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Abstract-In this paper we introduce the concept of the 
short-time articulation index. This is a procedure for 
calculating a time-varying articulation index from data 
on a block-by-block basis. The short-time articulation 
index can be used to give a running measure of the 
speech intelligibility for an adaptive noise-cancellation 
system as it converges. We present an algorithm for 
calculating the short-time articulation index and give 
some examples of its use. 

INTRODUCTION 

The conventional method for assessing the per- 
formance of a noise-cancellation system is to com- 
pute the noise reduction in dB. For speech, one 
problem with this method is that it measures only 
the change in the total noise power and ignores the 
effects of the noise spectrum on speech intelligibility. 
Speech intelligibility is best measured by conducting 
tests with human listeners, but procedures such as 
the articulation index (3, 4) have been developed 
that give repeatable results that can be related to 
intelligibility test scores ( 5 ) .  Although only a gen- 
eralized approximation, the articulation index (AI) 
will give a better indication of the effect of back- 
ground noise on speech intelligibility than simply 
considering the speech-to-noise ratio. 

* Current affiliation: Siemens Hearing Instruments, Inc., Piscataway, 
NJ 08854. 

The classical articulation index calculation gives 
a single number based on measurements of the long- 
term noise power spectrum. This is useful for eval- 
uating a stationary system, but inadequate for an 
adaptive system that may be changing with time. 
We have developed a simplified short-time articu- 
lation index calculation that is suitable for evaluating 
adaptive noise-cancellation systems. The procedure 
is based on the 20-band A1 calculation procedure of 
French and Steinberg (3), and incorporates upward 
spread of masking as described by Kryter (4). This 
calculation is an approximation to the classical A1 
procedure because shaped Gaussian noise rather 
than speech is used as the system input, remote 
masking is not included, and the calculation is 
performed short-time on a block-by-block basis. 
That is, the signal to be analyzed is subdivided into 
a sequence of time windows and a separate A1 
analysis is performed for each time window. The 
size of each block (time window) is a parameter 
under the control of the experimenter. 

ADAPTIVE PROCESSING 

A block diagram of a generic two-sensor adaptive 
noise-cancellation system, such as the one described 
by Widrow et al. (8), is shown in Figure 1. The 
primary signal p(n) consists of speech corrupted by 
additive noise, giving p(n) = s(n) + q(n), where s(n) 
is the speech and q(n) the noise. The noise reference 
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Figure 1. 
Adaptive noise-cancellation system 

r(n) is obtained from a separate sensor and is filtered 
to give y(n). The adaptive filter weights are updated 
to make y(n) as close a match as possible to the 
noise q(n) that is corrupting the primary signal. 
Subtracting the filtered noise reference from the 
primary signal results in the system output 

which is also the error signal used to govern the 
adaptation of the filter weights. 

The conventional performance criterion for an 
adaptive system is the signal-to-noise ratio computed 
on a block-by-block basis. Assuming that the proc- 
essing is being simulated on a computer, we have 
access to speech signal s(n), the noise q(n) corrupting 
the speech signal, the noise reference r(n), and the 
processed output e(n). We can therefore subtract 
the input speech from the processed output to give 
the residual noise component after processing, and 
thus compare the noise power after the adaptive 
cancellation with the noise power corrupting the 
primary signal. The ratio of those two noise levels 
gives the amount of noise reduction, which is ex- 
pressed in dB. The noise-reduction calculation is 
typically performed on a block-by-block basis in 
order to track the convergence of the adaptive 
algorithm. 

SHORT-TIME AI CALCULATION 

The A1 calculation is based on the ratio of the 
speech peaks to the average noise power level in 
each of 20 frequency bands that contribute equally 
to speech intelligibility. The original procedure as- 
sumed long-term averaging of both the speech and 
noise statistics. We have modified the basic proce- 
dure to permit analysis on a short-time block-by- 
block basis. 

