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Abstract-—The results of this analytical study of wheel-
chair wheelie performance can be summarized into two
wheelchair design equations, or rules of thumb, as de-
veloped in the paper. The equation containing the sigmif-
icant parameters involved in popping a wheelie for curb
climbing is:

fi = 0.8 mg 6., [A]
where f,, is handrim force, m is the mass of the wheelchair
+ user less rear wheels, g is acceleration of gravity
(9.807 m/s?), and 8., is “‘c.g. angle,” i.e., the angle
between the vertical through the rear axle and a line
connecting the rear axle and the system center-of-gravity.
Equation [A] shows that reducing the mass and/or the
c.g. angle will make it easier to pop a wheelie. The c.g.
angle is reduced by moving the rear axle position forward
on the wheelchair. Wheelie balance is the other aspect
of performance considered; where the user balances the
wheelchair on the rear wheels for going down curbs or
just for fun. The ease with which a system can be
controlled (balanced) is related to the static stability of
the gystem. The static stability is defined as:

. mgl

R

[B]

where J is the mass moment of inertia at the center of
gravity of the system about the direction perpendicular
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to the sideframe. For better wheelchair control during
wheelchair balance the static stability should be reduced.
Measurements of the value for the polar mass moment
of inertia for a typical wheelchair + user of m = 90 kg
was found to be J = 8.7 kg-m?. In order to decrease the
value of the static stability, Equation [B], one can increase
J or decrease m and/or €, where £ is the distance from
the rear axle to the c.g. of the system. It is also shown
that balancing a rod in the palm of the hand (inverted
pendulum) is a mathematical problem similar to the
wheelie balance problem, and a rod of length 1.56 meters
is similar to a wheelchair + user system mass of 90 kg.
However, balancing a rod is done primarily by using
visual perception, whereas wheelie balance involves hu-
man joint proprioceptors and visual plus vestibular (inner
ear) perception. Thus, a simple test of determining the
shortest length of rod one can balance in the palm of the
hand (plus measuring handrim force capability and simple
reaction time) may indicate if a wheelchair user will find
it easy to do a wheelie balance.

INTRODUCTION

Observation of the performance of a wheelchair
athlete doing the wheelie maneuver for climbing a
curb and balancing on the rear wheels suggests that
both handrim force actuation and body manipulation
are important. Once the athlete is balanced on the
rear wheels, however, most of the reaction for
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maintaining balance seems to take place by handrim
forces. Considering the latter situation as the sim-
plest case of interest, it is possible to investigate
mathematically the conditions for stability, using
the technigues used to solve the inverted pendulum
problem (5).

There have been a number of studies of biped
stability which make use of the one degree and two
degrees-of-freedom inverted pendulum problems
(9,10). The general outcome is that a variety of
feedback signals can stabilize biped models of this
kind, and that there is a limit on the choice of signals
necessary for stability. Thus, it seems reasonable
to approach the wheelie stability problem by making
use of the inverted pendulum analysis as developed
in this paper.

MODEL

Figure 1 shows the geometry of the wheelchair
wheelie balance problem. It will be assumed that
the initial balance state has been obtained, but the
results will also apply for “‘popping” a wheelie.

Balancing a wheelchair on its rear wheels is a
metastable equilibrium problem. When balance be-
gins to be lost, the center of gravity of the wheelchair
and user will rotate away from the equilibrium point,
which is directly above the axle of the rear wheels.
The user must react to the loss of balance by
exerting a force on the handrims to move the rear
wheel axle back under the center of gravity of the
wheelchair + user. Point P must move with respect
to the inertial coordinate system XV, shown to the
left of the wheelchair.

Free body diagrams of the wheelchair + user and
rear wheels with the appropriate forces and inertial
reactions are shown in Figure 2. This is a two-
degrees-of-freedom model in its simplest form; the
differential equations of motion will be considered
in the next section.

EQUATIONS OF MOTION

In the analysis of the problem it will be assumed
that the pivot axis, which is the rear wheel axle, is
essentially frictionless. At first, it will be assumed
that the dynamic response of the person balancing
the wheelchair is fast enough to allow us to neglect
response delay. Later, response delay will be con-
sidered as a part of the man-machine control re-
quirements. Also, it is assumed that wheel slip is
zero, and that the force capability limit of the user
is not encountered.

The analysis is similar to that presented by Cannon
(3) or Elgerd (7) for the stick balance problem or
inverted pendulum. At some instant of time, the

Figure 1 _
Geometry of wheelchair “‘wheelie
balance problem.

