 
difference between the two frequencies. ΔFreq computed 
the difference between the fundamental frequencies of 
the target waveform and the patient-generated waveform.

Step waveform. A total of 12 features were 
extracted from the step waveform. MAE (MAE-STEP) 
was computed to represent the comprehensive motor 
capacity under step waveform. VEL-INC, AMP-INC, 
VEL-DEC, and AMP-DEC were used to investigate how 
fast a patient can exert and release the submaximal grip 
force. VEL-INC calculated the velocity of the grip force 
(% MVC per second) when switching from the lowest 
(20% MVC) to the highest grip force (80% MVC). AMP-
INC represented the maximum difference in the ampli-
tudes during this initiation phase of gripping. VEL-DEC 
and AMP-DEC were computed in a similar manner when 
releasing the grip force. Muscle endurance, defined as the 
ability to sustain repeated contractions against a resis-
tance for an extended period of time [33], was quantified 
using AVG-HIGHEST, STD-HIGHEST, AVG-LOWEST,
and STD-LOWEST. AVG-HIGHEST and STD-HIGHEST
computed the mean and the standard deviation of the 
amplitude of the patient’s waveform while maintaining 
the highest grip force (80% MVC). Similarly, AVG-
LOWEST and STD-LOWEST computed the mean and 
the standard deviation when the subject was maintaining 
the lowest grip force (20% MVC). Muscle fatigue was 
assessed similarly to that of the sine waveform. LAST-
PK-STEP computed the mean amplitude of the patient’s 
response during the highest grip force (80% MVC) of the 
last step cycle. ∆PK-STEP computed the difference in the 
mean amplitudes of the highest grip force between the 
first and last step cycles.
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Eliminating Unreliable Features
Employing a preprocessing step that examined the 

test-retest reliability eliminated unreliable features, as 
introduced in Palmerini et al. [34]. The features extracted 
from the last two (out of three) tests were used to com-
pute the intraclass correlation coefficient (ICC); the first 
test was considered a practice trial and was not included 
in the reliability test. The value of the ICC ranged from 0 
to 1, where an ICC < 0.4 indicated poor test-retest reli-
ability, 0.4  ICC < 0.75 indicated fair to good test-retest 
reliability, and an ICC  0.75 indicated excellent test-rest 
reliability [35]. The ICC values were computed sepa-
rately for the control, the preoperative CSM, and the 
postoperative CSM data sets. The features that produced 
ICC < 0.75 for any of these three data sets were removed 
from further analyses. This ensured a reliable quantifica-
tion of motor impairment, since the decision function 
(i.e., kernel function) of a classifier or a regressor was 
constructed by mathematically combining features that 
were test-retest reliable. Palmerini et al. provides more 
detailed information on this method [34].

Feature Selection
We utilized a wrapper approach for feature selection 

that evaluated all feature subsets within its feature 
searching space for their classification/regression perfor-
mance and selected the subset that produced the best per-
formance [36]. First, the maximum cardinality of a 
feature subset was constrained based on the data set-to-
feature ratio, as suggested by Prichep et al. [37]. For a 
linear classification model, the minimum data set-to-
feature ratio was limited to 10:1, and for a quadratic 
model, the cardinality of the selected feature set (denoted 
as F) was limited such that F × (F + 3) / 4 did not exceed 
the number of subjects of the smallest class [37]. A for-
ward selection was used to construct the feature search-
ing space. The forward selection approach started with an 
empty feature set and progressively added a feature that 
produced the best classification/regression performance 
until its size reached the defined maximum cardinality. 
Note that the same classifier/regressor, which was fol-
lowed to address the objective, was used to compute the 
classification/regression performance. Another layer of a 
LOSOCV was employed within the training set to evalu-
ate each feature subset throughout the forward selection. 
The selected feature sets were then used to construct a 
classification/regression model to address each of the 

three objectives, which are discussed in the following 
subsections.

