Research Recommendations for Upper Extremity Prosthetics

T. Walley Williams III, MA
Richard Weir, PhD
Craig Heckathorne, MSc
Jack Uellendahl, CPO
Domenic Reda, PhD
Oren S. Ganz, MOT, OTR/L
Stephen Jacobsen, PhD
William J. Howard III, MSS, OTR/L, CHT
Denise Burton, PhD

Nov. 17-18, 2003
Upper Extremity Research Timeline

<table>
<thead>
<tr>
<th>ENERGETICS</th>
<th>NOW</th>
<th>5YEARS</th>
<th>10YEARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track commercial developments of batteries & alternative power sources</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>NOW</th>
<th>5YEARS</th>
<th>10YEARS</th>
</tr>
</thead>
</table>
| *Pattern recognition / multi-functional control*
Clinical evaluation of EPP systems |
| *Implantable myoelectric sensors*
Close the loop using stimulations (feedback for myoelectric) |
| Neural control using peripheral nerves |

<table>
<thead>
<tr>
<th>SUSPENSION</th>
<th>NOW</th>
<th>5YEARS</th>
<th>10YEARS</th>
</tr>
</thead>
</table>
| *Implement self-suspending (AE) techniques - Harness for control*
Criteria for osseointegrated upper-limb prostheses |
| *Develop models to evaluate harness and suspension techniques and physiological loading* |

<table>
<thead>
<tr>
<th>COSMETICS</th>
<th>NOW</th>
<th>5YEARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durable High Definition Gloves</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MECHANISMS</th>
<th>NOW</th>
<th>5YEARS</th>
<th>10YEARS</th>
</tr>
</thead>
</table>
| *Hybrid power elbows*
Robust locking shoulders |
| *Compliant hands*
3 function / 2 DOF wrists
Teach commercial developments in alternative activation technology
Lighter powered elbows with near physiological function |

<table>
<thead>
<tr>
<th>OUTCOMES</th>
<th>NOW</th>
<th>5YEARS</th>
</tr>
</thead>
</table>
| *Design study to follow WRAMC amputees*
Implement / adopt current evaluation techniques to this amputee population.
Develop tests to measure component outcomes |
| *Create database of veterans fit with upper limb prostheses for retrospective studies of prosthetic intervention - successes / failures* |
Goals for New Research

1. Give trans-radial amputees full simultaneous control of three wrist functions and at least two hand functions (e.g. implantable electrodes, pattern recognition schemes)

2. Promote investigation of nerve-muscle grafts at the trans-humeral level for control of the elbow and hand/wrist functions

3. Improve suspension methods/alternatives

4. Promote surgical/prosthetic methods to achieve active internal-external rotation of the forearm by users of trans-humeral prostheses

5. Give shoulder disarticulation amputees a functional shoulder joint

6. Improve/promote control methods that incorporate feedback of position, velocity, and force (e.g. body-powered cable systems, and powered E.P.P.-type systems, miniature cineplasty interfaces)

7. Identify power sources with greater energy density

8. Utilize WRAMC as a model to promote team approach to care of persons with arm amputations and to develop outcome measures

9. New components and coverings

10. Surgical interventions
Required to support Goal 1: Research on Implantable Myosignal Transducers

- Will permit acquiring signals from individual superficial and deep muscles
- Potential of mapping muscles onto the control of appropriate mechanisms (e.g. supinator to control supination of wrist rotator)
- Potential for simultaneous control of multiple functions
- Available in three – five years
- Explore closing control/feedback loop with implanted stimulators (BION)
 - Five - ten years
Required to support Goal 1: Multifunction Control for the Trans-radial

- Greater number of control sources (with implantable electrodes or pattern recognition schemes) opens up the possibility of more functions
- New wrist components
 - Powered wrist flexion; powered radial/ulnar deviation; powered pronation/supination; combined actions in single device
- Hands with separate thumb positioning and grip control
 - Compliant grasping
Required to support Goal 2: Research to Implement Nerve-muscle Grafts

- Sponsor research on identifying functional nerve fasicles in the operating room for assisting the neurosurgeon during reimplantations and for doing these new nerve attachments
- Discover best ways to isolate reinnervated partial muscles to minimize cross talk
- Additional funding would accelerate the pace of this research
- Funding is also needed to replicate the technique at other centers
Required to support Goal 3:
Improving Suspension

- At the trans-humeral level
 - Marquardt-Neff angulation osteotomy (retains physiological humeral rotation and provides suspension)
 - implanting a titanium T in the end of the humerus (Christiansen et al in Norway)

- Identify appropriate levels for osseointegration
 - Trans-humeral fittings to date have been only cosmetic prostheses – why?
 - Possibilities for the shoulder disarticulation?