29




69

wheelchair + user has been disturbed from the
equilibrium position by a small angle 6 as shown in
Figure 1. The acceleration of the wheelchair + user
mass at point , the center of gravity, is complicated
since the wheelchair + user mass rotates as well
as translates. The vector position of point Q is:

ro = ixX + (ixl sin 0 + iy€ cos 9) [1]
where iy and i, are unit vectors in the inertial
reference frame.

Differentiating Equation [1] twice with respect to
time gives the acceleration of point O as:
ag = ix(X + €6 cos 8 — €62 sin 0)
iy (— €0 sin 6 — €62 cos 0)  [2)
Using the RT coordinate system in Figure 2, where

ir, iz are unit vectors in the system’s fixed reference
frame, Equation [2] can be simplified to:

ag = ixX + iy €0 + ig (—€62) 3]

R

Figure 2
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Applying Newton’s Second Law of Motion to the
wheelchair + user free body diagram in Figure 2,
with the aid of Egquation [2], and taking the X
component, gives:

mX + €0 cos § — €02sin @) =f—f,  [4]

Again, consider the free body diagram of the
wheelchair + user as shown in Figure 2. Taking
moments about P and using Equation [3] gives:

Jo + m(’(X cos 8 -+ €é)
— mgl sin 0 + R, f, =0 [5]

where J is the mass polar moment of inertia of the
wheelchair + user, less rear wheels, about the
center of gravity (Q).

The problem can be simplified by using the small
angle assumptions of cos 6 = 1, sin 8§ = 6, and
667 = 0 in Equations [4] and [5]. Also, the substi-
tution for f — f, = f; = f,R,/R, in Equation [4] is
found by making use of the free body diagram
analysis shown in Figure 2. It is also assumed that
e 1s negligible, and f; cos 8’ = f, since ' < 0. The
equation for the coefficient of rolling resistance is
e = frrR,/Fy', where for typical wheelchair tires
e = 0.002 m(0.078 in.), see reference (13). The
wheel inertia force and moment are assumed neg-
ligible in comparison with the other forces and
moments of the wheel.

Fo— ] 4
(TRACTION)
e | € (Coeff. of R.R.)

Fr

Free body diagrams of wheelchair system.
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Performing the substitutions into Equations [4]
and [5] gives the following pair of linear, second
order, differential equations:

mX + €8) = f, gﬁ 6]

JO + ml(X + ¢6) — mgtd + R, f, =0 [7]

Substituting X from Equation [6] into Equation
[7] gives:

J6 — mgto = — f;,(R,, - f§—> [8]

W

Equation [8] is the fundamental equation of motion
governing the wheelie problem for a wheelchair +
user. This equation is of the same form as that found
for the directional instability of a rear-caster wheel-
chair (12).

The right-hand term of Equation [8] is the torque,
T, applied by the user, which acts about the center
of gravity of the wheelchair -+ user system tending
torestore the axle to the equilibrium position directly
below the center of gravity. If the user does not
apply a handrim force, Equation [8] and physical
reasoning predicts that the wheelchair + user will
angularly accelerate to the horizontal due to gravity,
and balance is obviously not possible. The —mgt6
term is characteristic of an unstable system. If this
term were positive, the equation would apply to an
oscillatory system. For the purposes of discussion,
it is convenient to substitute o’ for mg€/J in Equa-
tion [8], although this term obviously does not
represent the usual concept of natural frequency.
Also, letting T = f(R, + ¢R,/R,,) results in:

. T
e 2 e 9
8 — w8 7 [9]

The solution to Equation [9] is presented i'n
Appendix A, and the application to the wheehﬂe
problem is given in the RESULTS section of this

paper.

WHEELIE BALANCE TRAINING

Learning to do a wheelie balance was found to
be easier on the new lightweight wheelchairs that

have tipping bars to prevent falling backward. The
authors found that removing the footrests at first
made it easier to perform the wheelie maneuver.
Adjusting the main axle location forward toward the
plane of the center of gravity of the wheelchair +
user also helped.

When one is initially trying to maintain a wheelie
balance, there is a tendency to overreact. Young
and Meiry (19) describe this aspect of manual control
as “‘bang-bang’’ control. Bang-bang feedback con-
trol systems, also called off-on control, are used to
control higher order systems such as the wheelchair.
However, this method of control causes the wheel-
chair + user to rock back and forth continuously
about the metastable equilibrium position of balance.
If, instead, one makes an effort to apply a contin-
uously variable control force to the wheelchair
handrims, it is possible to control the wheelchair +
user balance in a much smoother fashion, with more
time spent nearer the wheelie balance point. It was
found that several minutes of practice are required
to develop a feel for exerting a continuously variable
correction force, and that persons who have good
motor coordination can learn to maintain a wheelie
balance for several seconds after a practice period
of 15 to 20 minutes.