Detection of Impairments in Hand Motor Function
In order to detect the presence of hand motor impair-

ments in patients with CSM, we formulated the impair-
ments problem as a binary classification problem between 
the handgrip data of 30 preoperative patients with CSM
and 30 age-matched control subjects. This allowed us to 
construct an equation using the selected features to maxi-
mize the probability of distinguishing the two groups and 
thus produce the binary prediction of the presence of 
impairment (i.e., have impairment or not?) and the sever-
ity of impairment (i.e., the posterior probability of having 
impairment). We investigated three different classifica-
tion algorithms: support vector machine (SVM) with a 
linear kernel, linear discriminant analysis (LDA), and 
quadratic discriminant analysis (QDA). The c-statistic, 
which is an effective technique for assessing diagnostic 
and predictive accuracy in disease management [38], was 
used to evaluate the classification performance [39]. The 
c-statistic is also known as the area under the receiver 
operating characteristic (ROC) curve [32] and represents 
the probability of a randomly selected subject being cor-
rectly predicted in his/her class (e.g., has impairment or 
not?). The ROC curve is a graph of the true positive rate 
(TPR) (sensitivity) against the false positive rate (1 – 
specificity), which visualizes the classification perfor-
mance. The c-statistic ranges from 0.5 (unable to discrim-
inate) to 1.0 (able to perfectly discriminate), where 0.8 is 
known to represent fairly good discriminatory ability.

The prediction results were compared to the clinical 
variables introduced in the “Methods: Other Clinical 
Variables” section in an attempt to find possible relation-
ships between the hand motor patterns detected by the 
algorithms and existing clinical knowledge. More specif-
ically, the binary predictions made on the patient (posi-
tive) data, which included true positives and false 
negatives, were compared to the 10 clinical variables 
using a t-test. The posterior probabilities of the predic-
tions were also compared to the clinical information 
using Pearson linear correlation. The binary predictions 
made on the control (negative) data and their posterior 
probabilities were similarly compared to the nondisabled 
subjects’ age and sex using the t-test and Pearson linear 
correlation, respectively.
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Estimation of Perceived Motor Deficits
Estimating the perceived motor deficits was formu-

lated as a regression problem between the handgrip data 
and the ODI scores of 30 preoperative and 17 postopera-
tive patients. Note that estimating mJOA scores was not 
investigated in this work, since the values did not show 
much variability and were highly unbalanced toward a 
single score; the minimum and the maximum scores were 
15 and 18, respectively, and a vast majority of the scores 
were 16. Furthermore, ODI has a larger number of ques-
tions that are closely related to motor functions for ADL. 
The regression models tested in this work include 
(1) support vector regression (SVR) with a linear kernel; 
(2) SVR with a nonlinear, radial kernel; and (3) multivar-
iate linear regression (MLR). The maximum cardinality 
of a feature set was limited to F = 30/10)= 3 since the 
data involved 30 patients. The nonlinear SVR also 
employed this rule for convenience. The estimation accu-
racy was evaluated using the mean absolute difference 
(MAD) between the estimated and the actual ODI scores, 
and the p-value of Pearson linear correlation was used to 
test the null hypothesis of zero correlation. Then, the 
actual and estimated ODI scores were compared with the 
clinical variables using Pearson correlation in order to 
provide clinical interpretations.

Responsiveness
Responsiveness was formulated as a binary classifi-

cation problem between the patients whose perceived 
motor functions improved and those whose perceived 
motor functions did not improve after the surgical inter-
vention, in a similar manner to that used by Deyo and 
Centor [28]. The improved patients were defined as those 
whose postoperative ODI and mJOA scores were both 
improved compared to their preoperative values. In our 
study, 12 patients were categorized as improved and 5 
patients as not improved. The maximum cardinality of a 
feature subset was limited to F = 17/10) = 2 for a linear 
model and F = 3 for a quadratic model. The difference 
between postoperative and preoperative values was com-
puted for all motor features and was used as the input 
data. Three different classification algorithms (i.e., SVM, 
LDA, and QDA) were used as the models, and their clas-
sification accuracies were evaluated using the c-statistic. 
The binary prediction results and their posterior probabil-
ities were compared with the clinical variables using the 
t-test and Pearson linear correlation in order to find clini-
cal justification.

RESULTS

Test-Retest Reliability of System
Table 1 summarizes the features used in this work. 

The first column represents the symptoms of CSM that 
the features were designed to quantify. The second and 
third columns represent the name and the associated 
waveform, respectively. The rest of the columns summa-
rize the mean, standard deviation, and ICC values for 
test-retest reliability for data sets collected from control 
subjects, preoperative CSM patients, and postoperative 
CSM patients. LAST-PK-SINE and LAST-PK-STEP 
showed an ICC < 0.75 for the data set collected from 
nondisabled subjects and were removed from any further 
analyses. These two unreliable features were indicated 
with shading in Table 1.