An actual speech signal is nonstationary and can 
vary considerbly from one analysis block to the 
next, so our first modification has been to replace 
the speech with a stationary noise signal having a 
spectrum similar to that of speech. This "pseudo- 
speech" signal is white Gaussian noise that has 
been passed through a one-pole lowpass filter hav- 
ing a cutoff frequency of 400 Hz. The speech peak 
levels required for the A1 calculation are then 
approximated by adding 12 dB to the rrns pseudo- 
speech level in each AI analysis band; the 12-dB 
peak-to-average ratio is indicated by Kryter (4). 

The second change that we have made is in the 
AI analysis bands. This was done to accommodate 
the system sampling rate and to permit the use of 
the FFT algorithm in computing the signal and noise 
spectra. The AI analysis bands are therefore ap- 



Section IV. Issues of Measurement: Kates 

Table I. 
A1 bands for a 64-point FFT, 10-kHz sampling 

FFT Bin Index Center Frenyuency, Hz A1 Band 

proximated by one or more discrete points (bins) in 
the discrete Fourier transform (FFT). The actual 
division of the spectra into analysis bands thus 
depends on the system sampling rate and the length 
of the data segments used for the short-time A1 
calculations. An example of this division is given in 
Table I for a sampling rate of 10 kHz and data 
segments of 64 points. Here we have only 18 analysis 
bands, so the A1 calculation must be modified in 
order for the ideal system performance to give an 
AT of one. 

The short-time AI calculation thus proceeds in 
the following steps. 

I .  Excite the system using the lowpass-filtered 
noise to represent the speech signal and use any 

desired signal for the corrupting noise. 
2. Divide the processed output into blocks, and 

for each block separate the signal into the pseudo- 
speech and the residual noise. 

3. Perform FFT7s on the pseudospeech and re- 
sidual noise sequences and group each spectrum 
into the AI  bands as shown in Table 1. 

4. Add 12 dB to the rms pseudospeech levels to 
approximate the speech peaks. 

5.  Modify the noise spectrum to include spread 
of masking. The magnitude of the spread-of-masking 
effect was obtained from Kryter (4). We have used 
only upward spread of masking in our calculations. 

6. Compute the speech peak-to-noise ratio in dB 
in each A1 analysis band. Values above 30 dB are 
set to 30, and values below 0 dB are set to 0. 

7. Sum the ratios and divide by 30 times the 
number of analysis bands to give an A1 score 
between 0 and 1. 

We have used the short-time articulation index to 
investigate the performance of an adaptive noise- 
cancellation system. The processing was simulated 
on a general-purpose computer, giving us acess to 
all of the necessary signals for performing the short- 
time A1 calculations. The short-time A1 and SNR 
were computed to give a comparison between these 
two performance measures. 

The adaptive processing was tested with simulated 
noise and reverberation. The noise reference signal 
consisted of white Gaussian noise passed through a 
one-pole lowpass filter having a cutoff at 400 Hz. 
This spectral shape was chosen to give a long-term 
spectral shape sirnilar to that of speech babble and 
many mechanical noises. The primary signal was 
the pseudospeech described in the previous section 
plus uncorrelated intereference consisting of the 
noise reference signal convolved with the early 
reflections from a small room. The reverberation 
was modeled as the direct sound plus the first 9 
reflections ikon1 the walls of a room 2 meters wide 
by 3 meters long, giving an impulse response of 114 
samples at the 10-kHz sampling rate. The pseudo- 
speech was combined with the reverberated noise 
to give a 0 dB signal-to-noise ratio. 

The adaptive processing was in~plenle~lted using 
the frequency-domain approach of Ferrara (2); dis- 
cussions of related frequency-domain adaptive proc- 
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Figure 2. 
Adaptat~on behnv~ot \hart time constant, fixed m~crophones. 

essing can also be found in Mansour and Gray (6) 
and Clark, Parker, and Mitra ( 1 ) .  The algorithm 
used for updating the adaptive filter weights was the 
fast Kalman algorithm of Ogue, Saito, and Hoshiko 
(7). The adaptive filter length for the processing was 
set to 128 samples in order to accommodate the 
impulse-response duration of the simulated rever- 
beration. 