We are interested in a more quantitative analysis
of the wheelie balance problem, and a discussion of
man-machine controls is considered next.

MAN-MACHINE CONTROL SYSTEMS

There are many common man-machine systems.
For example, steering an automobile demonstrates
the ability of man to act in a continuous adaptive
control loop. Li (14) has presented a block diagram
of the human sensors in vehicle control, also shown
in Figure 3. The same control problems are encoun-
tered in using a wheelchair, and especially in being
able to perform the wheelie maneuver.

Li (14) finds that in vehicle control, human visual
motion rate perception is augmented by the vesti-
bular sense of the ear which allows better perform-
ance than could be obtained using visual observa-
tions alone. Movements of the head cause the
gelatinous mass in these vestibula to move, which
deflects sensory hairs that stimulate associate nerve
fibers. These nerves, in turn, inform the brain of
the position of the head. Consequently, the brain
sends control signals to the skeletal muscles to
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control balance. In addition to vestibular perception,
the eyes play a very important part in the control
process. It is reported (11) that a person who has
suffered damage to the vestibule of the ears can
maintain normal balance as long as the eyes remain
opened and body movement is performed slowly.
Other sensory organs that aid in control are the
proprioceptors associated in the joints of the body.

Consider Figure 3, where the eye observes a
display and can sense position, velocity, and accel-
eration relative to stationary surroundings. At the
same time the auditory vestibular system experi-
ences the effects of gravity and acceleration and
both systems aid in the control problem. There is a
limit, however, to the complexity of the man-ma-
chine system which can be controlled. In the case
of three-dimensional motion, bizarre effects of the
auditory vestibular system known as disorientation
can also occur. For the wheelchair wheelie problem,
some indication of the difficulty of control is inferred
by examining the inverted pendulum problem. Can-
non (3, p. 707) finds that solid stability of an inverted
pendulum requires a lead-network technique for
control. The lead-network not only uses the control

OTHER INPUTS

KAUZLARICH AND THACKER, Wheelchair wheelie performance

input of angular position, but, in addition, applies
mput from the angular velocity of the inverted
pendulum. This suggests that a wheelchair user who
cannot sense velocity would find doing a wheelie
balance very difficult or impossible.

Additional information concerning the man-ma-
chine control problem is available from studies of
pilot-aircraft performance. Young (18) has collected
data on controllability of aircraft as a function of
system parameters related to a second order differ-
ential equation, and his results are shown in Figure
4. The relevant differential equation is written as
follows (15, p. 35):

X + 20X + 02X = ;?; (10]

where 2{w is the damping coefficient and w? is the
static stability. As mentioned with respect to Equa-
tion [9], when the sign preceding w? is negative, the
system is described as inherently unstable. It is
possible to overcome the instability by proper input
of the forcing function in Equation [10]. The wheel-
chair wheelie problem, with negative »? and zero

- - N
|
r—— | WL POSITION AND
INPUT , ORIENTATION
‘““L(g)* DISPLAY EYE . MOTOR :
l LoaGIc ouTpuT[t] YEHICLE
* |
] | |
1 ’ |
| i | VEHICLE
‘ | VESTIBULAR| , RATES
SYSTEM [V
\ | |
l g l‘
: | *HUMAN OPERATOR" )
|
|

Figure 3
The Human Operator in Vehicle Control, after Li (8).
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Figure 4

Evaluation of longitudinal handling qualities, high speed aircraft, launch vehicles, and VTOL aircraft, after Young (10).

2l (see Equation [9]) falls in the region of great
control difficulty. However, the wheelie problem
involves fewer degrees-of-freedom than a pilot faces
using aircraft controls. It is also shown in Figure 4
that the pilot’s own motion is important for control.
Pilot motion refers to control when the pilot isin a
simulator as opposed to controlling from outside the
simulator.

Although a typical wheelchair wheelie problem
falls in the unacceptable or uncontrollable region of
Figure 4, it is apparent that the wheelchair wheelie
balance maneuver is easily learned by many wheel-
chair users. This suggests that pilot-aircraft control
information is not strictly applicable to the wheel-
chair wheelie problem, but it is believed that the
trends are applicable.

For design purposes, Figure 4 shows that changing
the static stability toward the positive direction will
improve control, and increasing the damping will
also improve control.