Detection of Impairments in Hand Motor Function
The ability of the system to detect the presence of 

hand motor impairments is summarized in Table 2. QDA 
outperformed LDA and SVM in classifying patients with 
CSM with hand motor impairments from control sub-
jects, with a c-statistic of 0.89; the anticipated TPR and 
true negative rate (TNR) were 0.83 and 0.87, respec-
tively. This implies that the system can discriminate 
between individuals with hand motor impairments and 
those without hand motor impairments with an average 
accuracy of 89 percent. The ROC curve used to compute 
the c-statistic is illustrated in Figure 5. The detection 
results were compared with the clinical variables, but no 
statistical significance was found.

The most frequently selected feature subset for QDA 
contained MAE-SINE, FirstQMeanErr, 2ndFreq, Phase-
Shift, ∆Gain, and AVG-HIGHEST. These are the features 
that significantly contributed in achieving the expected 
detection accuracy of 89 percent. MAE-SINE, FirstQMean-
Err, and 2ndFreq were the most significant features; each 
of these features showed statistical significance in differen-
tiating the two groups: MAE-SINE showed p < 0.001, 
FirstQMeanErr showed p < 0.003, and 2ndFreq showed p < 
0.007 using a t-test.

Estimation of Perceived Motor Deficits
SVR with a radial kernel produced the most accurate 

results in estimating the ODI score (Table 3). The esti-
mated ODI scores were compared to the actual ODI 
scores and produced MAD = 0.12, which represents the 
expected estimation error rate. Furthermore, the estimated 
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Table 1.
A summary of hand motor features that are extracted based on the symptoms of cervical spondylotic myelopathy (CSM) and the patient-reported 
outcomes. Unreliable features with intraclass correlation coefficient (ICC) < 0.75 are shaded.

Associated
Symptom

Feature* Waveform
Control Subjects CSM Patients (Preop) CSM Patients (Postop)
Mean
(SD)

ICC
Mean
(SD)

ICC
Mean
(SD)

ICC

Comprehensive Measure MAE-SINE Sine 6.48 (0.90) 0.97 13.55 (13.19) 0.97 9.24 (5.39) 0.96
MAE-STEP Step 7.49 (1.44) 0.94 13.26 (8.24) 0.99 10.24 (7.90) 0.99

Overreaction Responses FirstQMeanErr Sine 6.13 (1.62) 0.86 13.19 (9.89) 0.97 8.60 (7.96) 0.99
FirstQMaxErr Sine 22.49 (6.59) 0.79 39.56 (19.01) 0.94 26.54 (17.70) 0.97
ThirdQMeanErr Sine 22.49 (6.59) 0.95 8.33 (13.08) 0.94 4.01 (9.82) 0.78
ThirdQMaxErr Sine 1.83 (4.58) 1.00 5.35 (6.57) 0.76 1.42 (4.90) 1.00
PhaseShift Sine 3.02 (1.42) 0.76 12.61 (33.19) 0.99 5.77 (5.31) 0.98
VEL-INC Step 1.82 (0.39) 0.96 1.80 (0.57) 0.93 1.81 (0.29) 0.84
AMP-INC Step 66.65 (2.95) 0.92 65.59 (10.04) 0.99 64.63 (6.14) 0.89
VEL-DEC Step 1.42 (0.21) 0.89 1.46 (0.42) 0.88 1.27 (0.16) 0.84
AMP-DEC Step 66.41 (3.11) 0.94 65.71 (10.41) 0.99 64.03 (5.77) 0.78

Fatigue LAST-PK-SINE Sine 94.29 (3.63) 0.68 91.19 (10.37) 0.98 93.01 (6.42) 0.97
ΔPK-SINE Sine 0.58 (1.40) 0.94 1.23 (12.12) 0.98 0.57 (2.15) 0.97
LAST-PK-STEP Step 82.91 (3.35) 0.52 79.24 (13.99) 0.96 81.27 (8.50) 0.80
ΔPK-STEP Step 1.34 (2.72) 0.77 4.71 (12.32) 0.96 1.55 (2.90) 0.99