We first simulated the situation where the primary 
signal and noise reference microphones are fixed in 
position. Figures 2 and 3 show the results of the 
processing for two different values of the adaptation 
time constant. In Figure 2 we have a short time 
constant, and the processing shows rapid conver- 
gence but relatively poor asymptotic performance. 
The short-time AI curve is very nearly the mirror 
image of the noise-reduction curve, which is typical 
behavior for moderate amounts of noise reduction. 

In Figure 3 we have a long time constant, and the 
processing shows slow convegence but very good 
asymptotic performance. The short-time AI is again 
an approximate mirror image of the noise-reduction, 

but here the A1 curve is smoother. This is especially 
true as we approach the asymptote at times beyond 
2.0 seconds, since as the AI score approaches 1.0 
it is only mildly affected by the small fluctuations 
in noise level that are shown by the noise-reduction 
curve. 

We then simulated a situation where the primary 
microphone is allowed to move but where the 
reference microphone is still fixed. This corre- 
sponds, for example, to a head-mounted speech 
microphone as is commonly used in voice commu- 
nications systems, but where the noise reference 
microphone is permanently mounted. The head 
motion was modeled as a sinusoidal oscillation of 
the primary microphone position along the long axis 
of the room, with the reflection time delays adjusted 
to track the changing microphone location. Thus 
the assumed sinusoidal motion was converted into 
a modulation of the tap delays used to simulate the 
reverberation. The head motion in our example was 
set to 0.1 m peak-to-peak displacement at a fre- 
quency of 1.0 Hz. 
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Figure 3. 
Adaptation hehav~or:  long time constant, fixed m~crophones. 

The results for the silnulated head motion are 
presented in Figure 4 for thc same adaptation time 
constant as was used for the curves in Figure 3. As 
we can see, the sin~ulated heact inotion severely 
degrades the system performance. The asymptotic 
noise reduction has gone from about 18 dB to about 
9 dB,  and the asynlptotic short-time Al has gone 
fiom about 0.97 to less than 0.7. And even though 
the noise-reduction curve shows an in~provement in 
SNR for the adaptive system, the All scores give a 
strong indication that very little improvement would 
actually be realized b r  voice communications. This 
suggests that xnost of the noise reduction is at 
frequencies that are not important for speech intel- 
ligibility, or that upward spread of masking has 
reduced the net advantage of the adaptive noise 
cancellation. 

CONCLUSIONS 

We have presented the \hart-time articuIation 
index, a new technique for evaluating the perform- 

ance of adaptive noise-cancellation systems. The 
short-time Al takes illto account the effects of the 
noise spectrum as well as the noise intensity in 
determining the quality of a time-varying voice 
communications system. The calculation procedure 
.is based on the classical articulation index proce- 
dure, with modifications to permit short-time com- 
putation using the FFT. The only constraint in using 
the short-tin~e Al in testing a systern is that the 
lowpass filtered pseridospeech sigr~al should be used 
as the lnptll to give a stationary sig~lal having a 
spectrum similar to that of speech. 

The short-time articulation index, when used in 
conjunction with the output SNR,  will give a much 
more coarlplete picture of the performance of an 
adaptivc system. This is especially true where small 
amounts of nolse reduction are being obtained, since 
the short-time A1 will directly indicate if the noise 
reduction is adequate to i~nprove voice communi- 
cations. The short-time AI will be less uselit1 when 
largc arnounts of noise reduction are possible, since 
it will approach its asymptote of I .O and not reflect 
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Figure 4. 
Adaptation behavior: long time constant, oscillating primary microphone. 

the additional small improvements in SNR that may 
result from the processing. In those cases, however, 
the short-time A1 will indicate when further proc- 
essing is not needed because of the quality of the 
voice communications that have already been 
achieved. Thus the short-time A1 scores can also 
serve as a criterion for determining the degree of 
processing necessary to reach a desired level of 
speech intelligibility. 
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