RESULTS

Based on the solutions in Appendix A, calculations
of wheelchair angular response versus time and
handrim force are plotted. The problems considered
are: 1) “‘popping’’ a wheelie, and 2) wheelie balance.
Finally, a stick balance system with the same pa-
rameters as a 90 = kg wheelchair + user is presented
as a simple device to determine if a user can develop
sufficient wheelie balance skill.
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1. Popping a Wheelie—When the wheelchair is in
a horizontal posttion with all wheels on the ground
and stationary (or moving), the user must exert a
quick force on the handrims in the forward direction
in order to cause the front of the wheelchair to lift
(rotate about the rear axle). This effect is due to the
inertia of the wheelchair + user. The maneuver is
very effective for going over road curbs and other
obstacles. The equation describing this motion is
presented in Appendix A, as Equation [6A]. For the
test wheelchair -+ user, the initial conditions and
parameters needed to solve Equation [6A] are given
in Appendix B, Table B1. The caster wheel force
falls to zero rapidly and has a negligible effect on
the solution. Substituting the appropriate values
from Table B1 into Equation [6A], the wheelie pop
equation becomes

o Jﬁ, - l _fﬁ - J4 -~ 61
g = 93 2(528 0.5 (e + ¢ [11]

A plot of Equation [I1] is shown in Figure 5,
where the angle © is shown to decrease with time
when a sufficiently large handrim force is applied.
For a particular user who can apply only a total
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handrim force (with two hands) of 264 N (59 pounds),
the theory predicts that this force is too low to cause
the front of the 90 kg (198 pounds) wheelchair -+
user to lift. Brubaker (2) has measured maximum
handrim force for five subjects (four able-bodied
and one paraplegic) who are young and athletic, and
found the average handrim capacity ranged from
454 N (102 pounds) to 645 N (145 pounds) depending
upon the handrim design. Thus, it would be predicted
that these wheelchair users would find it easy to
pop a wheelie from a stationary start. If the wheel-
chair user can also move his torso backward, thereby
reducing 6,, so as to move the c.g. back toward
the rear axle, the force necessary to pop a wheelie
can be proportionately reduced.

2. Wheelie Balance—The wheelie balance prob-
lem, once the user has popped a wheelie and has
brought the rear axle under the center of gravity of
the wheelchair + user, will depend on the dynamic
response capability of the user to maintain a balance
position. Since the wheelie balance position of § =
0 is a point of metastable equilibrium, any slight
deviation will cause the wheelchair to fall. The user
must respond properly and in a timely manner with
sufficient handrim force depending on the direction

.6 ] ? v, ;
f, = 264 N (59 1Ibs.)
5 30 ;” h S
O
S 350N (781bs.)
~ 4} ‘ -
© 20
fn=4
w 3) 3 h = 400N (89 Ibs.)
5 Wheelchair 8.6 =287°
2 G.
.2
< "0 .
JdF B
O i i I |
O .05 10 15 .20 .25
TIME (sec)
Figure 5

Popping a Wheelie: Angle 8 vs. time for handrim force applied.
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of the fall. As the wheelchair + user is restored to
the equilibrium wheelie balance position, the user
must be able to adjust the handrim force so as not
to overshoot the balance position.

The balance problem is analyzed in two parts.
First, the falling motion of the wheechair + user is
considered during the delay reaction time of the
user, and second, the handrim force necessary to
recover a balanced position is considered.

Factors affecting reaction time of human subjects
are discussed by Frost (8), who finds that reaction
time to a discrete stimulus is one of the least
understood facets of human behavior. Every vari-
able affecting human behavior, such as fatigue,
motivation, etc., will affect reaction time. Frost
gives a range of reaction times for various senses,
where those that are applicable to wheelie balance
are touch (with 7, = 0.11 t0 0.15 seconds) and vision
(with 1, = 0.15 to 0.20 seconds). A study by Do,
Bouisset, and Moynot (4) of 8 able-bodied and 12
paraplegic (T4 level) subjects performing a simple
arm movement task of moving a weight on a table,
reported that the average reaction delay time meas-
ured from first muscle twitch to beginning to move
the weight, for able-bodied subjects, was 0.078

Spring 1987

seconds, while for the group of paraplegics it was

0.177 seconds. A simple reaction-time experiment
of lifting a weight at a light signal gave results in
the 0.20 to 0.25 seconds range for several able-
bodied students in this laboratory. The data suggest
that a wheelchair user will have a reaction time of
no less than 0.1 seconds and, probably, as long as
0.2 to 0.3 seconds.