Endurance AVG-HIGHEST Step 75.28 (1.56) 0.89 69.72 (7.38) 0.97 72.19 (8.96) 0.98
STD-HIGHEST Step 10.85 (1.95) 0.90 14.25 (6.98) 0.97 12.04 (5.15) 0.99
AVG-LOWEST Step 26.66 (2.75) 0.89 29.88 (6.76) 0.95 26.55 (4.30) 0.82
STD-LOWEST Step 12.66 (1.85) 0.89 16.49 (7.11) 0.99 13.60 (4.10) 0.94

Tremor 2ndFreq Sine 0.33 (0.11) 0.80 0.43 (0.16) 0.96 0.39 (0.17) 0.93
ΔFreq Sine 0.00 (0.00) 1.00 0.00 (0.02) 0.99 0.00 (0.00) 1.00
ΔGain Sine 5.74 (4.31) 0.94 7.69 (5.55) 0.95 5.82 (5.85) 0.91

Patient-Reported Func-
tional Outcomes

ODI — — — 0.68 (0.23) — 0.76 (0.17) —
mJOA — — — 0.83 (0.11) — 0.95 (0.06) —

*Full descriptions of the features listed in this table can be found in the “Methods: Data Analysis, Hand Motor Features” section.
mJOA = Modified Japanese Orthopedic Association (scale), ODI = Oswestry Disability Index, Postop = postoperative, Preop = preoperative, SD = standard deviation.

Table 2.
The c-statistics, expected true positive rates (TPRs), and expected true negative rates (TNRs) for classifying cervical spondylotic myelopathy 
patients with hand motor impairments from nondisabled control subjects. Quadratic discriminant analysis (QDA) (in bold) produced superior 
classification performance compared to support vector machine (SVM) and linear discriminant analysis (LDA). The most frequently selected 
features from the cross-validation included MAE-SINE, FirstQMeanErr, 2ndFreq, PhaseShift, ΔGain, and AVG-HIGHEST.

Classifier c-Statistic TPR TNR Most Frequently Selected Features*
SVM 0.82 0.83 0.73 MAE-SINE ThirdQMeanErr, AVG-HIGHEST
LDA 0.87 0.83 0.83 MAE-SINE, FirstQMeanErr, ThirdQMeanErr,

AVG-HIGHEST, STD-HIGHEST
QDA 0.89 0.83 0.87 MAE-SINE, FirstQMeanErr, 2ndFreq, PhaseShift, ΔGain, AVG-

HIGHEST
*Full descriptions of the features listed in this table can be found in the “Methods: Data Analysis, Hand Motor Features” section.

ODI scores showed a statistically significant correlation 
to the actual ODI scores with Pearson r = 0.76 and p < 
0.001. Figure 6(a) illustrates the scatter plot between the 
estimated and actual ODI scores, and Figure 6(b) illus-
trates its Bland-Altman plot, where the bias of the differ-
ence was 0.016 and the magnitude of the limit of 

agreement was 0.27. Clinical variables were compared 
with the estimated ODI scores as well as with the actual 
ODI scores. The arm pain duration showed statistically 
significant correlations to the actual and estimated ODI 
scores collected postoperatively, with p < 0.006 and p < 
0.007, respectively.
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Figure 5.
Receiver operating characteristic curve for detecting the pres-

ence of impairment, generated from the quadratic discriminant 

analysis-based model.

The most frequently selected feature subset for this 
nonlinear SVR contained FirstQMeanErr, ∆Gain, and 
VEL-INC. Among the selected features, VEL-INC was 
the most significant feature, with r = 0.42 and p < 0.003 
when compared to the ODI scores.

Responsiveness
The ability of the system to detect patients whose 

perceived motor function improved (or did not improve) 
after the surgical intervention is summarized in Table 4. 
Linear SVM produced the best classification accuracy, 
with a c-statistic of 0.82, expected TPR of 0.92, and 
expected TNR of 0.80. This result shows that the hand-

grip system can be used to monitor the changes in per-
ceived motor function with an average accuracy of 
82 percent. The ROC curve produced by SVM is illus-
trated in Figure 7.

The classification results and their associated poste-
rior probabilities were compared to the collected clinical 
variables. The overall back pain duration showed statisti-
cally significant correlation to the prediction results and 
posterior probabilities with p < 0.004 (t-test) and p < 
0.008 (Pearson linear correlation), respectively. This 
shows that the surgical outcome predicted by the handgrip 
device has a significant correlation to back pain duration.

