KRISTJAN T. RAGNARSSON, MD is the Dr. Lucy G. Moses Professor and Chairman of the Department of Rehabilitation Medicine of Mount Sinai School of Medicine, New York, NY. Dr. Ragnarsson joined the faculty of Mount Sinai in 1986, after 15 years at the Rusk Institute of Rehabilitation Medicine, New York University Medical Center, where he had been the Project Director of the New York Spinal Cord Injury Regional System. Dr. Ragnarsson has earned an international reputation for this expertise in the rehabilitation of individuals with disorders of the central nervous system, particularly those with spinal cord injury (SCI). He has published more than 60 articles and book chapters and made numerous presentations in this field, locally, nationally, and internationally. He has served on several site visit teams to funded research programs for the National Institutes of Health (NIH) and the Department of Veterans Affairs. He has been a principal investigator and co-investigator on grants from NIH, the National Institute on Disability and Rehabilitation Research (NIDRR), and private foundations. He was the Project Director of the New York TBI Model System of Care from 1987 to 1992, and is now the Project Director of the Mount Sinai SCI Model System of Care. Dr. Ragnarsson has served on the Board of numerous organizations and is currently President of the American Spinal Injury Association. He has served on peer review panels for federal, state, and private organizations and is a member of the Spinal Cord Injury panel of the Department of Veterans Affairs, Rehabilitation Research and Development Service Scientific Merit Review Board.
The impact of regular physical activity on health and longevity has been debated by both physicians and lay persons for centuries. The ancient Greeks promoted in their culture the philosophical concept of “a sound mind in a sound body” and Hippocrates (460–377 BC), their best known physician and father of the medical profession, indeed noted that “all parts of the body which have a function, if used in moderation and exercised in labors in which each is accustomed become thereby healthy, well developed, and age more slowly, but if unused and left idle, they become liable to disease, defective in growth and age quickly.” In contemporary terms, this view has been expressed as “use it or lose it.” The pursuit of physical and mental health through physical exercise and sports, even in times of peace, became an important part of the life of the ancient Greeks. Competitive athletic events flourished, and of these the best known today would be their Olympic Games. Unfortunately, public interest in physical fitness through exercise declined during the days of the Roman Empire and throughout the Middle Ages, except in the military as a means to survive and conquer in times of warfare. During those many centuries, health and longevity seemed to be affected more by infectious disease, natural disasters, and armed conflicts rather than by medical conditions related to deconditioning, aging, and sedentary lifestyle.

During the 20th century, there has been a growing public consensus that physical exercise is important for good health. Numerous sports facilities have been built, athletic leagues and events have been organized, and in the United States, the President’s Council on Physical Fitness and Sports was established. In the early part of the century, physical exercise and sports were considered to be more for the young than for the middle-aged or older persons, or to be recreational activities to watch or play rather than as a means to achieve fitness and better health. During the second half of the century, it gradually became clear to the medical profession that there are numerous negative affects associated with sedentary lifestyle: prolonged bed rest during disease, and immobilization following injury (1). Muscles were found to atrophy and weaken, cardiovascular function deteriorated with reduced aerobic capacity, bones lost density, endocrine function was altered, and so on. As a result of these observations, physicians have modified their practices and, in general, their patients no longer must endure long periods of bed rest while recuperating from an illness or injury, but are encouraged to become physically active as early as possible through exercise programs of increasing intensity.

During the last quarter of a century, it has become increasingly clear that physical activity and fitness are inversely associated with morbidity and mortality from several chronic diseases (2). Large population studies have shown a strong and consistent inverse relationship between physical fitness and mortality in men and women unrelated to age and other risk factors (2). Consequently, sports and physical fitness are no longer considered beneficial just for the young and professional athletes, but for middle-aged and older individuals as well. Since scientific data demonstrating the health benefits of exercise are relatively new and scant, the medical profession has been relatively slow to respond to these scientific observations and it vigorously advocates physical exercise as an important means toward preventing illness and restoring health. However, as individuals, physicians are generally known to pursue regular exercise for themselves in high
numbers while regrettably often failing to recommend this intervention for their patients. The curricula for most medical schools still place little emphasis on teaching students about the preventive and therapeutic effects of exercise or about the principles of exercise prescription. During the current time of revolutionary changes in the delivery of healthcare, it is interesting to note that some managed healthcare companies have recognized the beneficial effects of physical exercise and have offered discounts at physical fitness centers and at sporting good stores to their subscribing members. It may be speculated that in a capitated reimbursement system, where the deliverers of healthcare services carry the financial risk, health promotion and illness prevention programs will play an increasingly larger role. It is thus likely that achieving and maintaining physical fitness for all constituents of such health care delivery systems will be a major goal of their illness and injury prevention programs.

Sports and Fitness Training for Persons with Physical Disability

As sports became a greater part of the culture in Western Societies, interest grew among persons with physical disabilities to actively participate in such activities. In 1944, Sir Ludwig Guttmann, MD, the founder of the National Spinal Injuries Center at Stoke Mandeville Hospital in England, first introduced sporting activities as an essential part of the medical treatment of persons with spinal cord injury (3). He found these activities to have immense therapeutic value in restoring the disabled person’s strength, coordination, and endurance and in achieving psychological adjustment to the disability. His patients participated in a variety of sports, including wheelchair polo, basketball, archery, bowling, fencing, racing, field events, and weight lifting. People with other physical disabilities soon followed suit, not only in England but in many other countries, and organized their own sports programs and events. Under Sir Ludwig’s leadership, the Stoke Mandeville Games for the Paralyzed were first held in 1948 and grew to be an international annual event, which, every fourth year, has followed the Olympic Games, in the same country if possible, and consequently the Stoke Mandeville Games were renamed the Paralympic Games (i.e., they run parallel to the Olympic Games).