For the calculation, it is assumed that an arbitrary
but very small deviation from the balance position
occurs, 8, = 0.1 rad (5.7 degrees) with § = 0 and
T = 0. The equation describing the angular rotation
of the wheelchair + user is given in Appendix A as
Equation [6A]. Substituting the system parameter
values given in Table B1 into Equation [6A] gives

0 = 0.05(e% + e %) [12]
where << = ,. After a time corresponding to the
reaction time of the user, the user is assumed to
apply a handrim force to counteract the fall from
wheelie balance. The motion of the wheelchair +
user is now governed by the solution given in

Appendix A, Equation [9A]. For this part of the
analysis, it is mathematically convenient to let

30 i 1 T T 1 I 1 T n

25
g
© 20
D 15 + -
Ll to=,2 sec -
- - 184N (411bs.) |
e
< t =.1sec N

5 0

fh= 101N (23 1bs.) |
| i I i 1 | | | i
OO n .2 3 ) 5 6 7 .8 9 1.0
TIME (sec)

Figure 6

Wheelie balance recovery ang

le vs. time for three values of human response delay time.
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where 1 < n < 2. Substituting Equation [13] into
Equation [9A] results in

B = 0.05¢[(1 —n)e’ —(n—e 0)e~" +2n] [14]

where t' = Qat 15, L.e., t = 1, + 1.

Since T/(Jw?) = [,/528 rad for the test wheelchair
+ user system, Equation [13] can also be used to
calculate the handrim force. By trial and error,
letting n = 1.05 gives reasonabale results, and
Hquations [12] and [13] can be plotted for three
values of user reaction time as shown in Figure 6.
In Figure &, time proceeds from the beginning of
the fall away from equilibrium balance and there is
no user handrim response until the reaction time is
reached. Beyond the reaction time, it is assumed
that a constant handrim force is applied to restore
the wheelchair + user to the balance position. The
user must be able to adjust the restoring handrim
force so as not to overshoot the balance point.
However, this aspect of the problem has been
omitted as being beyond the scope of the paper.

KAUZLARICH AND THACKER, Wheelchair wheelie performance

Figure 7 shows the force required to produce the
response shown in Figure 6 as a function of reaction
time. As would be obvious from consideration of
the model, the shorter the delay reaction time the
smaller the handrim force necessary to recover
wheelie balance.

3. Inverted Pendulum—The fact that the wheelie
balance problem has the same governing differential
equation as the inverted pendulum suggests a sim-
ilarity between hand-balancing a vertical rod and
wheelchair + user wheelie balance. The governing
parameter in Equation [9] is w?> = mg{/J. For a rod
of length L = 2¢, the polar mass moment of inertia
about ifs ¢.g. is given by

EZ

Jrod = 77/1“§‘ US]

Solving for rod length, L, and using o? = 36, one
obtains

[ = 6-5; = 1.56 meters [16]

as the length for a rod with similar stability char-
acteristics.

350 =g , : ‘ |
= 300}
8 250 - -
8 200 é -
= 150} i
e I
o 100fF 2
g i
T 50 |

O ] 1 ] 1 l
O 05 10 15 .20 .25 .30
HUMAN REACTION TIME (sec)

Figure 7

Wheelie balance recovery handrim force vs. reaction time.
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Figure 8 shows a schematic of this problem.
Limited testing with several able-bodied graduate
students showed that a 1.56 m (61 inch) rod is fairly
easy to hand-balance while standing or sitting, and
that some sudents found it possible to balance a 1/
3 m (13 inch) rod after a number of practice sessions.
These students were also able to learn to do a
wheelchair wheelie balance, more or less, after
several practice sessions. Later, with much expe-
rience, two students found thay could do a wheelie
balance with their eyes closed . An active paraplegic
was also able to do a wheelie balance with eyes
closed .

The shape of the rod has not been studied exten-
sively, but it was found easier to balance a thin
blade (8 cm wide) than a thin rod, both of the same
length. The blade tends to limit the instaility to one
dimension, which is similar to the wheelie balance
problem.

Although auditory vestibular senses are not in-
volved, the visual perception needed to hand-bal-
ance a rod, along with a measurement of one’s
handrim force capacity and reaction time, may be
measures of a user’s potential ability to do a wheelie
balance. More work is needed to verify these sug-
gestions concerning the applicability of similar sys-
tem measurements.

1.56m

s

L.
i

Figure 8
Similar wheelie balance system.

WHEELCHAIR DESIGN EQUATIONS

It is always useful to have simplified equations
that will give the general trends or *‘rules of thumb”’
for design purposes. One aspect of interest in this
paper is the effect on design of the force necessary
to pop a wheelie. This information is contained in
Equation [6A] along with the measurements of the
system given in Figure 9.