The most frequently selected feature set included 
ThirdQMeanErr and AVG-LOWEST. The changes in 
ThirdQMeanErr scores for the improved and the not-
improved groups were 4.41 and 5.24 (p < 0.004 [t-test]), 
respectively, which implies that ThirdQMeanErr values 
for the improved group significantly improved after 
the surgery compared with the not-improved group. In a 
similar manner, the improvement in AVG-LOWEST was 
3.03 for the improved and 0.77 for the not-improved 
group (p < 0.08 [t-test]).

DISCUSSION

The aim of this pilot study was to validate the use of 
the target tracking test in (1) detecting the presence of hand 
motor impairment, (2) estimating the ODI scores reported 
by patients, and (3) detecting changes in perceived motor 
deficits in performing ADL (i.e., responsiveness). These 
objectives were performed in a test-retest reliable manner 
by employing a preprocessing step that eliminated unreli-
able features. The reported results showed acceptable accu-
racy in detecting the presence of hand motor impairment 
and in the responsiveness; results demonstrated that the 
system might be considered for use as a screening tool prior 
to surgical 

Table 3. 
Expected estimation performance based on mean absolute difference (MAD), coefficient of determination (R2), and Pearson correlation 
coefficient (r). Support vector regression (SVR) with a radial kernel (in bold) produced the best estimation results compared to multivariate linear 
regression (MLR) and SVR with a linear kernel. The most frequently selected features from the cross-validation included FirstQMeanErr, ΔGain, 
and VEL-INC.

Classifier MAD R2 r Most Frequently Selected Features*
MLR 0.14 0.37 0.61 ThirdQMeanErr ΔGain, AMP-INC
SVR: Linear 0.14 0.27 0.54 ThirdQMeanErr ΔGain, AMP-INC
SVR: Radial 0.12 0.57 0.76 FirstQMeanErr ΔGain, VEL-INC
*Full descriptions of the features listed in this table can be found in the “Methods: Data Analysis, Hand Motor Features” section.

treatment and as a tool to monitor ailment 
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Table 4.
The c-statistics, expected true positive rates (TPRs), and expected true negative rates (TNRs) for classifying improved and nonimproved patients 
after surgical operation. Support vector machine (SVM) with a linear kernel (in bold) produced the best performance compared to quadratic 
discriminant analysis (QDA) and linear discriminant analysis (LDA). The most frequently selected features from the cross-validation included 
ThirdQMeanErr and AVG-LOWEST.

Classifier c-Statistic TPR TNR Most Frequently Selected Features*
SVM 0.82 0.92 0.80 ThirdQMeanErr, AVG-LOWEST
LDA 0.76 0.92 0.60 ThirdQMeanErr, STD-LOWEST
QDA 0.76 0.92 0.60 ThirdQMeanErr, AVG-LOWEST
*Full descriptions of the features listed in this table can be found in the “Methods: Data Analysis, Hand Motor Features” section.

progress over time. The system is easy-to-use and inexpen-
sive, and it takes no more than 5 min to complete a test, 
which also supports 

Figure 6.
(a) Scatter plot of the estimated and actual Oswestry Disability Index (ODI) scores, which achieved mean absolute difference = 0.12,

Pearson r = 0.76, and p < 0.001. (b) Bland-Altman plot of the estimated and actual ODI scores, which achieved a bias of 0.016 and

a limit of agreement of 0.27. SD = standard deviation.

the system’s potential to remotely 
monitor patients in their home and community settings. 
Estimation of the ODI scores did not show outstanding per-
formance, but the results were comparable to other works. 
The following subsections will provide detailed discussion 
regarding each study objective as well as their limitations 
and planned future work.

Test-Retest Reliability
The results summarized in Table 1 support the test-

retest reliability of the motor features extracted from the 
handgrip device. A total of 22 features were extracted, and 

20 of them showed excellent test-retest reliability in both 
control and patient groups. This indicates that the target 
tracking test provides reliable representation of one’s hand 
motor function. Two features in the control group did not 
show good test-retest reliability: LAST-PK-SINE and 
LAST-PK-STEP, which computed the peak amplitude of 
the patient’s response during the last cycles of the sine and 
step waveforms, respectively. The most likely reason for 
this unreliability is that the peak value may be too sensitive 
to a single value that overrepresents the patient’s response 
during the last cycle. Two patients produced outlying peak 
values for each of the two features and significantly 
reduced the ICC. Consequently, these two features were 
removed from further analyses to ensure the reliability of 
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the classification and regression models for the three 
objectives.