- Suspension methods that do not rely on body harness would free up harness for control only could improve comfort and acceptance of user
 - Examples: suction sockets; suspension sleeves; osseointegration

- Develop models to evaluate harness and suspension techniques and physiological loading
Partly supports Goal 4: Control of internal-external rotation

- Replace humeral rotation friction joints with lockable components
 - Both mechanical and electric lock/unlock options
- Develop electric powered positioning component
 - double no-back clutch
 - low power
- Investigate use of implanted magnet at end of the humerus to control motion of internal-external rotation
Partly supports Goal 5:

Improve the Locking Shoulder Joint

- Must be reliable for a heavy user for five years
- The lock should be as easy to operate manually or with a cable as a typical alternator
- An instant-action electric lock is also needed
- Provide a lock in abduction
- Abduction needs gravity compensation as provided in the Bock AFB
Supports Goal 6:

Force or Position Servo Control

- EPP (Extended Physiological Proprioception) Servo systems can give greater feedback to the user and are independent of myoelectric control
 - most useful when the device driven can move at physiological speeds
- Servo control requires a “sleep” or set-it-and-forget-it circuit
- This technology is ready to implement
 - A good position feedback kit for Bock hands already exists and the Boston elbow has the required circuits but should be faster for EPP
Supports Goal 7:

Energy Dense Power Sources

- Improvements in energy storage are driven by large markets like cellular phones.
- Manufacturers of powered prosthetic components will monitor these developments without further outside help.
Supports Goal 8:
WRAMC as Model for Team Amputee Care

- WRAMC to use or rework existing manipulative tests to quantify current amputee performance
- Develop outcome measurement tools appropriate to the relatively smaller upper-limb amputee population.
- WRAMC/VA could track amputees for retrospective studies of success/ failure/ preferences of upper-limb prosthetic fittings
 - WRAMC fits each person with three types of prostheses (body-powered, myoelectrically-controlled, aesthetic)
 - Unique opportunity unavailable at this scale in the private sector
 - Identify relevant factors when prosthesis use is abandoned
 - Identify psychological effects relevant to integration of prosthesis into body image
Supports Goal 8: WRAMC as Model for Team Amputee Care

- Develop amputee focus groups to identify areas requiring improvement
 - User’s perspective
 - Participant should have at least one year of experience using a prosthesis
 » Allows for time to make psychosocial adjustment
 » Judgments based on experience
 - Newly-amputated person generally has unrealistic expectations
 » Experience helps in prioritizing importance of identified areas

- Consider use of VA QUERI group to provide ongoing review of research/procedures pertinent to WRAMC/VA needs in upper-limb amputee care
Supports Goal 9:

Components and Coverings

- Continue research on body-powered components
 - Have many features desired by users but also have deficiencies
- Existing devices need to be lighter to incorporate more active joints within a given prosthesis
- New devices need to emphasize lightweight design
 - Get input from DOD and NASA, and other government agencies / private sector manufacturers on lightweight materials
- Durable, high definition cosmetic gloves
- Hybrid elbows with power assist/body-power actuation
- Revisit VA-sponsored research from last 20 years to see which projects failed “technology transfer” and need a second try
 - Technologies come of age and become ready for implementation
Partly supports Goal 10:

Surgical Issues

- Is their value to lengthening the humerus or the radius and ulna for prosthetic fitting
 - What are the criteria?
- Educate the surgical community on the need for myodesis and myoplasty to prepare the residual limb for prosthetic fitting
- Consideration of the Krukenberg procedure or the Wilkie procedure for blinded individuals with bilateral arm amputations
 - Provides sensation
 - Could be covered with aesthetic prosthesis for social purposes
Upper Extremity Research Timeline

<table>
<thead>
<tr>
<th>NOW</th>
<th>5 YEARS</th>
<th>10 YEARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGETICS</td>
<td>*Track commercial developments of batteries & alternative power sources</td>
<td></td>
</tr>
<tr>
<td>CONTROL</td>
<td>*Implantable myoelectric sensors</td>
<td>Neural control using peripheral nerves</td>
</tr>
<tr>
<td>*Pattern recognition / multifunctional control</td>
<td>*Close the loop using stimulations (feedback for myoelectric)</td>
<td></td>
</tr>
<tr>
<td>*Clinical evaluation of EPP systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUSPENSION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Implement self-suspending (AE) techniques - Harness for control</td>
<td>*Develop models to evaluate harness and suspension techniques and physiological loading</td>
<td></td>
</tr>
<tr>
<td>*Criteria for osseointegrated upper-limb prostheses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSMETICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Durable High Definition Gloves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECHANISMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Hybrid power elbows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Robust locking shoulders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTCOMES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Design study to follow WRAMC amputees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Implement / adopt current evaluation techniques to this amputee population.</td>
<td>*Create database of veterans fit with upper limb prostheses for retrospective studies of prosthetic intervention - successes / failures</td>
<td></td>
</tr>
<tr>
<td>*Develop tests to measure component outcomes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTCOMES

- Compliant hands
- 3 function / 2 DOF wrists
- Teach commercial developments in alternative activation technology
- Lighter powered elbows with near physiological function

COSMETICS

- Develop models to evaluate harness and suspension techniques and physiological loading

CONTROL

- Pattern recognition / multifunctional control
- Clinical evaluation of EPP systems

ENERGETICS

- Track commercial developments of batteries & alternative power sources

MECHANISMS

- Hybrid power elbows
- Robust locking shoulders