It is assumed that it is desired to pop a wheelie
in order to place the caster wheels on a 10-cm curb.
This involves applying a handrim force so as to
raise the front of the wheelchair sufficiently. Starting
with Equation [6A], and considering the problem of
curb climbing, the initial conditions are the “c.g.
angle” of 6., = 0.5 rad (28.7 degrees) and 6, = 0.
The final condition is the “‘pop-angle,” 9, = 0.20
rad (17.2 degrees) for a 10-cm curb (4 inches). By
adding and subtracting 6., on the right-hand side
of Equation [6A] the following useful equation is
obtained.

T
ec.g, - (")p = (};ﬁ - 8(;1)
1 y
o) ]

Examining Equation [17], we see that (8., — 8,)1s
positive, and the only way the right-hand side will
be positive is when

[17]

[18]

An additional condition is needed and it can be
obtained from Figure 5. There, it is shown that the
handrim force required to pop a wheelie in a rea-
sonable length of time (0.25 seconds) is about 133
percent of the minimum force. Substituting forrT/
(Jw?) in Equation [18] from Equations [8] ‘a,nd'[F)],
and using dimensions for the test wheelchair, gives

fr = 0.8 mg 0, [19]

Equation [19] shows that reducing the mass and/or

the ‘‘c.g. angle’” of the wheelchair will reduce f,. It

can be seen from Figure 9 that 6., can be reduced

by moving the rear axle position forward toward
the plane of the center of gravity. .

Another design aspect of this paper is wheelie
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balance. As shown in Figure 4, the ease with which
a system can be controlled is related to the static
stability. The wheelchair + user has a negative
static stability given by

o = et _ gt [20]
J

where mj = J. Reducing »? by decreasing ¢, the
distance from the axle to the c¢.g., will lead to easier
control of wheelie balance. This result for the
wheelchair system appears to be contrary to prac-
tical experience, since a longer rod is easier to
balance. But the length of a rod affects the specific
polar moment of inertia of the rod, such that a
longer rod gives a smaller w?. One should consider
the wheelchair problem as being the balancing of a
fixed mass on the end of an essentially massless
rod. In that case, shortening the length of the
massless rod will improve the balance control, in
accordance with Equation [20].

KAUZLARICH AND THACKER, Wheelchair wheelie performance

CONCLUSIONS

A mathematical analysis of wheelchair wheelie
performance based on the classical inverted pen-
dulum problem is presented. The inverted pendulum
appears to represent a reasonable model for wheel-
chair wheelie maneuvers. The results can be used
to predict handrim force necessary to pop a wheelie
as well as maintaining wheelie balance.

Balancing an inverted pendulum rod of 1.56 m
length in the palm of the hand is shown to be a
problem mathematically similar to the wheelie bal-
ance problem for a 90-kg wheelchair + user. This,
plus the wheelie balance solution, suggests that
simple tests of determining the length of the shortest
rod one can hand-balance, measurement of handrim
force capability, and measurement of human reac-
tion time, may indicate whether a person will be
able to perform the wheelie balance maneuver.
However, more work is needed to establish such a
testing protocol.

WHEELCHAIR 15 kg
(less rear wheels)

USER 75 kg

m= 980 kg

POLAR MOMENT
OF INERTIA J,=8.7 kg-m
(about C.G.)

\/MM/MM

2

Figure 9

Typical wheelchair + user wheelie parameters.
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APPENDIX A:
DIFFERENTIAL EQUATION SOLUTIONS

Consider the solution to Equation [9], where
Equation [9] represents the rotation of the wheel-
chair + user on the rear axle during a wheelie
maneuver. Equation [9] is repeated as [1A].

. T
6 —w6= -~
w 7 [1A]
Where
W' =mg [2A]
and
R
T f,,(R,, + e#) [3A]

Assuming the handrim force f), is a constant, the
simplest case of interest, Equation [1A], has the

well-known solution (see reference 1, pages 2-50),
of

0=cre” + e + — [4A]
w?
The boundary conditions at r = 0 are
0=6, and 6 =8, [5A]

By solving Equation [4A] with the initial condi-
tions listed in Equation [SA], the solution equation
describing the angular response of the wheelchair
+ user is

1 0 T
g = 5(6(, + ;Q - J—(;z)(e‘”’ + e«

9 o, T :
5 T [6A]

When the wheelchair is horizontal, and when it
is either stationary or moving, Equation [6A] can
be used to predict the handrim force necessary to
pop a wheelie.