Detection of 

Figure 7.
Receiver operating characteristic curve produced by support

vector machine for detecting the changes in physical conditions

of patients after surgical operation.

Impairments in Hand Motor Function
Results summarized in Table 2 show that the hand-

grip system can detect the presence of motor impairments 
in hand movement with an average accuracy of 89 per-
cent (with a TPR of 83% and a TNR of 87%). This indi-
cates that the system has the potential to be used as a 
diagnostic tool for the CSM population. The reported 
detection accuracy could be achieved by employing 
QDA with the following features: MAE-SINE, 
FirstQMeanErr, 2ndFreq, PhaseShift, ΔGain, and AVG-
HIGHEST. Among these features, MAE-SINE, 
FirstQMeanErr, and 2ndFreq were the most significant 
features; each individual feature showed statistically sig-
nificant diagnostic ability in differentiating the CSM and 
control groups. This suggests that if a clinic has a limited 
access to advanced algorithms such as QDA, investigat-
ing these three features can also provide insights regard-
ing the presence of hand motor impairments.

The detection results showed that five patients were 
incorrectly classified as having no impairments in hand 
motor function and four control subjects were incorrectly 

classified as having hand impairments. These results 
were compared with various clinical variables (“Meth-
ods: Other Clinical Variables” section), but no statistical 
significance was found. This implies that the objective 
quantification of the hand motor impairment, obtained by 
employing the handgrip system and the algorithms, pro-
vides unique information that cannot be found in other 
clinical variables. Thus, we propose that the system can 
be used as part of diagnostic and screening processes to 
quantify the level of hand motor function.

Estimation of Perceived Motor Deficits
The handgrip system could estimate the ODI scores 

in patients with CSM with moderate accuracy, namely 
MAD = 0.12 and r = 0.76 (Table 3). This is not surpris-
ing since the handgrip device quantifies patients’ hand 
motor functions and ODI quantifies the degree of inter-
ference of motor impairments in performing various 
ADL. Nevertheless, the reported correlation results (r = 
0.76) were comparable to the findings in other studies. In 
Grönblad et al., the ODI was compared to the Pain Dis-
ability Index and the Visual Analog Scales for pain and 
achieved r = 0.83 and r = 0.62, respectively [40]. Further-
more, the ODI was compared to the McGill Pain Ques-
tionnaire [26], Short Form-36 [41], and Roland-Morris 
questionnaire [25], and achieved r = 0.62, r = 0.77, and 
r = 0.66, respectively. Specifically, in Fairbank and 
Pynsent [7], the Bland-Altman plot between ODI and 
Roland-Morris showed that the magnitude of the limit of 
agreement was approximately equal to 0.32, which is 
comparable to the limit of agreement reported in this 
work (i.e., 0.27 as shown in Figure 6). Note that the cor-
relation results reported in the aforementioned works 
[25–26,40–41] used the original ODI scores, which used 
the scale between 0 and 50, where 0 represented com-
pletely nondisabled and 50 represented completely dis-
abled conditions. On the other hand, this work used a 
reversed scale that ranged from 0 (completed disabled) to 
1 (completely nondisabled) as discussed in the “Methods: 
Patient-Reported Functional Outcomes” section. None-
theless, the reported results demonstrate that the handgrip 
device and algorithms can together quantify the hand 
motor function with close correlation to the level of per-
ceived deficits in performing ADL with acceptable accu-
racy. The estimated ODI scores, as well as the actual ODI 
scores that were collected postoperatively, showed statis-
tically significant correlation to arm pain duration (p < 
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0.007 and p < 0.006, respectively), which agrees with 
findings in prior work [42].

Table 3 shows that SVR with a radial kernel, which 
is a nonlinear regression model, performs better than the 
two linear models (MLR and SVR with a linear kernel). 
This demonstrates that the relationships between the pre-
dictors and the ODI scores can be more accurately 
described using nonlinear functions, which partially 
agrees with the findings in Hoffman et al. [42]. The 
reported estimation accuracy (MAD = 0.12 and r = 0.76) 
can be achieved when FirstQMeanErr, ∆Gain, and VEL-
INC are used to construct an SVM-based model. How-
ever, if a clinic has limited access to such an advanced 
regression algorithm, it can also utilize VEL-INC as an 
estimation factor since it produced a statistically signifi-
cant correlation to ODI scores with r = 0.42 and p < 
0.003.