In the United States, the medical profession has paid relatively little attention to sports as a therapeutic intervention in disease and physical disability. Sports medicine focuses more on treating the injured athlete than on the therapeutic benefits of sports. Athletes with disability have largely organized their own sports programs and events and have had special athletic gear designed and manufactured with little support of physicians or rehabilitation professionals. Third-party reimbursement for athletic activities by disabled persons has been nonexistent during both inpatient and outpatient rehabilitation; as a result, a relatively small proportion of the disabled population has had the opportunity to participate regularly in sports. However, healthcare providers and third-party payers have gradually accepted the value of therapeutic exercise supervised or delivered by professional physical therapists during rehabilitation after disabling injuries and disease. While regular aerobic exercise and fitness have been shown in numerous scientific studies to have preventive value for different medical conditions, as noted above, including cardiovascular disease (2,4–6), hypertension (7–9), non-insulin dependent diabetes mellitus (10), colon cancer (11), osteopenia (12), obesity, and mental health problems (13), such exercise is still not considered a reimbursable medical expense.

People with spinal cord injury (SCI) and other forms of severe physical disability are limited in their ability to participate in physical exercise, both because of their physical limitations and because of environmental barriers, such as, lack of transportation, appropriate athletic facilities, and the need for special equipment. Consequently, their cardiovascular fitness may be severely diminished and a series of degenerative physiological changes predictably occur that negatively affect the person’s health sooner or later. According to data from the Spinal Cord
Injury Model Systems Uniform Data Base, heart
disease now accounts for 18.7 percent of all
deaths following spinal cord injury, ranking
second only to respiratory conditions as the
cause of death (14). It is possible that such
heart disease and other cardiovascular causes
of death following SCI may be related to
immobility. It has also been shown that
individuals with paraplegia have a high
incidence of myocardial ischemia upon cardiac
stress testing with thallium 201 imaging studies
(15). Numerous other studies have indicated
the presence of other risk factors for
cardiovascular disease in persons with SCI: risk
factors frequently related to inactivity, such as,
high lipoprotein cholesterol concentrations (16),
reduced lean body mass (17), and abnormal
glucose tolerance test (18,19).

Despite such observations, health care
providers generally still do not include aerobic
exercise programs in the rehabilitation or long-
term follow-up of persons with SCI.
Professionals in the field of rehabilitation
medicine have traditionally emphasized several
specific forms of physical exercise for their
patients with SCI during the rehabilitation
process that follows the onset of the disability.
Such exercises include muscle strengthening
and range of motion exercises, as well as
functional training for self-sufficiency and
mobility, but, in general, aerobic exercises,
which increase endurance and have certain
health benefits in people without disability, do
not have a large role. Following rehabilitation,
which usually is completed during the first year
after injury, continued physical exercise for
fitness is not emphasized. Unfortunately, most
individuals with SCI are completely wheelchair-
bound and sedentary and do not pursue any
form of regular fitness training. Relatively few,
and mostly persons with paraplegia, participate
in wheelchair sports and upper body training.
Ordinary manual wheelchair propulsion and
performance of the activities of daily living, in
general, are insufficient to maintain physical
fitness, since it has been shown that activity
count and circulatory strain for persons with
SCI are low compared to normal controls
(20,21). It may, therefore, be concluded that
additional aerobic exercise—several times each
week—is needed if persons with SCI are to
reach and maintain the level of physical fitness
that is desirable for their health and function.

Since most people with SCI have paralysis
of the largest muscles of the body (i.e., those
of the buttocks and lower limbs), it has been
speculated that exercise of the non-paralyzed
muscles in the upper limbs may not be enough
to achieve a state of fitness. Aerobic exercises
that involve the use of the upper limbs not only
may be less effective in enhancing fitness and
health than exercises of the lower limbs, but
may even have some drawbacks for persons
with SCI. Exercise with the upper limbs clearly
involves smaller muscle mass and elicits
smaller physiological response than lower limb
exercise and consequently may be less
effective in producing cardiopulmonary fitness.
Additionally, persons with high-level tetraplegia
may not be physically capable of participating
in wheelchair sports or fitness training, which
requires the use of the upper limbs. Aerobic
exercise of the upper limbs may, therefore, not
be the final answer to the exercise needs of
persons with SCI. As a result, it has been
suggested that active exercise of their
paralyzed muscles through computerized
functional electrical stimulation ergometry may
also be helpful to improve the level of fitness
for persons with SCI. Several studies have
shown that such form of exercise may increase
the mass and strength of the stimulated
muscles and have a modest beneficial effect on
cardiovascular performance and some of the
risk factors for cardiovascular disease (22).

While such form of physical exercise does not
replace upper limb exercises for persons with
paraplegia, it may prove to be a valuable
alternative for those persons with SCI who, for
some reason, are unable to exercise using their
upper limbs.

CONCLUSION

Scientific evidence shows that physical and
mental fitness may be improved through
exercise, and, by this means, health and
longevity may be improved. Clinicians,
An archer prepares his recurve bow for practice.
therefore, should actively advocate some form of physical exercise and pursuit of fitness for all their patients. Life-long physical exercise may be of particular importance for persons with SCI who, by nature of their disability, are profoundly sedentary and develop prematurely different medical conditions that are often associated with lack of exercise and aging.

REFERENCES