The next problem of interest occurs when the
wheelchair is at the wheelie balance point and is
disturbed from equilibrium. In this case Equation

[6A] describes the angular motion of the wheelchair
+ user up to the time when a corrective handrim
force is applied.

As wheelie balance is lost, the user will apply a
corrective handrim force after some reaction delay
time. A solution to equation [4A] for the problem
after a handrim force is applied is found by using
the following initial conditions. Substituting the
reaction time 1, into Equation [6A] and letting 6, =
Oand T = 0, gives

1
9 o .é, eo(ewm + e mm) [7A]

Taking the derivative of Equation (6A) and letting
8, = Oand 7 = 0 results in

I ,
6 - ““6()(})(()0)’0 - ()7(‘){“)

) [8A]
Using Equations [7A] and [8A] as initial conditions
in Equation [4A] leads to the following solution

I T ,
6= 5(909“’ 0= m) ev!

+l G0 w0 — T > ot + T
2\ Jow? ) Jo?

where f, = user reaction time, and /' = 0 at ¢ =
t(), i.e., { = t() + t’.

There are other, more complicated, cases of
interest which would involve the man-machine as a
closed-loop feedback control system. This would
require consideration of the handrim force as a
function of position and velocity. For our purposes,
it is sufficient to consider the simpler problems in
which the handrim force is a constant, at least at
the beginning of any response.

[9A]
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APPENDIX B:
WHEELCHAIR-USER PARAMETERS

The analysis of wheelchair wheelies performance
requires several wheelchair + user measurements
not normally available from the manufacturers’ lit-
erature. These parameters are the location of the
center of gravity, and the mass moment of inertia
about the z-axis.

The center of gravity and polar moment of inertia
of the wheelchair with the large wheels removed
was determined using the torsional pendulum method.
For this, the wheelchair was suspended on its side
at the c.g. by a steel rod 3.18 mm O.D., length of
851 mm, and a measured torsional spring constant
of 0.889 N-m/rad. The mass and natural frequency
were measured to predict the inertia of the system.

A 75 kg 1SO Dummy (17) in a vertical-back seated
position (Figure 9) was measured for user parame-
ters. The method used was to calculate the ¢.g. and
moments of inertia of the ISO Dummy components
and calculate a composite ¢.g. and moment of inertia.
These calculations were prepared by Duffey (6).

Using the parallel axis theorem, the c.g. and
mertia of the system were calculated. The results
of the calculations are shown in Figure 9 and listed
in Table B1.

Table B1:

Test Wheelchair Parameters (see Figure 9)

m 90 kg (198 pounds)

4 370 mm ({4.6 inches)
R. 305 mm (12 inches)
Ry 279 mm (11 inches)

3, 8.7 kg—m? (6.4 1b-ft-s7)
8.0 0.5 rad (28.7 degrees)
w? 37.6 s2

B 394 mm (15.5 inches)

NOMENCLATURE

ag acceleration at point Q, m/s?
B wheelchair wheelbase, m

Fr rear wheel force, N

¥, fractive force, N

fur rolling resistance force, N

£ inertial force, N

KAUZLARICH AND THACKER, Wheelchair wheelie performance

fio wheel inertial force, N
f rear axle force, N
£ handrim force, N
g acceleration of gravity, 9.807 m/s?
Inobraix,ly unit vectors, m
J polar moment of inertia, kg—m?
i specific polar moment of inertia,
kg-m?/kg
length of stick, m
¢ axle to ¢.g. length, m
; inertial moment, newton—-meters
{(N—m)
M. wheel inertial moment, N-m
m wheelchair -+ user less rear wheels,

mass, kg

P rear axle point

Q system center of gravity point
R coordinate, m

R, Handrim radius, m

R, rear wheel radius, m

o instant radius fo Q, m

T coordinate, m; or torque, N—m
{ time, (seconds) s

t’ time after 1y, s

ty human reaction time, s

X coordinate, m

X velocity, m/s

X acceleration, m/s?

Y coordinate, m

Z coordinate, m

£ coefficient of rolling resistance, m
L damping factor

O e c.g.-angle, rad (see Equation 6)
0, pop-angle, rad (see Equation 6)
6 inertia force angle, rad (see Figure 2)
b angular position, rad

0 angular velocity, rad/s

o angular acceleration, rad/s>

@ angular frequency, rad/s
Acknowledgments

The authors extend their appreciation to Dr. R, H. Rozendal
and Mr. Luc van der Woude of the Free University, Amsterdam,
for their review and suggestions concerning the paper. Graduate
Research Assistant Timothy Collins carried out many of the
measurements used in the paper.