Responsiveness
Results shown in Table 4 demonstrate that the hand-

grip device can classify patients whose perceived motor 
function has improved after their surgical intervention 
with an average accuracy of 82 percent (the TPR was 
92% and the TNR was 80%). This supports that the hand-
grip device and the target tracking examination have the 
potential to be used as a monitoring tool that tracks longi-
tudinal changes in perceived motor function. The 
reported classification accuracy can be achieved by com-
puting ThirdQMeanErr and AVG-LOWEST and con-
structing a classification model using a SVM with a 
linear kernel. ThirdQMeanErr showed statistical signifi-
cance in differentiating the improved and not improved 
groups (p < 0.004 [t-test]). Thus, if a clinic has limited 
access to sophisticated algorithms such as SVM, health-
care professionals can investigate the values of Third-
QMeanErr, which can be easily computed from the 
handgrip device.

The classification results and the associated posterior 
probabilities showed statistical significance to the overall 
back pain duration with p < 0.004 (t-test) and p < 0.008 
(Pearson linear correlation), respectively. It is especially 
interesting that the results showed significant correlation 
to the overall back pain duration rather than the arm or 
neck pain. This may be because major symptoms of CSM 
include not only deterioration of hand use but also diffi-
culty in gait; a previous study shows that approximately 
75 percent of patients with CSM experience deterioration 
of hand motor function and 80 percent experience diffi-

culty in gait [43]. Therefore, the overall back pain dura-
tion, which is a major prognostic factor for surgical 
outcomes [44], shows significant correlation to the pre-
dicted surgical outcomes.

Limitations and Future Works
This work is the first study to thoroughly evaluate the 

use of a handgrip device for detecting the presence of ail-
ments, estimating the perceived motor function repre-
sented by ODI scores, and measuring the responsiveness 
to the surgical intervention in patients with CSM. Some 
limitations deserve discussion. The small sample size 
makes it difficult to generalize our findings to the general 
CSM population. However, all the classification and 
regression performances reported in this article were com-
puted using the LOSOCV technique, which produced a 
fair estimate rather than an optimistic estimate [32]. Given 
this, the results reported in this article are promising.

The ODI was employed to represent the perceived 
motor deficits in performing ADL; ODI scores were esti-
mated using the features extracted from the target track-
ing tests. As noted previously, both the ODI and mJOA 
were collected from the participating patients, but only 
the ODI was used in this work because the mJOA scores 
of the patients were highly unbalanced. The ODI investi-
gated the degree of interference from pain in performing 
a number of ADL involving both upper and lower limbs. 
The ODI has been widely used to assess functionality of 
patients with CSM in a number of previous studies 
[7,22,42,45–46], because a vast majority of patients with 
CSM have complaints about the use of their hands (upper 
limb) as well as difficulties in gait (lower limb) [43]. 
However, other patient-reported outcomes such as the 
Neck Disability Index (NDI) [47] may provide better cor-
relation to hand motor skills that can be captured by the 
handgrip device. The current study has modified the pro-
tocol to collect ODI as well as NDI to find possible cor-
relations, which remains as future work.

CONCLUSIONS

This article introduced a method for quantifying hand 
motor function using a handgrip device and target track-
ing tests. Data analytic methods based on machine learn-
ing techniques were designed to validate the use of the 
target tracking test in (1) detecting the presence of 
impairments in hand motor function and quantifying their 
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severity, (2) estimating the perceived motor deficits 
of CSM patients that are measured by ODI using the 
features extracted from hand motor function, and 
(3) detecting the changes in physical condition (improved 
versus not improved) after surgical decompression by 
investigating the changes in hand motor function. The 
estimation results, which were produced from a 
LOSOCV-based technique, showed a c-statistic of 0.89 
for detection of impairments, Pearson r of 0.76 with p < 
0.001 for the estimation of ODI, and a c-statistic of 0.82 
for responsiveness. This pilot study reports promising 
results validating the use of a handgrip device and target 
tracking tests to provide objective quantification of vari-
ous hand motor functions. This enables new research and 
development opportunities for more objective, easy-to-
use, and inexpensive methods to assess the level of 
impairment and the surgical outcomes in patients with 
CSM.
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