A search was made of the BRS (database vendor) System for information on digital hearing aids. First, the CROS feature of BRS indicated that most information on digital hearing aids is contained in four databases, two medical and two scientific. The four databases searched were: the National Library of Medicine’s database (MESH), which covers 3,600 national and international biomedical journals; Excerpta Medica’s database (EMED), which covers over 800,000 records of biomedical journals and conference papers; Computerized Engineering Index (COMP), a worldwide index to technical and engineering journals, conference proceedings, and monographs; and, Inspec (INSP), which indexes international journal articles in the fields of physics, engineering, and computer science.


The editors also reviewed selected volumes of *The Journal of the Acoustical Society of America* and assembled the following references that pertain to digital hearing aids and related devices and/or procedures.

From Suppl. 2, Vol. 81 (Summer 1987), References to Contemporary Papers on Acoustics:


Hrebicek E et al.: Application of Fast Fourier Transformation for the Control of Hearing Aids Charac-
teristics. *Bull Audiophonol Ann Sc Univ Franche-
Comte* 2 NS(5-6):435-442 (1986) (French; English abstr.).

From Vol. 80, No. 6 (Dec. 1986), Subject Index:

Speech identification under simulated hearing-aid
frequency response characteristics in relation to sen-
sitivity, frequency resolution, and temporal resolu-
tion. Mark E. Lutman and Julia Clark, 80(4):1030-
40 (1986).

From Vol. 79, No. 6 (June 1986), Subject Index:

The constant-volume-velocity nature of hearing aids:
Conclusions based on computer simulations. David
P. Egolf, Brett T. Haley, and Vernon D. Larson,

From Vol. 78, No. 6 (Dec. 1985), Subject Index:

The hearing aid feedback path: Mathematical simu-
lations and experimental verification. David P. Egolf,
Henry C. Howell, Kim A. Weaver, and D. Steven

Discrimination and identification of frequency-low-
ered speech in listeners with high-frequency hearing
impairment. Charlotte M. Reed, Kenneth I. Schultz,
Louis D. Braida, and Nathaniel I. Durlach, 78(6):2139-

From Suppl. 2, Vol. 77 (Summer 1985), References
to Contemporary Papers on Acoustics:

Cole WA: Prospects for the Application of High
Technology to Hearing Aids. *Can Acoust/Acoust
1984).

Myers TR: A Portable Digital Speech Processor for
an Auditory Prosthesis. *Wescon '84 Conf Rec.,
Anaheim, CA, 30 Oct.-1 Nov. 1984. 36/2/1-4 (Elec-

From Suppl. 2, Vol. 75 (Summer 1984), References
to Contemporary Papers on Acoustics:

Hiroshi O and Tsutomu O: Digital Hearing Aid with
an Emphasized Consonant. *11th Int Congr Acoust,
Paris, 19-27 July 1983, 3:335-338 (GALF, Lannion,
1983).

Levitt H: Signal Processing for the Communicatively

Ono H, Kanzaki J, and Mizoi K: Clinical Results of
Hearing Aid with Noise-Level-Controlled Selective

Yip JCS: A Microprocessor-Controlled System for
Electroacoustic Testing of Hearing Aids and for
Audiological Experiments. *Conf Microprocessor Syst,

From Suppl. 2, Vol. 73 (Summer 1983), References
to Contemporary Papers on Acoustics:

Lauridsen O and Birk Nielsen H: A New Comput-
erized Method for Hearing Aid Fitting Based on
Measurements at the Ear Drum. *Scand Audiol*

From Vol. 74, No. 6 (Dec. 1983), Subject Index:

Discrimination of speech processed by low-pass filter-
ing and pitch-invariant frequency lowering. Charlotte
M. Reed, Bruce L. Hicks, Louis D. Braida, and

From Vol. 72, No. 6 (Dec. 1982), Subject Index:

A computer program for fitting a master hearing aid
to the residual hearing characteristics of individual
patients. A. Maynard Engebretson and James D.