80

Journal of Rehabilitation Research and Development Vol. 24 No. 2 Spring 1987

REFERENCES

BAUMEISTER T, AvaLLONE EA, BaumeisTer 1T T. Marks’
Standard Handbook for Mechanical Engineers, 8th ed.
New York: McGraw Hill, 1978.

Brupaker CE. “‘Static and Dynamic Comparisons of
Selected Handrims for Wheelchair Propulsion,” Wheel-
chair Mobiliry 1976-81, University of Virginia Rehabili-
tation Engineering Center, Charlottesville, Virginia, pp.
28-32.

Cannon Jr RH. Dynamics of Physical Systems, McGraw-
Hill, 1967, pp. 703-7190.

Do MC, Bouisser S, Moynor C. “*Are Paraplegics
Handicapped in the Execution of a Manual Task?,”
Ergonomics V28, # 9, 1985, pp 1363-1375.

Dorr RC. Modern Control Systems, 3rd ed. Reading,
MA: Addison Wesley, 1981, pp. 327-331.

Durrey TM. “"Evaloation of ISO Test Dummy,” Wheel-
chair Mobility 1985, University of Virginia Rehabilitation
Engineering Center, Charlottesville, Virginia, pp. 33-34.
Eircerp OI. Control System Theory. New York: McGraw-
Hill, 1967.

Frost G. "*Man-Machine Dynamics,” Human Engineer-
ing Guide 1o Equipment Design, Editors: HP VanCott and
RG Kinkade, U.S. Government Printing Office, 1972, pp.
227-309.

Hemami H; Wemer FC, Koozexanant SH. “‘Some
Aspects of the Inverted Pendulum Problem for Modeling
of Locomotion Systems,”” IEEE Transaction on Automatic
Controls, V. AC-18 (December 1973), pp. 658- 661.
Hemawmt H; WriMER FC; Rosivson CS; StockweLL CW,
CveTkovic VS, “‘Biped Stability Considerations with
Vestibular Models,”” Proceedings 1977 JACC (1977), pp.
796--803.

1.

12.

13.

Hove JR JW. Human Anatomy and Physiology, 2nd ed.
Dubugque, TA: Brown Co., 1981,

KavzrLaricH JJ anp Taacker JG. ““Rear Caster Wheel-
chair Directional Instability,” Proceedings of RESNA %th
Annual Conf. (June 24-28, 1985), pp. 78-80.
KavzraricH JI anp Tuacker JG. ““Wheelchair Tire
Rolling Resistance and Fatigue,”” J Rehabil Res Dey 22(3)
(July 1985), pp. 25-41.

Lt YT. “*Man in an Adaptive and Multiloop Control
System, ”” Proceedings of the 2nd NASA-University Con-
ference on Manual Control, NASA SP--128, Massachusetts
Institute of Technology, Cambridge, Massachusetts (2/28—
3/2, 1966) pp. 99-105.

TeicHuNER WH. “‘Recent Studies of Simple Reaction Time,”
Psychology Bulletin V. 51, No. 2, (1954), pp. 128-149.
Tse FS, Morse IE, HINKLE RT. Mechanical Vibrations
Theory and Applications, 2nd ed. Rockleigh, NJ. Allyn
and Bacon, 1963.

“Wheelchairs-Part 1I: Test Dummies,”” Draft International
Standard ISO/DIS 7176/11, submitted on 1984-02-16,
International Organization for Standardization, 1984,
Younc LR. ““Some Effects of Motion Cues on Manual
Tracking,”” Proceedings of the 2nd NASA-University Conf.
on Manual Control, NASA S$SP-128, Massachusetts Insti-
tute of Technology, Cambridge, Massachusetts (2/28-3/2,
1966) pp. 231-239.

Younc LR anDp Mereiry JL. "'Bang-Bang Aspects of
Manual Control in High-Order System,”” [EEE Transac-
tions on Automatic Controls V. AC-10, # 3, (July 1965)
pp. 336-341.




	A theory of wheelchair wheelie performance
	JAMES J. KAUZLARICH, Ph.D., AND JOHN G. THACKER, Ph.D.

	INTRODUCTION
	MODEL
	EQUATIONS OF MOTION
	WHEELIE BALANCE TRAlNING
	MAN-MACHINE CONTROL SYSTEMS
	RESULTS

	WHEELCHAIR DESIGN EQUATIONS
	CONCLUSIONS
	APPENDIX A: DIFFERENTIAL EQUATION SOLUTIONS
	APPENDIX B:
WHEELCHAIR-USER PARAMETERS
	NOMENCLATURE
	Acknowledgments

	REFERENCES

